

Purpose-Built Cloud for AI at Scale:
Achieving 20% Higher MFU and 10x
Reliability on Thousand-GPU Clusters
NVIDIA H100 Performance Benchmarks
A CoreWeave Technical Report
Wes Brown (Distinguished Engineer), David Marx (Senior Engineer), Anthony Mercurio (Engineer), Eta
Syra (Engineer), Sanger Steel (Engineer), Rex Wang (Engineer), Deok Filho (Product Manager)

August 2025

Table of Contents

Executive Summary ​ 2

 Introduction: The Challenge of Large-Scale AI Training 4

 Benchmarking Results 6

Benchmarking Methodology 12

The CoreWeave Approach: Purpose-Built for AI Scale 15

Technical Implementation 19

Best Practices for Large-Scale Training on CoreWeave 19

Conclusion: Reliable, Performant AI Training at Scale with CoreWeave 30

Appendix 34

Executive Summary
The artificial intelligence industry's push toward trillion-parameter models has exposed a
critical gap: while GPU availability has increased, the infrastructure capability to maintain
stable, efficient training at scale has not kept pace. Industry reports document effective
training time ratios as low as 90%1 and mean time to failure under 8 hours2 for
thousand-GPU clusters, directly impacting development costs and competitive timelines.
For organizations investing in AI development, infrastructure-related failures can extend
training times from weeks to months, delaying time-to-market in a rapidly evolving
competitive landscape.

CoreWeave provides a specialized AI cloud platform meticulously optimized for
large-scale, GPU-accelerated workloads, differentiating through bare metal performance,
low-latency networking, flexible configurations, and deep AI/ML operational expertise.
During a six-week period in May-June 2025, we performed LLM pre-training exercises to
provide concrete evidence of CoreWeave's value proposition, demonstrating superior
performance, reliability, and stability crucial for large model training.

CoreWeave minimizes downtime, averaging an Effective Training Time Ratio (ETTR) of
98% while maximizing computational efficiency, reducing costs, and accelerating
time-to-market for large-scale AI. Our experiments demonstrate a Mean Time To Failure
(MTTF) of 3.66 days for a 1,024-GPU job, representing a 43.7% improvement on MTTF
over a similarly trained industry model1 when our results are projected up to 16,384 GPUs.

Our benchmarking shows CoreWeave achieves Model FLOPS Utilization (MFU) exceeding
50% on NVIDIA Hopper GPUs. This level of efficiency represents up to 20% higher

2

performance compared to the 35%-45% MFU range typically observed in public
foundation model training benchmarks, significantly bridging the "AI Efficiency Gap."3
Further benchmarking against specific published results showed MFU improvements of
18-28% over published results from leading AI labs. Additionally, collaborative testing
using NVIDIA DGX Cloud Benchmarking Recipes confirmed CoreWeave's NVIDIA Hopper
GPU infrastructure performs on par with the NVIDIA reference architecture.

Achieving this level of performance was only made possible by the specific capabilities
unique to CoreWeave Cloud: bare metal performance, robust health checking, automated
fleet and node lifecycle management, optimized storage solutions accessed via NVIDIA
BlueField DPU-managed network links on dedicated network fabric separate from the
NVIDIA Quantum InfiniBand fabric used to communicate updates during training,
topology-aware scheduling via CoreWeave's Slurm on Kubernetes (SUNK), and integrated
detailed observability.

We additionally demonstrated efficiency gains from in-house implementations of modern
best practices, including asynchronous checkpointing using tools like Tensorizer,
massively parallel text processing with the high-speed gpt_bpe tokenizer, and automated
recovery facilitated via SUNK.

Key Results

Table 1. Summary of CoreWeave Benchmark Results Compared to Industry Baselines

Metric CoreWeave Result Industry Baseline CoreWeave
Uplift

Model FLOPS
Utilization (MFU)

51–52% (1024 NVIDIA
H100 GPUs)

35-45%4,5,6
+18–28%

Effective Training
Time Ratio (ETTR)

97.5% @ 1024 GPUs
~90% or lower1

~8% gain

Mean Time to Failure
(MTTF)

3.66 days @ 1024 GPUs ~0.33 days2 @ 1024
GPUs

10× longer

Checkpoint Save
Time

17s (async, 1024 GPUs) 129s (synchronous
baseline, Section 6.2)

~8× faster

Checkpoint Load
Time

8.8–34.5s (Tensorizer) 25.9–68.3s
(torch.distributed,

Section 6.2)

2–3× faster

3

Tokenization
Throughput

63M tokens/sec
(gpt_bpe)

~5-10M tokens/sec
(HugginFace
Tokenizers)7

6–12× faster

Overview of performance and reliability metrics from large-scale AI training jobs on CoreWeave’s platform, benchmarked
against public results from industry leading benchmarks. CoreWeave demonstrated 18–28% higher GPU efficiency (MFU),
10x longer MTTF, and significantly faster checkpointing and tokenization—all contributing to improved cost-efficiency and

time-to-market for foundation model training.

1. Introduction: The Challenge of Large-Scale AI
Training
The AI industry continues its rapid trajectory towards ever-larger models, demanding
unprecedented levels of computational demand and unwavering infrastructure reliability.
While hardware advancements provide the necessary raw compute, continuously using
thousands of GPUs for extended training runs remains a formidable challenge, pushing the
boundaries of infrastructure design and operational management.

Training large language models (LLMs) at scale presents significant infrastructure
challenges that extend far beyond simply acquiring sufficient GPU resources. Training
models on thousands of GPUs synchronously is immensely complex, with failures
significantly impacting Time-To-Market (TTM) and total cost. As we will discuss,
CoreWeave's infrastructure is holistically designed to mitigate these risks.

This document concentrates on the benchmarking methodology, infrastructure
advantages, and performance results; this is not a comprehensive guide to the practical
steps involved in pre-training Ixchel, CoreWeave’s Llama 3-based 30B model.

1.1. Model Flops Utilization (MFU)

Central to evaluating training efficiency is Model FLOPS Utilization (MFU), which measures
the percentage of theoretical peak GPU performance achieved during model training. MFU
is calculated as the ratio of observed computational throughput to theoretical hardware
capacity, accounting for the actual FLOPS required by the model architecture.

For transformer models, theoretical FLOPS per token approximates 6N for the forward and
backward passes, where N represents total parameters. Our 30B parameter model thus
requires approximately 180 billion FLOPS per token. With NVIDIA Hopper GPUs delivering

4

989 TFLOPS theoretical peak for BF16 operations, 50% MFU translates to sustained
throughput of ~495 TFLOPS per GPU during active training.

This metric's value lies in its hardware-agnostic nature—it excludes implementation details
like activation checkpointing, data loading overhead, and communication latency,
enabling fair comparison across different systems and configurations. Industry
benchmarks typically report 35-45% MFU4,5,6 for large-scale distributed training, with
efficiency declining as model size and GPU count increase due to growing communication
overhead.

1.1. Landscape and Industry Context

Industry publications and reputable technical reports1 implicitly acknowledge the
difficulties inherent in large-scale training, referencing significant training interruptions
even within highly resourced environments. This underscores a critical need within the
ecosystem: infrastructure platforms that are not just powerful but fundamentally reliable
and stable when subjected to the intense, long-duration stresses of training foundation
models. Simply having access to GPUs is no longer sufficient; the infrastructure supporting
them must be purpose-built for resilience and performance at scale.

1.2. Technical Hurdles

Successfully training large models requires overcoming substantial technical obstacles:

●​ Platform stability: Modern distributed deep learning training techniques
synchronize parallel processes across a complex array of components that must
work together seamlessly at each step of the process. Job interruptions are often
caused by a failure in a single component: ensuring a multi-billion parameter model
can be trained in a tractable amount of time demands stable and consistent
infrastructure performance. Unpredictable interruptions, hardware degradation, or
network slowdowns waste valuable compute resources as well as researcher time
and can make a difference when training a model over a period of days, weeks, or
months.

