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A coordinate-system-independent method for comparing joint

rotational mobilities
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ABSTRACT

Three-dimensional studies of range of motion currently plot joint
poses in a ‘Euler space’ whose axes are angles measured in the
joint's three rotational degrees of freedom. Researchers then
compute the volume of a pose cloud to measure rotational mobility.
However, pairs of poses that are equally different from one another
in orientation are not always plotted equally far apartin Euler space.
This distortion causes a single joint's mobility to change when
measured based on different joint coordinate systems and
precludes fair comparison among joints. Here, we present two
alternative spaces inspired by a 16th century map projection —
cosine-corrected and sine-corrected Euler spaces — that allow
coordinate-system-independent comparison of joint rotational
mobility. When tested with data from a bird hip joint, cosine-
corrected Euler space demonstrated a 10-fold reduction in variation
among mobilities measured from three joint coordinate systems.
This new quantitative framework enables previously intractable,
comparative studies of articular function.

KEY WORDS: Mobility, Range of motion, Euler angles,
Joint coordinate system, XROMM, Visualization

INTRODUCTION

Many studies aim to quantify joint rotational mobility in both extant
and extinct animals (e.g. Arnold et al., 2014; Hutson and Hutson,
2012, 2013, 2014, 2015, 2017, 2018; Kambic et al., 2017a; Pierce
et al., 2012; Proffen et al., 2012; Taylor and Wedel, 2013) and
humans (e.g. Diong et al., 2019; Matthews et al., 2017; McGarry
et al., 2016; Mulholland and Wyss, 2001; Steinberg et al., 2016).
These studies have traditionally reported range of motion (ROM)
with bar graphs displaying the minimum and maximum excursions
possible in each of a joint’s rotational degrees of freedom (DoF).
However, recent work has highlighted substantial interactions
among DoF (e.g. Haering et al., 2014; Kambic et al., 2017b),
motivating the development of a method to visualize and measure
ROM in three dimensions (3D) (Crétual et al., 2015; Haering et al.,
2014; Kambic et al., 2017b; Manafzadeh and Padian, 2018; Ropars
et al., 2015).

After calculating a series of Tait—Bryan (i.e. extrinsic XYZ, XZY,
YXZ, YZX, ZXY, ZYX) or proper Euler (i.e. extrinsic XYX, XZX, YX7,
YZY, ZXZ, ZYZ) angles from a joint coordinate system (JCS),
researchers plot a point representing each joint pose in a 3D ‘Euler
space’ whose axes are angles (o,  and y) measured in the three DoF
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of the JCS rotation sequence. This process is repeated for hundreds
or thousands of joint poses, creating a point cloud that offers a visual
representation of a joint’s ROM. A convex hull (Crétual et al., 2015;
Haering et al., 2014; Kambic et al., 2017b; Ropars et al., 2015) or
other alpha shape (Manafzadeh and Padian, 2018; Tonneau et al.,
2014) can then be calculated and its volume measured to quantify
mobility. Although plotting in Euler space is fairly new to
biomechanists, this approach has been used by other researchers
studying 3D orientations, such as materials scientists and
molecular biologists, for several decades (e.g. Bailor et al.,
2011; Cho et al., 2004; Dickson et al., 2014; Flowers, 1983;
Houtte, 1987; Raabe, 1995).

Unfortunately, pairs of joint poses that are equally different
from one another in orientation are rarely plotted equally far apart
in Euler space (see Data Table 1 in Dryad: https:/doi.org/10.5061/
dryad.dncjsxkx1). For example, under Tait-Bryan rotation
conventions, poses of equal difference fall out farther and
farther away from each other as the second rotation (B)
approaches £90° (i.e. as the system approaches gimbal lock). A
useful intuition for this distortion can be developed by drawing an
analogy between a Tait—Bryan JCS and the geographic coordinate
system on the surface of the Earth (following Baker, 2011;
Strasser, 1917). Consider a globe turned on its side with a bird
femur spanning a radius from center (hip joint) to equator
(condyles). Following the avian hip JCS proposed by Kambic
et al. (2014), rotation about the first JCS axis (generally, o; here,
flexion—extension) moves the distal femur to a new line of
longitude. Rotation about the second axis (generally, B; here,
abduction—adduction) moves the femur to a new line of latitude.
Finally, rotation about the third axis (generally, y; here, long-axis
rotation) spins the femoral condyles in place as if setting a new
navigational heading (Fig. 1A-D).