●​ Data preparation at scale: The multi-trillion token datasets required by large
models present a massive data engineering challenge. Acquiring, cleaning,
formatting, and efficiently tokenizing this data is a significant undertaking, often
becoming a major bottleneck requiring high-throughput storage and considerable
computational resources distinct from the main training cluster.

●​ Distributed system scaling: Coordinating thousands of GPUs for distributed model
training necessitates the use of extremely high-bandwidth, low-latency
interconnects, such as NVIDIA Quantum-2 InfiniBand. Beyond the fabric itself,
managing heat, power, and potential hardware failures across a vast fleet becomes

5

a critical operational burden. Furthermore, the intense, synchronous
communication patterns typical of distributed training (e.g., NCCL all-reduce
operations) are highly sensitive to outliers; a single slow GPU or network link can
bottleneck the entire cluster. Maintaining consistent performance across every
component is essential.

●​ Network contention: Large-scale training generates distinct, high-intensity
network traffic patterns. One pattern involves inter-GPU communication for
synchronizing model parameters (compute fabric traffic), while another involves
reading datasets and writing model checkpoints (storage fabric traffic). Allowing
these fundamentally different traffic types to contend for the same network
resources inevitably leads to performance degradation and unpredictable
bottlenecks for both processes.

2. Benchmarking Results
Our benchmarking efforts across dozens of runs over months, including the initial validation
runs and subsequent focused performance comparisons, demonstrated significant
efficiency gains achievable on CoreWeave Cloud.

2.1.1 High MFU Achievement

Across multiple runs, CoreWeave consistently demonstrated high hardware utilization. The
initial target throughput for the Ixchel run start was estimated at approximately 450 TFLOPS
per GPU, translating to a cluster-wide effective throughput nearing 910 PFLOPs.

Subsequent optimizations and measurements across various configurations, including
those aligning with external published results, confirmed that the optimized CoreWeave
platform consistently achieves MFU exceeding 50% on NVIDIA H100 GPUs. This
significantly surpasses the 35%-45% MFU typically reported in public benchmarks,4,5,6
representing up to 20% higher performance.

2.1.2 Comparative Benchmarks

To provide direct comparison points, we executed training runs aligned with published
parameters from leading AI labs:

●​ CoreWeave vs. Leader A: For a 30B parameter model run aligned with
hyperparameters used by Leader A (on A100s), CoreWeave achieved 51.9% MFU on
128 NVIDIA H100 GPUs. This represents a 28% improvement over the 40.43% MFU
reported in their paper. (Note: While GPU types differ, MFU as a percentage of
theoretical FLOPs allows for meaningful comparison.)8

6

●​ CoreWeave vs. Leader B: For a 30B parameter model run aligned with
hyperparameters used by Leader B for their MPT-30B model (on NVIDIA H100
GPUs), CoreWeave achieved 49.2% MFU on 128 NVIDIA H100 GPUs. This
represents an 18% improvement over the 41.85% MFU reported by Leader B for
their run.4,9

Table 2. Comparative MFU Benchmarking Against Public Training Runs

Origin Lab # GPUs Seqlen Origin MFU CoreWeave MFU
(H100-80gb)

Leader A​
(NVIDIA

A100-80gb)8
128 8192 40.43% 51.9%

Leader B​
(NVIDIA

H100-80gb)4,9
128 2,048 41.85% 49.2%

CoreWeave’s H100 GPU MFU results compared to published MFU values from two industry experts, Leader A8 and
Leader B.9 Despite architectural and hardware differences, CoreWeave consistently outperformed public baselines by

18–28%, demonstrating superior GPU efficiency and infrastructure tuning for large-model training.

2.1.3 NVIDIA DGX Cloud Benchmark Equivalence

In collaboration with NVIDIA, we utilized NVIDIA DGX Cloud Benchmarking Recipes to
evaluate CoreWeave's platform for NVIDIA H100 GPUs across a suite of training and
fine-tuning applications. Preliminary results demonstrated that CoreWeave's infrastructure
achieved performance on par with NVIDIA's reference architecture across all tested
workloads, for both BF16 and FP8 precision. This equivalence underscores the quality and
optimization level of CoreWeave's environment.

2.2 Reliability Analysis

2.2.1 MTTF Analysis

Beyond raw MFU, the focus on infrastructure stability and automated recovery directly
impacts overall throughput. Features like proactive health monitoring and automated node
replacement contribute to achieving high goodput rates (productive time vs. total time),
measured as high as 99% in some contexts (1,024 or more GPUs), by minimizing
disruptions. The automated job resubmission via SUNK proved effective in handling
non-zero exit codes and NCCL timeouts, significantly reducing recovery time compared to
manual intervention, directly benefiting ETTR and MTTF metrics.

7

The failure analysis process involved correlating job exit codes and SUNK logs with Weights
& Biases (W&B) training metrics and Grafana infrastructure dashboards for systematic root
cause identification. This allowed us to track interruptions, quantify recovery times, and
calculate the overall impact on training efficiency (ETTR) and reliability (MTTF).

Conventional distributed deep learning training workloads operate in a “lock-step”
paradigm, such that if one hardware component fails, it brings down the whole job.
Consequently, the likelihood of job interruption within a given time window scales with the
number of hardware components involved in the job.

We performed experiments on clusters ranging from 512 to 1,024 GPUs. To estimate the
per-GPU failure rate, we fit a right-censored univariate exponential survival model (See
appendix for details). This model allowed us to leverage information from both job failures
and jobs that did not end from an unexpected interruption. For the purpose of the model,
we assume interruptions are generally caused by hardware failures and that these failures
are independent and identically distributed: we then normalize the data to estimate the
per-GPU failure rate by multiplying job durations by number of GPUs.

Figure 1. Estimated Job Survival Probability for Large-Scale Training Jobs

Survival curves for jobs running on 256, 512, and 1,024 GPUs, derived from an exponential failure model fitted to
observed job durations and interruptions. Larger jobs experience reduced survival times due to increased

component failure likelihood.

8

From our experiments, we estimate a per-GPU failure rate (nλ) of 3,748.25 days/failure. We
then use the fitted rate to estimate the mean job lifetime—i.e. expected time to failure
(MTTF=E[TTF])—for jobs of varying scales by dividing nλ by the number of GPUs in the job by
(i.e. E[TTF] = λ = nλ / n).

Figure 2. Mean Job Lifetime vs. GPU Count (Log-Log Scale)

9

Projected mean time to failure (MTTF) across varying GPU cluster sizes, based on an exponential survival model fitted to
real training job data. The log-log curve highlights the nonlinear decrease in job lifetime as GPU count increases,

emphasizing the operational fragility of ultra-large training jobs.

Our observed job reliability is a ~10x improvement relative to the rates reported in a
reputable industry paper (which included interruptions from job preemption, which was not
a factor for our experiment),2 and a projected 43.7% improvement relative to the 7.8
unplanned interruptions/day at 16K GPUs observed by the authors of a reputable industry
study(419 unplanned interruptions over a 54 days window).1

Table 3. Projected Job Reliability at Varying GPU Scales Compared to Industry Baselines

n_gpus n_nodes

MTTF Industry
Benchmark1,2
(days)

E[TTF] CoreWeave
(days) E[Failures per day]

1 3,748.25 0.0003

2 1,874.13 0.0005

4 937.06 0.0011

8 1 47.70 468.53 0.0021

16 2 234.27 0.0043

32 4 117.13 0.0085

64 8 58.57 0.0171

128 16 29.28 0.0341

256 32 14.64 0.0683

512 64 7.32 0.1366

1,024 128 0.33 3.66 0.2732

2,048 256 1.83 0.5464

4,096 512 0.92 1.0928

8,192 1,024 0.46 2.1856

16,384 2,048 0.075 0.23 4.3711

Mean Time to Failure (MTTF) estimates for training jobs using between 1 and 16,384 GPUs, derived from a survival model fit to
CoreWeave’s real training workloads on 512–1,024 GPU clusters. Results are benchmarked against published baselines

10

from an industry-leading reliability study2 and paper,1 showing up to 10x longer job lifetimes and a 43.7% lower failure rate
at 16K GPUs.

2.2.2 Goodput

A variety of software events are necessary components of model training. These include:

●​ Job initialization
●​ Loading checkpoints and initializing models
●​ Saving checkpoints
●​ Forward/backward training steps

To call the “Active Goodput” of a job is the fraction of the job duration that was comprised
of training steps. The “Runtime Goodput” of a job (as previously described by Google7)
discounts the duplicated effort from steps made after the last checkpoint, aka “badput”.
Assuming a failure can occur randomly anywhere in the inter-checkpoint interval, the
expected badput for any job is half the inter-checkpoint interval. Our experiments
generally targeted a checkpointing cadence of around 1-2 hours, i.e. risk appetite
calibration considered only the wall time lost rather than optimizing checkpointing
cadence specifically to maximize GPU clock time.

Figure 3. Breakdown of Job Runtime for Goodput and ETTR Calculation

Schematic illustrating how a training job’s total runtime is divided into productive (goodput) and non-productive (badput)

11

segments. Components include active training, checkpointing, job initialization, failure recovery, and resume overhead. This
breakdown supports the computation of Effective Training Time Ratio (ETTR). Based on original image from source: Google

— Introducing ML Productivity Goodput.10

Table 4. Measured Runtime Goodput for Large Training Jobs

GPUs # Nodes Average Runtime Goodput %

512 64 99.53%

1,024 128 99.72%

Runtime Goodput measurements for 512- and 1,024-GPU jobs, where productive time includes checkpointing and
recovery overhead. Despite large scale, jobs achieved over 99.5% Runtime Goodput, highlighting the efficiency of

CoreWeave’s infrastructure even under generous accounting metrics. Source: Definition from Google.10

2.2.3 Goodput Ratio (ETTR)

Google’s Runtime Goodput considers checkpointing time as part of the goodput period.
We consider that badput, as does an industry leader’s Effective Training Time Ratio (ETTR)
metric—“the ratio of productive runtime to the available wallclock time of a job run”—which
additionally takes into account re-queueing time.1

For the purpose of calculating ETTR, we adopt FAIR’s more pessimistic approach and
define goodput as the time spent on training iterations, excluding checkpointing, loading
the model and optimizer state, tearing down the job after failure, etc. We then define lost
training progress as the interval to the start of the resume job as reported by Slurm plus the
time taken from the start of the slurm job to the first training step (to account for the
overhead from restarting) plus half of the inter-checkpoint interval (to account for “wasted
steps” lost when loading the resume job from the most recent available checkpoint).

We penalized this goodput metric by subtracting the lost training progress, and divided by
the total slurm job duration to compute the ratio of productive training time to available
wallclock time, i.e. ETTR. We computed the per-”# GPUs” ETTR by summing the respective
components across jobs for a given number of GPUs, and then computing a single ETTR for
that category.

Table 5. Effective Training Time Ratio (ETTR) for Large-Scale Jobs

GPUs # Nodes ETTR %

12

512 64 98.69

1,024 128 97.48

ETTR measurements for 512- and 1,024-GPU training jobs, based on an industry leader’s definition of productive time.2
This stricter metric excludes checkpointing and recovery overhead, providing a conservative estimate of usable training

time. Even under this definition, jobs maintained ETTR values above 97%, highlighting the platform’s ability to minimize
disruption during long training runs.

3. Benchmarking Methodology
To objectively validate the benefits of CoreWeave's infrastructure and operational
practices for large-scale AI training, we designed and executed a comprehensive
benchmarking project. Our methodology focused on measuring key infrastructure-level
performance and reliability metrics during a realistic, production-quality pre-training task.

3.1. Benchmarking Goals and Narrative

The primary goal of this benchmark was not to train a state-of-the-art model but rather to
rigorously evaluate the capabilities of the underlying CoreWeave Cloud platform in
supporting such demanding workloads. We focused specifically on quantifying:

●​ Reliability and stability: Measured primarily through MTTF and the effectiveness of
automated recovery mechanisms.

●​ Training efficiency: Measured via the ETTR, which accounts for time lost due to
interruptions, checkpointing overhead, and recovery compared to the ideal
theoretical training time.

●​ Hardware utilization: Measured using MFU to understand how effectively the GPU
compute resources were used during the active training phases.

●​ Checkpoint performance: Measured through both checkpoint save time
(comparing synchronous vs. asynchronous methods) and checkpoint load time
(comparing torch.distributed vs. Tensorizer), quantifying the overhead of model
persistence operations.

●​ Data pipeline efficiency: Measured via tokenization throughput using the gpt_bpe
tokenizer, demonstrating the ability to prepare trillion-token datasets without
bottlenecking training.

●​ Total non-training time & breakdown: Time spent on initialization, data loading
waits, checkpoint saving/loading, and idle time during interruptions.

To minimize subjectivity often associated with model selection or dataset novelty, we
opted for well-understood components: a Llama-style architecture, the publicly available

13

Dolma dataset (augmented), and the widely used Megatron-LM training framework. This
allows the results to focus squarely on the impact of the infrastructure and CoreWeave's
operational best practices.

3.2 Experimental Setup

Our benchmark culminated in a production-scale pre-training run, internally codenamed
"Ixchel," utilizing the following configuration:

●​ Model:
○​ Parameters: 30 Billion

■​ This 30B scale was chosen as large enough to necessitate distributed
training across a significant cluster, thereby exercising the
infrastructure's capabilities while remaining manageable and
potentially transferable to different hardware (for example, NVIDIA
L40 GPUs using FP8 for inference).

○​ Precision: BF16
○​ Key Hyperparameters: (Llama 3 style model)

■​ Sequence Length: 8,192
■​ Hidden Size: 6,144
■​ Number of Layers: 60
■​ Number of Attention Heads: 48
■​ FFN Hidden Size: 21,504

●​ Dataset: The foundation was a 3.4 trillion token dataset, curated primarily from the
public Dolma collection and augmented with additional sources such as Project
Gutenberg and an internal non-public dataset. Overlapping context data
augmentation was applied during dataset preparation, creating a final dataset of
9.7 trillion tokens worth of samples to feed the model during training. The
motivation underlying this augmentation was to mitigate positional biases and
truncated contexts.

●​ Tokenizer: We chose the Nerdstash v2 tokenizer11 for our vocabulary not only
because it is readily supported in our dataset pipeline (Section 2.4) but also
because it enabled us to tokenize our entire pretraining dataset using only a 16-bit
data type per token. This decision alone allows us to create tokenized datasets that
are half the size of datasets stored in a 32-bit data type, as the vocabulary length of
Nerdstash 2 does not exceed 216.

●​ Framework: A CoreWeave fork of NVIDIA's Megatron-LM framework12 served as the
foundation for training, allowing us to pair megatron’s pre-existing support for
modern algorithms and integrations (e.g. 3D model parallelism,12 Flash Attention,13
Transformer Engine14) with additional adaptations and optimizations implemented

14

https://www.gutenberg.org/
https://www.gutenberg.org/
https://huggingface.co/NovelAI/nerdstash-tokenizer-v2

by the CoreWeave team (e.g. custom data loaders, Tensorizer for checkpointing,
fault tolerance).

●​ Parallelism strategy: To efficiently distribute the 30B model across nodes, we
employed a hybrid parallelism strategy combining:

○​ Tensor Parallelism (TP = 4) within a node
○​ Pipeline Parallelism (PP = 1, effectively disabled) was found to be optimal for

our setup
○​ Sequence Parallelism (SP) enabled to distribute certain activations across TP

ranks6
○​ Data Parallelism (DP = 32 for the 128-GPU validation runs) across nodes

●​ Parallelism optimizations: We utilized Megatron’s distributed optimizer state and
overlapped communications to help increase our overall throughput by reducing
the volume of network communication needed for training.