If the distal femur begins on the prime meridian at an adducted,
equatorial latitude (Pose 1), and the hip extends to a longitude of
20°W (Pose 2), the femur must travel 2226 km along the surface
of the Earth, making Poses 1 and 2 rather different (Fig. 1E).
However, longitude lines converge as they approach the poles —so
if the distal femur begins on the prime meridian at a more
abducted, Arctic latitude (e.g. 70°N; Pose 3) and the hip is again
extended to a longitude of 20°W (Pose 4), the femur only travels
761 km and Poses 3 and 4 are much more similar (Fig. 1F).
Problematically, the distances between Poses 1 and 2 and Poses 3
and 4 are identical in Euler space (Fig. 1H). In order for the femur
to travel 2226 km at a latitude of 70°N (i.e. to reach a pose as
different from Pose 3 as Pose 2 is from Pose 1), the hip must
extend to the significantly greater longitude of 58°W (Pose 5;
Fig. 1G). In Euler space, Pose 5 is plotted almost 3% farther away
from Pose 3 than Pose 2 is from Pose 1 (Fig. 1H). A pair of equally
different poses at an extremely abducted, northern Greenlandic
latitude of 80°N — even closer to the pole — would be plotted
almost 6x farther apart.
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Fig. 1. An analogy between a Tait-Bryan joint coordinate system (JCS) and the geographical coordinate system underscores the shortcomings of
Euler space. Poses of a guineafowl!’s right hip joint are represented both on globes (rotated 90 deg such that the North Pole faces left; A-C,E-G) and in
Euler space (D,H). Inset shows the position of the pelvis and right femur within a silhouette of the helmeted guineafowl (Numida meleagris). (A) Rotation
about the first JCS axis (generally, o; here, flexion—extension) moves the distal femur to a new line of longitude. (B) Rotation about the second axis
(generally, B; here, abduction—adduction) moves the femur to a new line of latitude. (C) Rotation about the third axis (generally, y; here, long-axis rotation)
spins the femoral condyles in place as if setting a new navigational heading. (D) Excursions in any one degree of freedom (DoF; o, B or y) correspond to
motions along one axis of Euler space. (E) Poses 1 and 2, differing in 20° of longitude at the equator, are rather different. (F) Poses 3 and 4, differing in 20° of
longitude at an Arctic latitude, are quite similar. (G) To reach a pose as different from Pose 3 as Pose 1 is from Pose 2, the hip must extend to a significantly
more westerly longitude. (H) Poses 1-5 plotted in Euler space (colors match those in E-G). Note that poses 3 and 5 are plotted much farther apart than

poses 1 and 2 are.

If the hip joint were instead measured using a different JCS, this
invisible globe would be reoriented, and all poses would move closer
to or farther from the poles of the system. As a result, analyses of joint
mobility in Euler space depend heavily on a researcher’s selection of a
JCS, because this choice determines where along the second axis of the
space a pose cloud will be plotted — and thus how big its volume will be
(see a discussion of related issues in Michaud et al., 2012; Senk and
Cheze, 2006). In other words, the same set of joint poses, when plotted
in Euler space based on two different JCSs, can yield two very different
mobility measurements. A related issue plagues comparisons among
two or more joints, even when all are analyzed using the same JCS.
Volumes of pose clouds that deviate farther from zero along the second
axis will be disproportionately inflated, causing the joints being
compared to appear more similar or more different than they truly are.

Here, we present two alternative spaces for plotting joint poses
and comparing joint rotational mobility: a ‘cosine-corrected
Euler space’ for use with any Tait—Bryan rotation convention,
and a ‘sine-corrected Euler space’ for use with any proper Euler
rotation convention. Plots in these spaces represent all poses of
equal difference at equal distances, meaning that mobility
calculations are resistant to changes in the JCS selected.
Therefore, our method enables accurate comparative studies of
articular function.