●​ Compute infrastructure: Experiments were conducted on clusters of up to 1,024
NVIDIA H100 GPUs (64 nodes) connected via NVIDIA Quantum-2 InfiniBand, with
workloads orchestrated by SUNK on CoreWeave Kubernetes Service (CKS).

3.3 Instrumentation

Comprehensive monitoring was crucial for capturing the necessary data. We utilized:

●​ W&B: For real-time tracking of training-specific metrics, including loss curves,
perplexity, gradient norms, timing breakdowns (forward/backward pass, optimizer
steps), and calculated MFU.

●​ Grafana: For visualizing infrastructure and hardware metrics collected via node
exporters and DCGM, including GPU utilization, power draw, temperature, memory
usage, and network traffic (both InfiniBand and Ethernet/DPU).

●​ SUNK/Slurm Logs: For recording job start/stop times, exit codes, node allocations,
and requeue events.

While alerting specifically on performance slowdowns (not just hard failures) was identified
as valuable future work, the existing instrumentation provided deep visibility into job
execution and failure modes.

4. The CoreWeave Approach: Purpose-Built for AI
Scale
CoreWeave addresses these multifaceted challenges through a specialized, vertically
integrated cloud platform designed explicitly for the demands of high-performance
computing and large-scale AI workloads. Our approach incorporates several key

15

differentiators aimed at maximizing reliability, performance, and operational efficiency for
our clients.

4.1. Proactive Infrastructure Health and Lifecycle Management

A cornerstone of our reliability strategy is a proactive stance on infrastructure health. We
employ continuous, granular health checks that actively monitor the status of critical
hardware components, including GPUs, network interfaces (both InfiniBand and
Ethernet/DPU), memory modules, and system thermals. Unlike basic pass/fail checks, our
monitoring aims to detect subtle degradation or anomalous behavior before it leads to
outright failure. Nodes failing these rigorous checks or exhibiting concerning trends are
automatically flagged and removed from the scheduling pool by our infrastructure
management systems. This automated lifecycle management ensures that client
workloads are dispatched only to a healthy and performant hardware fleet, significantly
reducing the risk of hardware-induced job failures or difficult-to-diagnose performance
issues. The positive impact of this proactive health monitoring and automated node
management is quantified in our failure analysis results presented later in this paper
(Section 4.4).

4.2. Expert, Integrated Support

Complementing our automated systems is CoreWeave's unique, deeply-engaged support
model. We provide clients with direct access to our experienced engineering teams—the
same engineers who design, build, and operate our infrastructure—often through shared
Slack channels. This facilitates rapid, expert assistance for troubleshooting unexpected
issues and proactively optimizing workloads for peak performance on the CoreWeave
platform. Having direct lines of communication to specialists knowledgeable about the
interplay between hardware, networking, storage, orchestration, and common ML
frameworks functions as a powerful operational advantage. It accelerates problem
resolution, fosters knowledge transfer, and enables a level of collaborative optimization far
beyond the typical break-and-fix support paradigms found in other cloud environments.

4.3. Optimized and Flexible Infrastructure Components

Underpinning our operational model is an infrastructure stack where each component is
selected and configured for demanding AI workloads:

●​ Networking architecture: We recognize that network performance is paramount
and employ a multi-fabric design.

○​ Compute fabric: High-bandwidth, low-latency NVIDIA Quantum-2
InfiniBand fabrics serve as the standard interconnect for our large GPU
clusters. This fabric is reserved exclusively for the intense, latency-sensitive

16

inter-GPU communication characteristic of distributed training (e.g., NCCL
collectives), ensuring maximum performance for synchronizing model
gradients and parameters across nodes, and using NVIDIA NVLink™ for
GPUs within the same node.

○​ Storage connectivity and traffic separation: To handle storage I/O efficiently
and without interfering with the compute fabric, CoreWeave utilizes NVIDIA
BlueField-3 Data Processing Units (DPUs). These DPUs manage
connectivity to our distributed file storage systems, providing high-speed
(100 Gib/s per DPU) network links specifically for storage access, complete
with robust tenant isolation. This architecture deliberately segregates
storage traffic onto a separate physical network path from the NVIDIA
Quantum InfiniBand compute fabric. This separation is crucial as it prevents
the compute fabric from becoming congested by potentially large storage
operations during training (like checkpoint writes or dataset reads) and
ensures storage I/O performance is not impacted by compute traffic.
Eliminating this network contention is fundamental to maintaining
predictable performance and maximizing GPU utilization.

●​ Compute resources: We provide bare metal access to underlying compute
resources (CPUs and GPUs). This eliminates the performance overhead, jitter, and
potential compatibility issues sometimes associated with hypervisor-based
virtualization, granting users maximum performance potential and direct control
over the hardware environment.

●​ Storage solutions: We offer a range of storage options designed for different
performance tiers and access patterns. This includes high-performance Network
File Systems (NFS) suitable for many use cases, alongside highly scalable parallel file
systems like VAST Data for workloads demanding maximum I/O throughput and
scalability. Access to these systems is provided via the dedicated BlueField
DPU-managed storage network links. This flexibility allows users to select the
optimal storage backend for different parts of their workflow, such as utilizing
VAST's performance characteristics for highly efficient asynchronous
checkpointing strategies, as explored later in this benchmark (Section 4.2). For our
experiments, training code was deployed to a “home” mounted volume, and
training artifacts such as checkpoints and logs were written to a larger “data”
mount.

●​ Job scheduling and orchestration: CoreWeave utilizes SUNK (Slurm on
Kubernetes), a robust and scalable job orchestration system that integrates tightly
with our infrastructure and Kubernetes control plane. SUNK enables sophisticated
scheduling policies, including topology-aware placement (critical for minimizing
communication hops on large, multi-switch InfiniBand fabrics), and provides the
essential foundation for automated job lifecycle management, including the failure

17

detection and automated resubmission mechanisms central to our reliability
strategy.

●​ Serverless supercomputers via CKS: Our compute cluster is a serverless
abstraction defined via a config that requests a specific target hardware allocation.
This setup mitigates hardware issues by immediately evicting and replacing in the
abstract cluster. The logical serverless cluster is configured to use hardware
constrained to the same data center (prioritizing the same rack and leaf group when
available), ensuring that we are able to minimize the contribution of physical
limitations to communication delay between GPU nodes. When nodes are idling,
automated health checks are performed regularly to ensure the readiness of the
cluster, and nodes failing these checks are immediately evicted and replaced via
the serverless Kubernetes mechanism.

4.4. Enabling Optimized Workflows

The flexibility and raw performance inherent in CoreWeave Cloud actively enable users to
implement highly optimized workflows that might be difficult or impossible in more
restrictive environments. One particularly illustrative example of how CoreWeave's
infrastructure provides exceptional flexibility in data handling is detailed below:

●​ Data pipeline efficiency: We leveraged CoreWeave's high-throughput storage
access and readily available compute resources from outside of our main training
cluster to implement a highly efficient pipeline to prepare our pretraining dataset.
We have used a custom tool named gpt_bpe,16 a highly optimized implementation
of the BPE tokenization method that allows us to tokenize our pretraining dataset
with the Nerdstash v2 tokenizer. The tokenizer had achieved processing speeds of
up to 63 million tokens per second, reducing the time required to prepare our
trillion-token scale dataset as much as 6x compared to HuggingFace Tokenizers.7
Furthermore, the tokenizer readily supports applying overlapping context data
augmentation techniques which amplifies our effective pretraining dataset size
from 3.4 trillion tokens to 9.7 trillion tokens. We have also implemented an
optimized dataloader within the training framework (Megatron-LM), which allows us
to use our own dataset format. This ability to customize and optimize the entire
pipeline—from raw data curation, high-speed tokenization, augmentation, to
efficient loading—significantly accelerated development iterations and
contributed to overall training efficiency.

●​ Job startup efficiency: Jobs were executed in docker containers, utilizing NVIDIA
pyxis+enroot. To accelerate job start-up time, the container image was saved
locally to the data mount in compressed SquashFS format. Additionally,
checkpoints were saved in the highly performant Tensorizer format to minimize
model load time (see discussion in sec 6.2).

18

4.5. Integrated Observability and Configuration

Effective management and optimization of large-scale training require deep visibility. Our
platform features an integrated observability stack combining infrastructure, hardware,
and GPU metrics (collected via node exporters and DCGM, visualized in Grafana) with
real-time training metrics captured directly from ML frameworks (logged to and visualized
in Weights & Biases). This unified view allows users and CoreWeave support teams to easily
correlate system behavior (e.g., network latency spikes, GPU power fluctuations, memory
usage) with training performance dynamics (e.g., drops in MFU, slower gradient updates,
loss curve anomalies), facilitating rapid root cause analysis and informed performance
tuning. Compared to the often rigid instance types of traditional clouds, CoreWeave offers
significantly greater configurability and observability across compute instances, storage
volumes, and network settings, allowing resource allocation to be tailored precisely to
workload needs.

4.6. The Vertical Integration Advantage

Finally, CoreWeave's ability to deliver these capabilities reliably stems from our vertical
integration. By owning, managing, and optimizing the entire technology stack—from
physical data center deployment and hardware selection, through network fabric design
and configuration, operating system builds, the orchestration layer (SUNK), storage
solutions, and up to the support model—we ensure all components work harmoniously.
This tight integration enables us to rapidly deploy platform-wide optimizations, swiftly
resolve complex cross-layer issues that might stump siloed teams elsewhere, and provide
performance tuning advice uniquely tailored to our specific, high-performance
environment.

5. Technical Implementation
5.1 Developer Experience

Our team used or developed a number of tools to make the development, execution,
logging, and monitoring of training runs easier. The team used PyCharm as their primary
IDE. Coding was generally performed locally on a given engineer or researcher’s laptop,
with PyCharm configured to deploy changes to their home directory on the slurm cluster
via SSH. This ensured a secure, version-controlled source-of-truth while permitting
frictionless development and experimentation.

Jobs were configured and submitted through the development of a dispatch script that
made use of YAML files for templating sbatch, srun, and fault tolerance daemon processes,

19

allowing the modular configuration of compute, training, logging, checkpoint monitoring,
and environment parameters that all fill substitutions in the aforementioned template
scripts. Essentially, once these config files were configured, the srun, sbatch, and fault
tolerance scripts were generated on the fly.

Debugging is a notable issue with Slurm, due to the inherent issues traditional debuggers
(like pydevd and debugpy) have in seamlessly connecting to a debug server remotely.
Work was done to modify a PyCharm remote interpreter to be a wrapper of a normal
`python` binary to include, on execution, the reverse tunneling of a debug server on a
compute node over to the login node. To fully enable PyCharm's debugger for Python
code running on compute nodes, we configured the remote interpreter with SSH port
forwarding. This setup routed the debugging connection directly back to PyCharm’s local
debugging client. This is far more desirable than more primitive debuggers like `pdb`,
which are not thread-aware.

6. Best Practices for Large-Scale Training on
CoreWeave
Based on the experiences and findings from this benchmarking project, we have distilled
several best practices for maximizing efficiency and reliability when undertaking
large-scale model training on CoreWeave Cloud.

6.1. Data Preparation and Loading Strategy

Efficiently handling massive datasets is paramount, as I/O and preprocessing can easily
become bottlenecks that starve valuable GPU resources. Our approach involved several
key steps enabled by CoreWeave Cloud:

●​ Dataset curation: The focus of this guide is technical considerations, but it merits
noting that the quality of the model is strictly bounded by the quality of the data
used to train it. The goal is to “model” the generating distribution of the training
data: This is only achievable if the data reflects the distribution we are interested in
modeling.

●​ Base tokenization: Training data processing was effected upstream of the training
exercise. We were able to leverage CoreWeave's high-performance compute and
storage for batch processing on infrastructure independent of the main training
cluster. Our entire pretraining dataset was subjected to tokenization, data
augmentation, and construction of fully prepared training samples (8192 token
contexts) prior to starting the training run, rather than reading in raw text during
training and performing tokenization, augmentation, and sample construction on

20

the fly while the GPUs are hungrily waiting to eat those tokens. This effectively
amortizes compute that would otherwise slow or potentially even bottleneck the
training process.

●​ Optimized tokenization tooling: Utilize high-performance tokenization tools. Our
project employed a custom BPE tokenizer written in Golang called gpt_bpe,16 which
supports the Nerdstash v2 tokenizer that we have intended to target. This tool's
speed (63M tokens/sec) was critical for processing the 3.4T token base dataset
efficiently. Additionally, Nerdstash v2 allowed us to store our tokenized pretraining
datasets in a 16-bit data format due to the limited vocabulary size being no greater
than 216. Saving tokens in a 16-bit data format, rather than 32-bit, allows us to cut
down our tokenized dataset’s storage footprint in half.

●​ Data augmentation for training: We have applied context overlapping during the
pre-tokenization phase to create a diverse amount of training examples from our
base dataset, which effectively expands the amount of contextual information
presented to the model during training from 3.4T to 9.7T tokens after the
pre-tokenization phase.

●​ Efficient data loading: Standard data loading mechanisms within training
frameworks may not always be optimal. Implement or adapt custom data loaders
designed to work efficiently with the augmented data stream and storage backend
(e.g., streaming effectively from NFS or VAST). Our approach involved bypassing
default Megatron-LM loaders to ensure consistent, high-throughput data delivery
to the GPUs with our custom dataset format with the intent of maximizing training
efficiency.

6.2. Checkpointing and Model Loading Optimization

Frequent and efficient checkpointing is non-negotiable for resilience in long-running
training jobs, but naive implementations can severely impact performance.

●​ Asynchronous checkpointing: Standard synchronous checkpointing (saving
directly from training processes to shared storage like NFS) halts training
computation during the save operation, directly reducing ETTR. Adopt
asynchronous checkpointing strategies. CoreWeave recommends using tools
such as Tensorizer, which was integrated into our benchmark. The optimized
approach involved:

○​ Training processes quickly dump their state (model weights, optimizer state)
using Tensorizer.

○​ Training resumes almost immediately.
○​ A separate background process asynchronously writes the checkpoint files

to durable, high-performance shared storage, such as the VAST Data

21

parallel filesystem, leveraging the dedicated DPU-managed storage
network.

●​ Performance impact: Our benchmarks confirmed the value of this approach. Using
Tensorizer for optimized asynchronous checkpointing to VAST resulted in
approximately 2x faster model load times compared to baseline methods and
reduced the overhead impacting training throughput during the save process by
roughly 1.5x.

●​ Frequency and verification: Balance checkpoint frequency with performance;
more frequent checkpointing improves recovery point objective but adds
overhead. Implement automated verification checks on saved checkpoints to
ensure integrity.

6.2.1 Basic Checkpointing

It’s imperative to insert real numbers into this situation so we can develop heuristics to
optimize for efficiency. For this, the most important data point to understand is how long a
single checkpoint takes.

These numbers will necessarily vary for different model sizes, storage backends, and world
sizes. We explored this with our 30B model (approx. 390 GiB per checkpoint) using a VAST
networked filesystem as a storage backend. There are several units this can be framed in,
so we choose time lost in seconds. For example, consider two identical training
scenarios—one performs a checkpoint, the other does not. We measure the checkpoint
overhead as the additional seconds spent compared to the scenario without
checkpointing. Checkpoint overhead can also be expressed in terms of impact to
goodput or MFU as well.

In our tests, the average time cost of a single checkpoint using Megatron's built-in
checkpointing machinery based on the torch.distributed framework was 106.6
seconds across 512 workers, or 128.7 seconds across 1,024 workers.