MATERIALS AND METHODS

Cosine-corrected and sine-corrected Euler spaces

In order to devise a coordinate-system-independent
method for comparing joint mobility, we first sought to

better understand the pattern of volume distortion
throughout Euler space. Conveniently, doing so requires
only a basic knowledge of calculus. An expression for a
volume element (dV; the volume of an infinitesimally
small region of a space) can be computed by finding the
determinant of the Jacobian matrix for the transformation from
a 3D Euler parametrization to 4D quaternionic space (where
dV is standard; see Karney, 2007) and taking the absolute
value of its inverse. We calculated the volume element for a
generalized Tait—Bryan rotation convention and obtained
dV=8/abs[cos(B)]dadpdy, and for a generalized proper Euler
rotation convention and obtained dF==8/abs[sin(p)]dodpdy
(see  Appendix). These calculations revealed that
volumes measured in any Euler space are distorted by a
surprisingly simple trigonometric function (Tait—Bryan: 1/
cosine=secant; proper Euler: 1/sine=cosecant) of the
second rotation.

The volume element is generally used to integrate multivariate
functions. However, because joint pose data are empirically
derived, we aimed to harness this expression to create a 3D space
that does not distort volumes but still permits fast, easy
visualizations of poses and measurements of mobility. Given
the analogy between Tait—Bryan angles and the geographic
coordinate system, we turned to the cartographic literature for
inspiration — and found a serendipitous solution in a 1570 map of
the world drawn by Jean Cossin de Dieppe (Fig. 2A). Cossin’s
map is based on a projection first developed by Gerardus
Mercator and known today as the sinusoidal (SIN) or Sanson—
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Fig. 2. A 16th century map projection is the foundation of cosine-corrected Euler space. (A) Jean Cossin de Dieppe’s 1570 map of the world (source:
Bibliotheque Nationale de France). (B) Anchorage, AK, USA, plotted on a sinusoidal map projection (Source: Gaba, Wikimedia Commons). (C) Poses 1-5 (colors
match those in Fig. 1H) plotted in cosine-corrected Euler space. (D) A focused view of Poses 1-5 in cosine-corrected Euler space; note that Poses 1 and 2 and
Poses 3 and 5 are plotted equally far apart from each other. (E) When viewed from above, 10,000 uniformly random poses plotted in a Tait-Bryan Euler space (left)
are unevenly distributed, but become evenly dense when plotted in cosine-corrected Euler space (right).

Flamsteed equal-area map projection, which is defined by:

Xsiv = (N = No)cos(¢), (1)
Ysin = o, (2)

where A is longitude, A, is the longitude of the prime meridian
and ¢ is latitude (Seong et al., 2002). For example, Anchorage,
AK, USA, sits on the globe at roughly 61°N, 150°W [i.e. (A,
0)=(—150, 61)], and is plotted as (Xsmn, Ysin)=(=72, 61)
(Fig. 2B). By including a cosine term, the sinusoidal projection
corrects for meridional (longitudinal) convergence on the
surface of the Earth and does not distort areas.

Building from the definition of the sinusoidal map projection, we
created what we call ‘cosine-corrected (CC) Euler space’, defined by:

Xee = (OL - acentral)cos(B)a (3)
Yoo = B, 4)
Zee = s (5)

where, when measured under a Tait—Bryan rotation convention, o is
the angle measured about the first JCS axis in the rotation sequence,
Ocentral 1 the o value centered in the space (analogous to the prime

meridian), B is the angle measured about the second JCS axis in the
rotation sequence, and vy is the angle measured about the third JCS axis
in the rotation sequence. For example, when 0.cnqa=0, Pose 4 (see
Fig. 1F,H)—measured as (o, B, Y)=(20, 70, 0) —is plotted as (Xcc, Ycc,
Zcc)=(7,70, 0) (Fig. 2C,D). If the canonical set of Euler triples where
o€ (—180, 180), B e (—90, 90) and y € (—180, 180) is selected, cosine-
corrected Euler space takes the form of a sinusoidal map projection
extruded into and out of the plane of the page (Fig. 2C). NB: Olcentral 1S
arbitrary and can be altered, as long as the set of Euler triples used is
shifted accordingly [e.g. Olcenma=90 requires o € (—90 to 270)]. As we
would expect from the value of the Tait-Bryan volume element, this
space plots all poses of equal difference at equal distances (Fig. 2E;
see Data Table 1 in Dryad: https:/doi.org/10.5061/dryad.dncjsxkx1;
see also Kuffner, 2004) and does not distort volumes.