6.2.2 Asynchronous Checkpointing

With normal checkpointing, all training must grind to a halt to save a snapshot of the current
model weights and optimizer state to persistent storage before training is allowed to
resume. This approach can be improved by leveraging concurrency. The application of
concurrency here is not entirely trivial: We do not want weights to change partway through
a checkpoint. We need an immutable snapshot of the model state from one defined point
in time to work with. The solution: Rather than stop training, we can quickly take a snapshot
of the weights detached from the trainer's working copy and write that snapshot to disk in a
separate process or thread in the background asynchronously, allowing the trainer to

22

resume separately as soon as a stable copy is made. As I/O is much slower than a memory
copy, this will decrease the time cost of a checkpoint substantially.

Asynchronous checkpointing is a known pattern and has an existing stock implementation
in Megatron based on multi-processing.

In our tests, the average time cost of a single checkpoint using Megatron's built-in
asynchronous checkpointing machinery was 112.3 seconds across 512 workers, or 134.3
seconds across 1,024 workers—awkwardly, slightly slower than a basic synchronous
checkpoint. At a checkpointing cadence of one checkpoint every 30 minutes, on the lower
end, this would represent 1,665.7 seconds of training time out of 1,800 seconds of
wall-clock time, reducing overall performance to 92.5% of what it could be with no
checkpointing costs.

There is nuance to measuring time cost for asynchronous checkpointing. Although the
ideal implementation should quickly pass control back to the trainer and incur no further
costs while running in the background, this is not what occurs in practice. Resource
contention between the background checkpointing process and foreground trainer
process may slow down training until the checkpoint is complete. Contended resources
include CPU time, network bandwidth, and various other system-level resources.

Our measurement for time cost thus accounts for both time spent blocking (the
synchronous time taken to copy a snapshot of the model state and launch a background
checkpointing task) and the background performance hit (how many seconds slower the
trainer runs while the checkpoint is ongoing in the background). The latter metric is
calculated with the following logic: If the average time taken to progress N training steps
with no background checkpointing activity is T1, and the time taken to progress N steps
with background checkpointing activity is T2, then T2 − T1 represents the time cost of the
background checkpoint, assuming N is set sufficiently high that it covers a span of time
longer than the background checkpoint.

As an example, if the average time taken to progress by 10 training steps is 20 seconds with
no interference, and the time taken to progress by 10 training steps with a background
checkpoint ongoing for 3 of those steps is 25 seconds, then the background performance
hit for this checkpoint is considered to be 5 seconds.

The average amount of blocking time taken by Megatron’s built-in asynchronous
checkpointing was 99.0 seconds across 512 workers and 121.4 seconds across 1,024
workers, while the average amount of time lost to the background performance hit was 13.3
seconds across 512 workers and 12.9 seconds across 1,024 workers.

6.2.3 Optimized Asynchronous Checkpointing

23

Using CoreWeave's Tensorizer library for serializing and deserializing weights alongside an
optimized asynchronous checkpointing flow, we were able to substantially reduce the
performance impact of checkpointing, allowing for greater robustness from more
frequent checkpointing and more efficient training.

The first improvement was to minimize time spent directly blocking training while taking a
snapshot of the model state. Taking a snapshot is essentially writing a copy of the data
currently in GPU VRAM to buffers in CPU RAM; to optimize this process, we kept persistent
buffers the size of the model state in CPU RAM to copy data into and reused these buffers
for each checkpoint, minimizing slow RAM allocations on all but the first checkpoint. We
also use pinned CPU buffers (i.e. page-locked host memory registered for device-to-host
DMA transfers via cudaHostRegister), which allowed much faster device-to-host
transfers handled entirely by the DMA engine. We then launched the background
asynchronous checkpoint as a thread rather than a process, eliminating any IPC overhead
in communicating data to be saved. Tensorizer is written in Python, but is designed to
minimally block the GIL during serialization so that multithreading is viable.

The second improvement was to minimize the background performance hit. By default,
Tensorizer makes heavy use of concurrency and will stress a system's resources to finish
saving a checkpoint as fast as possible; this incurs a background performance hit as it
starves the foreground training activity of resources. However, as Tensorizer's concurrency
is configurable, we simply instructed it to use less parallelism and save one tensor at a time,
which reversed its usual behavior and made it very resource-light at the cost of a longer
background checkpoint write time. Since the training process wasn't blocked on the
background checkpoint write time, it was fine for that to take longer.

With the optimized approach, checkpointing every 30 minutes (1,800 seconds) only
consumed about 10.3 and 17.1 seconds per checkpoint across 512 and 1,024 workers
respectively, leaving at least 1,782.9 seconds for actual training. This represents an 8x
reduction in checkpointing overhead compared to the baseline method, boosting
effective training performance to 99.1%.

The average amount of blocking time taken by our asynchronous checkpointing was equal
to the time cost. The time cost of the background performance hit was so small it could not
be discerned from random noise in iteration time.

Table 5. Checkpoint Save Time by Method and Cluster Size

 Method Checkpointing Cluster
size

Blocking
Write Time

Mean
Computation
Time Lost Per

Effective Training
@ 30m
checkpoint

24

Write cadence

Tensorizer

Synchronous 512 - 106.6s 83.1%

1,024 - 128.7s 86.0%

Megatron 512 - 110.5s 83.7%

1,024 - 118.7s 84.8%

Tensorizer Asynchronous

512 10.3s 10.3s 99.1%

1,024 17.1s 17.1s 99.1%

Megatron 512 99.0s 112.3s 92.5%

1,024 121.4s 134.3s 92.5%

Average checkpoint save times (in seconds) for synchronous and asynchronous methods across 512- and 1,024-GPU clusters.

Asynchronous checkpointing—enabled via Tensorizer and background threading—reduced save times by nearly 8x,
significantly improving training throughput and fault recovery efficiency. Also significantly, the mean computational impact on

the duration of the training run is measured.

6.2.4 Loading

The counterpart to checkpointing performance is loading performance. Although saving a
checkpoint is a more frequent occurrence than loading from a checkpoint during training,
load times are still significant in resilience and error recovery, as they contribute to how
quickly a training job can restart after an error.

With the stock checkpointing and loading strategy based on torch.distributed, the
minimum time it takes to load our 30B parameter, 390 GiB model from networked storage
onto 512 worker processes is 25.9 seconds with a hot cache (i.e. after loading from the
same checkpoint several times in quick succession), while the slowest recorded time was
68.3 seconds with no caching (i.e. loading from a checkpoint that had never been read
before).

6.2.5 Optimized Loading

In addition to providing greatly improved checkpoint save times, Tensorizer also improves
load times. While our particular application of Tensorizer in the Megatron codebase doesn't
take full advantage of Tensorizer's full suite of available optimizations for streaming tensors

25

directly to the GPU, it still manages to improve the loading speed in the same testing
configuration as before to 8.8 seconds with a hot cache, with a slowest recorded time of
34.5 seconds with no caching.

Tensorizer's speedup over the baseline method (Megatron-native checkpointing) ranges
from 2.0x–2.9x. The fastest times for each method may be more representative of the
potential of each method with a generic fast storage backend, as slowest recorded load
times with no caching are highly dependent on the speed of a specific storage backend at
a particular moment in time.

6.3. Automated Failure Handling and Recovery

Effective failure handling and recovery minimize downtime and manual intervention by
automatically detecting job failures, accurately handling termination signals, and swiftly
restarting stalled or crashed processes. This section outlines essential considerations for
automated recovery, specifically addressing Slurm signal handling and distributed process
deadlock prevention.

Figure 4. Job Throughput Over Time with Automated Recovery

Throughput (e.g., tokens/sec or TFLOPs) plotted across training steps for multiple jobs during the Ixchel pre-training

benchmark. Each line represents a unique job ID. Sharp drops indicate job interruptions, followed by automatic recovery
and resumption to near-peak throughput—highlighting the effectiveness of CoreWeave’s automated job resubmission

and fault recovery systems.

26

Figure 5. MFU Across Training Jobs

MFU plotted over training steps for multiple Ixchel pre-training jobs. Most jobs maintain consistently high utilization above
45%, with brief drops corresponding to failures or job restarts. MFU rapidly recovers after each interruption, underscoring

the system’s ability to sustain computational efficiency even in the face of transient faults.

6.3.1. Automated Job Resubmission

Automated job resubmission involves continuously polling job states using Slurm’s sacct
and automatically restarting jobs upon detecting recoverable failures. Decisions to
resubmit depend on the observed job states and associated exit codes:

●​ No action is required for jobs in the RUNNING or PENDING states.
●​ Automatic resubmission occurs for recoverable failure states identified by Slurm

(e.g., NODE_FAIL, NCCL communication timeout signals).

27

●​ Manual intervention is required for irrecoverable failure states (e.g.,
OUT_OF_MEMORY, FAILED due to invalid training configurations).

Failures identified by non-zero exit codes, framework-specific error signals, or NCCL
communication timeouts indicating process hangs should all be configured to trigger
automated recovery. Testing has shown that automated recovery is approximately 3x
faster than manual intervention, making it essential for maximizing training goodput.

To prevent excessive retries due to persistent code bugs or recurring issues, explicitly set a
reasonable MAX_RETRIES limit within your job scheduling policies. Additionally, ensure the
restart logic reliably resumes training from the latest valid checkpoint.

Our approach for this white paper uses full job resubmissions (sbatch) to ensure
modularity and clearly defined handling of distinct failure states. However, using Slurm's
native requeue functionality (scontrol requeue) is another viable approach, particularly
advantageous when maintaining a consistent job ID across restarts is desirable for
long-running production jobs. Both approaches share similar error-handling logic and
checkpoint-based recovery strategies.

Observability for Root Cause Analysis

After automated recovery, leverage integrated observability tools (e.g., Weights & Biases,
Grafana, Slurm logs) to rapidly diagnose root causes of both transient and persistent
failures. Correlating training metrics (e.g., loss spikes, drops in Model Flops Utilization
(MFU)) with infrastructure metrics (GPU ECC errors, network latency issues, node
temperature warnings) greatly facilitates targeted troubleshooting.

Demonstrating Resilience

The effectiveness of automated recovery should be illustrated clearly through training
progress visualizations. Graphs such as MFU or loss curves over time should demonstrate
brief interruptions followed by rapid, automatic resumption.

6.3.2 Signal Handling and Deadlock Prevention in Distributed Training

Automated recovery must account for the nuances of signal handling within distributed
training environments, where incorrect timing or stalled processes can result in
difficult-to-recover deadlocks. Two key scenarios require careful attention:

●​ Slurm’s signaling to the Python training processes.
●​ Stalled Python processes holding critical locks, such as Python’s Global Interpreter

Lock (GIL).

28

These two scenarios are interconnected because a mishandled termination signal (from
Slurm) can lead directly to stalled processes, which subsequently may hold locks and
prevent effective recovery.

Proper Timing of Slurm and Distributed Training Timeouts

Slurm alone does not reliably terminate distributed training jobs cleanly. Thus, explicitly
coordinating timeouts between Slurm and PyTorch distributed parameters is essential.

Configure these parameters carefully to avoid deadlocks:

●​ Megatron’s --distributed-timeout-minutes: wraps around torch.distributed's
process group timeout, ensuring collective operations fail cleanly after a defined
waiting period.

●​ Slurm’s job timeout (--time): must be set longer than
--distributed-timeout-minutes to avoid premature termination.

●​ Environment variable: set TORCH_NCCL_BLOCKING_WAIT=1 to help PyTorch
distributed groups handle communication stalls explicitly.

When Slurm’s --time parameter is shorter than --distributed-timeout-minutes,
Slurm prematurely sends a SIGTERM to the Python training processes. Python defers
handling this signal until control returns from C++ extensions (such as LibTorch). If the signal
arrives during a C++ execution, Python does not handle it immediately. As a result, the
terminating process may fail to notify its distributed training group, causing other
processes to indefinitely await a signal that never arrives, leading to a deadlock.

Handling Stalled Processes with Watchdog and Heartbeat Monitors

Even with proper signal handling, processes can still stall indefinitely if a Python thread
holds the Global Interpreter Lock (GIL), preventing standard watchdog threads from
intervening. To handle these edge cases, leverage PyTorch distributed’s built-in watchdog
and heartbeat mechanisms:

●​ Watchdog thread: PyTorch distributed includes a watchdog thread that attempts
to terminate stalled processes after detecting communication inactivity. However,
the watchdog requires acquiring the GIL to terminate Python processes. If the
stalled process already holds the GIL, the watchdog thread itself may deadlock.

●​ Heartbeat monitor (failsafe): To mitigate the watchdog’s limitation, configure the
heartbeat monitor as a second-level failsafe. Set environment variables:

○​ TORCH_NCCL_ENABLE_MONITORING=1
○​ TORCH_NCCL_HEARTBEAT_TIMEOUT_SECONDS (recommended values

typically around 30-60 seconds depending on your training workload)

29

When enabled, this heartbeat monitor tracks the watchdog thread. If the watchdog thread
itself stalls (due to GIL issues), the heartbeat monitor terminates both the watchdog and
the training processes directly, ensuring a reliable escape from deadlocks.

6.3.3 Reliable Job Termination with Slurm

Even when distributed processes correctly exit due to internal timeouts or heartbeat
monitors, Slurm may fail to recognize the termination and produce an appropriate job exit
code. To guarantee consistent and predictable job behavior, explicitly set:
--kill-on-bad-exit=1 in your Slurm srun command.​
This ensures Slurm terminates the entire job step if any individual task encounters a failure,
thereby maintaining clear and actionable exit states.

6.4. Monitoring and Observability

Deep visibility is essential for both reactive troubleshooting and proactive optimization.

●​ Correlate training and infrastructure metrics: Actively use the combined view
offered by tools like W&B and Grafana. Understanding the interplay is crucial: Did a
drop in MFU correlate with increased network latency on the storage fabric during a
checkpoint or perhaps with thermal throttling on a specific GPU? This correlated
view accelerates debugging.

●​ Monitor communication collectives: For advanced users, monitor the performance
of NCCL communication collectives (like AllReduce). Framework-level logging or
specialized tools can reveal imbalances or bottlenecks within the InfiniBand
compute fabric that might not be obvious from system-level metrics alone.

●​ Future directions: Explore deeper tracing capabilities (e.g., system-level tracing,
PyTorch Profiler) to analyze fine-grained performance characteristics, such as
dataloading bottlenecks or specific kernel execution times. Implement alerting
based on performance degradation (e.g., sustained MFU below a threshold,
increased communication overhead) rather than just hard failures.

7. Conclusion: Reliable, Performant AI Training at
Scale with CoreWeave
Training state-of-the-art artificial intelligence models at the scale demanded by modern
LLMs presents formidable challenges that transcend raw compute power. Success
requires an infrastructure platform meticulously designed for stability, performance, and
operational efficiency under extreme load, coupled with the flexibility to implement
sophisticated optimization techniques across the entire workflow.

30

This white paper has detailed CoreWeave's approach to addressing these challenges,
validated through rigorous benchmarking involving the pre-training of a 30-billion
parameter model. Our results demonstrate that CoreWeave's specialized cloud, built upon
bare metal performance, thoughtfully architected networking (including dedicated NVIDIA
Quantum InfiniBand compute fabrics and NVIDIA BlueField DPU-managed storage
connectivity), and robust infrastructure management, provides the necessary environment
for reliable and highly performant large-scale training.

We have shown that through the implementation of operational best practices and
platform-specific optimizations, significant improvements in training efficiency and
reliability are consistently achievable. Key findings include:

●​ Leading performance: CoreWeave achieves Model FLOPS Utilization (MFU)
exceeding 50% on NVIDIA H100 GPUs, a figure representing up to 20% higher
performance than typical industry benchmarks. Direct comparisons showed MFU
improvements of 18-28% over specific published results, and performance was
validated to be on par with the NVIDIA reference architecture.

●​ Infrastructure matters: Proactive health monitoring, automated node lifecycle
management, and purpose-built network architectures are critical for minimizing
interruptions and maximizing uptime, contributing to goodput rates as high as or
higher than 96%.