Similarly, then, we created what we call ‘sine-corrected (SC)
Euler space’, defined by:

XSC = (0‘ - 0‘central)Sin(B)a (6)
Ysc =B, (7)
Zsc =, (8)
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for use with joints measured using a proper Euler rotation
convention (e.g. human shoulders; Wu et al., 2005). If the
canonical set of Euler triples where a € (—180, 180),
B e (—180, 0) and v € (—180, 180) is selected, sine-corrected
Euler space superficially resembles cosine-corrected Euler
space. And once again, as we would expect from the value of
the proper Euler volume element, this space plots all poses
of equal difference at equal distances (see Data Table 1 in
Dryad: https:/doi.org/10.5061/dryad.dncjsxkx1) and does not
distort volumes.

Sample joint ROM analysis

A fresh-frozen adult helmeted guineafowl, Numida meleagris
(Linnaeus 1758), cadaver was obtained from colleagues (no
approval from the Brown University Institutional Animal Care
and Use Committee was necessary). Radiopaque markers (three per
bone; 0.8 mm diameter zirconium oxide ball bearings; Ortech, Inc.,
Sacramento, CA, USA) were press-fitted into hand-drilled holes in
the pelvis and right femur and affixed with cyanoacrylate adhesive.
(The other hindlimb elements were also marked; these data are not
presented here.) Care was taken to ensure minimal damage to
hindlimb soft tissues, and all incisions were sutured after marker

The specimen was mounted in the center of an X-ray
volume created by a pair of X-ray image systems (Imaging
Systems and Service, Painesville, OH, USA) comprising Varian
model G-1086 X-ray tubes and Dunlee model TH9447QXHS590
image intensifiers in the W. M. Keck Foundation XROMM
Facility at Brown University (70-85 kV, 200 mA, 120-122 cm
source—image distance). To allow a researcher to conduct
manipulations from a safe distance outside the X-ray volume,
one or two 1.0 m wooden dowels were fastened to the marked
hindlimb using Velcro and elastic bands. Biplanar fluoroscopic
videos of the hip joint taken through its full ROM were recorded
using Phantom v.10 high-speed cameras (50 framess™', 1/1000
shutter speed, 100—150 us EDR, 1760x1760 pixel resolution; Vision
Research, Wayne, NJ, USA). Extremes of rotation were determined
based on researcher sensation of a hard stop (following Kambic et al.,
2017a,b; Manafzadeh and Padian, 2018). We recorded multiple trials
to ensure the most complete sampling possible. Still X-ray images of
a standard grid and an object of known geometry were also captured
to allow undistortion and 3D calibration of the cameras (Kndrlein
et al., 2016).

Following video data collection, the specimen was disarticulated
and micro-computed tomography scans were taken of the pelvis and

implantation. right femur (115kV, 130pA, 0.090 mm slice thickness,
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Fig. 3. Helmeted guineafowl hip poses plotted in Euler space and cosine-corrected Euler space. (A) Pose clouds and alpha shapes measured from JCS1-3
plotted in Euler space. Oblique view and top view. (B) Pose clouds and alpha shapes measured from JCS1-3 plotted in cosine-corrected Euler space. Oblique
view and top view. Colors match those in A. All pose clouds contain 25,192 poses. See also Movie 1.
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2000%2000 resolution; Nikon Xtek microCT, Nikon Metrology,
Tokyo, Japan). Mesh models of bones and radiopaque markers were
reconstructed using Amira v.6.0.1 (Mercury Systems, Andover,
MA, USA) and cleaned using Geomagic Wrap 2017 (3D Systems,
Morrisville, NC, USA). Models were imported into Maya 2020
(Autodesk, San Rafael, CA, USA), and three alternative sets of JCSs
were placed at the hip joint (see Fig. 3A), here termed JCS1, JCS2
and JCS3.

X-ray videos were calibrated and digitized using XMALab
v.1.5.4 (Knorlein et al., 2016); the overall precision of tracking was
0.106 mm (mean s.d. of intermarker distance for six co-osseous
marker pairs over 14 trials; see Brainerd et al., 2010). Rigid body
transformations were computed and used to animate bone models in
Maya 2020, where joint rotations were calculated from JCS1-3
using the oRel XROMM shelftool (xromm.org) under a Tait—Bryan
ZYX rotation convention. This process yielded 25,192 measured hip
joint poses for each JCS (see Data Table 2 in Dryad: https:/doi.org/
10.5061/dryad.dncjsxkx1).

We first plotted the three resulting pose clouds in Euler space and
computed the volume of an alpha shape for each in
MATLAB_R2019a (Mathworks, Natick, MA, USA), using either
an alpha radius of 10 or the critical alpha radius if it was larger than
10 (see Table S1 for a sensitivity analysis). We then transformed all
pose clouds to cosine-corrected Euler space and repeated our
volumetric analysis.

RESULTS AND DISCUSSION

To test the effectiveness of our method on real physiological data,
we compared the mobilities measured from a helmeted guineafowl
hip joint using three different Tait-Bryan JCSs in both Euler space
and cosine-corrected Euler space (Movie 1). In Euler space, we
measured a mobility of 46,830 deg? using JCS1; 45,602 deg? using
JCS2; and 65,260 deg® using JCS3 (Fig. 3A). In cosine-corrected
Euler space, we measured a mobility of 43,033 deg® using JCS1;
43,208 deg® using JCS2; and 41,899 deg? using JCS3 (Fig. 3B).
Whereas the largest percent difference in mobility was 30.12% in
Euler space, cosine-corrected Euler space reduced this metric to
only 3.03%.

The remaining discrepancy among mobilities stems from
variation in the wrapping of the alpha shape for each point
cloud — a limitation inherent to this volume measurement
approach. Future studies might consider implementing
more involved algorithms for computing volumes from pose
sets (e.g. Luo et al., 2009), but in the meantime, alpha shapes
continue to offer a convenient method for quantifying mobility.
When alpha shapes are used, care should be taken to sample
joint poses as densely as possible, because sparse pose clouds
exacerbate wrapping discrepancies (see Table S2 for a sensitivity
analysis).

We are by no means the first researchers to attempt to create a
uniform space of 3D orientations. Scientists in other fields have
previously developed methods that rely on quaternions (e.g.
Krakow et al., 2017), Rodrigues vectors (e.g. Neumann, 1991),
the Hopf fibration (e.g. Yershova et al., 2010) and even Euler
angles (e.g. Zhao and Adams, 1988) (see Schwartz et al., 2009,
for an overview). However, our approach is unique because we
aimed to maintain a low mathematical barrier to use while
balancing our dual goals of visualization and quantification.

Consequently, a key advantage of cosine-corrected and sine-
corrected Euler spaces for studying joints is their
straightforward connection to the Euler-based JCSs that are
recommended by the International Society of Biomechanics
(Wu et al., 2002, 2005) and are so frequently used in 3D
kinematic studies (see Brainerd et al., 2010). Simple
trigonometry can transform each point in our spaces back into
the original Euler triple that was measured from a JCS,
minimizing the gap between abstract pose space and concrete
morphological relationship.

We suggest that cosine-corrected and sine-corrected Euler
spaces can be applied to a broad range of future studies,
especially as 3D measurements of joint poses become
increasingly common. For example, when measured in these
spaces, the effects of injury (e.g. Lopes et al., 2016; Modest
et al., 2019; Verrall et al., 2005), disease (e.g. Mitchell et al.,
2019; Pratt and Ball, 2016; Srivanitchapoom et al., 2016) or
soft tissue constraints (e.g. Arnold et al., 2014; Hutson and
Hutson, 2012; Manafzadeh and Padian, 2018) on ROM can be
judged fairly. And because mobility metrics in these spaces are
coordinate-system independent, it is now feasible to investigate
the development or evolution of mobility across disparate
joints. Ultimately, the quantitative framework presented here
corrects the volume distortion of Euler space and enables
accurate comparative analyses of articular function.

APPENDIX

Computation of the volume element for the Tait-Bryan
parametrization

To compute the volume element dV, we begin with the
transformation from a generalized Tait—Bryan parametrization
to quaternions where o is the first angle measured in the rotation
sequence, P is the second angle measured in the rotation sequence
and v is the third angle measured in the rotation sequence. In
order to obtain a square Jacobian (allowing computation of the
determinant, which is only defined for square matrices), we
temporarily include the radius term r, which we will set equal to 1
at the end of our calculations because we are only concerned with
unit quaternions:

q,:r(cos%cos%cos%+sin%sin%sin%), (A1)

qi = r(sin%cos%cos% — cos%sin%sing),

g =r cosgsinEcosz—i-singcosEsi Y
J 22 2 22 2)

qr = r(cos%cosﬁsinz - singsinEcos Z)_ (A4)

2 2 22 2
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The Jacobian matrix is thus:

[ v B « v B.a s1nzcosEcos——cos’ysmEsm— coszsinEcosg—sinlcosEsinE coslcosEsing—sinzsinEcosg
COS=COS—COS—+sin_sin—sin— —r 2 2 2 2 2 2 2 2 2 2 2 2|, 2 2 2 2 2 2
22 2 2 2 2 2 2 2
Y. B Y. B Y B« Y. B. o B Y. B
cos—sm—cos—+sm—cos—sm— SIN—-COS—COS—+Cos—sin—sin— cos—cos—cos—+sm—sm—sm—
coslcosEsing—sinzsinEcosg —r 2 2 2 2 2 2 2.2 2 2.2 2 2 2 2 2
22 2 2 22 2 2
v B v B.a coszcosEsing—sinlsinEcos— coslcosEcosg—sinZSinEsing s1n—cosEc0s——coslsmEsmg
coszsmzcosz+s1n2cos2s1n§ r 22 22 2 2 2 r 22 22 2 2 2 2 2 2 2
Y. B o .y.B. o Yy B.a . y. B « vy. B Y B«
COS—COS—COS—+Sin—sin—sin— COS—COS—Sin—+sin—sin—cos— cos—sm—cos—+sm—cos—sm—
sin%cosgcos%—cos%singsin% r 2 2 22 2 2 2|, 2 2 22 2 2 2) 2 2 22 2 2 2

Taking the inverse of the absolute value of the determinant of this matrix yields:
8
[cos B] x |3

Substituting 1 for r, dV is:

|cosB| do dp dy.

Computation of the volume element for the proper Euler parametrization
Computation of the volume element d} for the proper Euler parametrization follows that for the Tait-Bryan parametrization. The
transformation from a generalized proper Euler parametrization to quaternions is:

= r(s0s "1 Y eosB), (A3)
qi=r cos T 'ysinE (A6)
1 2 2 b

g =r sinOL_YsinE (A7)
/ 2 2)’

G = r(sinaTﬂcos %) (AB)

The Jacobian matrix is thus:

-cosEsiny f(cosEsmm) —£<sinEcosy+a) L (cosEsiny+a) ]
2 2 2 2 2 2 2 2 2 2
smgsmy_a %(smEsmv_a> %(cos%cosyg ) %(singsiny;a>
~sin2sinY ; ¢ ; (sin > cos ;a) % <cos%sin ;a) % (singcos'Y ; a)
cosgsmy;a ;<cos%cos'Y 7 a) —% <s1ngsiny 7 > %(cos%cosy;a> ]

Taking the inverse of the absolute value of the determinant of this matrix yields:

8
|sin B x [r*]°

Substituting 1 for r, dV is:
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