●​ Optimized workflows drive efficiency: The platform's flexibility enables crucial
optimizations, including high-speed custom tokenization (gpt_bpe, Nerdstash v2),
sophisticated data augmentation, and highly efficient asynchronous checkpointing
(Tensorizer with VAST).

●​ Automation enhances resilience: Automated failure detection and job
resubmission via SUNK significantly improve the Effective Training Time Ratio (ETTR)
by reducing recovery times.

●​ Observability Enables Insight: Integrated monitoring across infrastructure
(Grafana) and training frameworks (Weights & Biases) provides essential visibility for
rapid root cause analysis and tuning.

These quantified advantages translate directly to tangible benefits for organizations
undertaking large-scale AI initiatives: Faster time-to-market for model deployment,
reduced total cost of training through minimized wasted compute, and increased
predictability for complex research and development efforts. For organizations pushing
the boundaries of artificial intelligence, CoreWeave offers a demonstrably superior
platform, combining leading performance with the architectural foresight, operational
rigor, flexibility, and expert support required to succeed at scale.

31

References

1. The Llama 3 Herd of Models. (2024). arXiv preprint arXiv:2407.21783.
https://arxiv.org/abs/2407.21783

2. Revisiting Reliability in Large-Scale Machine Learning Research Clusters. (2024). arXiv
preprint arXiv:2410.21680v1. https://arxiv.org/abs/2410.21680v1

3. CoreWeave. (2025). CoreWeave leads the charge in AI infrastructure efficiency, with up
to 20% higher GPU cluster performance than alternative solutions. CoreWeave Blog.
https://www.coreweave.com/blog/coreweave-leads-the-charge-in-ai-infrastructure-ef
ficiency-with-up-to-20-higher-gpu-cluster-performance-than-alternative-solutions

4. Databricks. (2024). MPT-30B: Raising the bar for open-source foundation models.
Databricks Blog. https://www.databricks.com/blog/mpt-30b

5. Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2022). Reducing activation
recomputation in large transformer models. arXiv preprint arXiv:2205.05198.
https://arxiv.org/pdf/2205.05198

6. Chowdhery, A., et al. (2022). PaLM: Scaling language modeling with Pathways. arXiv
preprint arXiv:2204.02311. https://arxiv.org/pdf/2204.02311

7. Hugging Face. (n.d.). Tokenizers [Software]. GitHub.
https://github.com/huggingface/tokenizers

8. Chen, D., et al. (2023). Efficient parallelization layouts for large-scale distributed model
training. arXiv preprint arXiv:2311.05610. https://arxiv.org/abs/2311.05610

9. MosaicML. (n.d.). LLM Foundry benchmarking results: MPT 30B. In LLM Foundry (script
documentation).
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#h100
-80gb-bf16-large-scale--128-gpus

10. Google Cloud. (n.d.). Introducing ML productivity goodput: A metric to measure AI
system efficiency. Google Cloud Blog.
https://cloud.google.com/blog/products/ai-machine-learning/goodput-metric-as-me
asure-of-ml-productivity

11. NovelAI. (n.d.). nerdstash-tokenizer-v2 [Model]. Hugging Face.
https://huggingface.co/NovelAI/nerdstash-tokenizer-v2

32

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.21680v1
https://www.coreweave.com/blog/coreweave-leads-the-charge-in-ai-infrastructure-efficiency-with-up-to-20-higher-gpu-cluster-performance-than-alternative-solutions
https://www.coreweave.com/blog/coreweave-leads-the-charge-in-ai-infrastructure-efficiency-with-up-to-20-higher-gpu-cluster-performance-than-alternative-solutions
https://www.coreweave.com/blog/coreweave-leads-the-charge-in-ai-infrastructure-efficiency-with-up-to-20-higher-gpu-cluster-performance-than-alternative-solutions
https://www.databricks.com/blog/mpt-30b
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2205.05198
https://arxiv.org/pdf/2204.02311
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://arxiv.org/abs/2311.05610
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#h100-80gb-bf16-large-scale--128-gpus
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#h100-80gb-bf16-large-scale--128-gpus
https://github.com/mosaicml/llm-foundry/tree/main/scripts/train/benchmarking#h100-80gb-bf16-large-scale--128-gpus
https://cloud.google.com/blog/products/ai-machine-learning/goodput-metric-as-measure-of-ml-productivity
https://cloud.google.com/blog/products/ai-machine-learning/goodput-metric-as-measure-of-ml-productivity
https://cloud.google.com/blog/products/ai-machine-learning/goodput-metric-as-measure-of-ml-productivity
https://huggingface.co/NovelAI/nerdstash-tokenizer-v2
https://huggingface.co/NovelAI/nerdstash-tokenizer-v2

12. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019).
Megatron-LM: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053. https://arxiv.org/abs/1909.08053

13. Dao, T., et al. (2023). FlashAttention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691. https://arxiv.org/abs/2307.08691

14. NVIDIA. (n.d.). Transformer Engine [Software]. GitHub.
https://github.com/NVIDIA/TransformerEngine

15. NVIDIA. (n.d.). Parallelisms. In NVIDIA NeMo Toolkit Features.
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/para
llelisms.html

16. Brown, W. (n.d.). gpt-bpe [Software]. GitHub. https://github.com/wbrown/gpt_bpe

17. Davidson-Pilon, C. (n.d.). Lifelines [Software].
https://lifelines.readthedocs.io/en/latest/index.html

33

https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2307.08691
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/features/parallelisms.html
https://github.com/wbrown/gpt_bpe
https://lifelines.readthedocs.io/en/latest/index.html
https://lifelines.readthedocs.io/en/latest/index.html

Appendix
A1. Exponential Survival Model for E[TTF]

Given a job with GPUs, each GPU has independent exponential failure time with rate λ: 𝑛

 𝑇
𝑖
~ 𝐸𝑥𝑝(λ)

A job fails when any of its GPUs fail, i.e. the time to failure for a job () with GPUs is 𝑇𝑇𝐹
𝑗𝑜𝑏

𝑛

given by the earliest failure of any of its GPUs:

 𝑇𝑇𝐹
𝑗𝑜𝑏

= 𝑚𝑖𝑛(𝑇
1
,..., 𝑇

𝑛
)~𝐸𝑥𝑝(𝑛λ)

The log likelihood of a failure event occurring at time is given by: 𝑓 𝑡

 𝑙𝑜𝑔 𝑓(𝑡) = 𝑙𝑜𝑔(𝑛λ) − 𝑛λ𝑡

And survival event 𝐒 at time 𝑡 given by:

 𝑙𝑜𝑔 𝑆(𝑡) =− 𝑛λ𝑡

Giving the full model:

 𝑙𝑜𝑔𝐿(λ) = ∑[𝑑
𝑖
 𝑙𝑜𝑔(𝑛

𝑖
 λ) − 𝑛

𝑖
 λ 𝑡

𝑖
]

Where is the “censoring” indicator variable, which takes the value 1 if a failure was 𝑑
𝑖

observed and 0 otherwise.

The model was fit via the lifelines library.17

import pandas as pd

import matplotlib.pyplot as plt

from io import StringIO

Input data

df = pd.read_csv("data.csv")
df.rename(columns={

 "ended with unplanned interruption": "event",

34

 "Number of GPUs": "n",

 "total job (active) duration (sec)": "duration"

}, inplace=True)

seconds -> days

df["duration_days"] = df["duration"] / 86400

Fit using duration * n to model per-GPU failure

df["duration_scaled"] = df["duration_days"] * df["n"]

ef = ExponentialFitter()

ef.fit(df["duration_scaled"], event_observed=df["event"])

t = np.linspace(0, 30, 100) # time in days

recs = []

plt.figure(figsize=(10, 6))

for n in [256, 512, 1024]:

 n_lambda_hat = ef.lambda_ # fitted value is nλ

 inv_lambda_hat = n / n_lambda_hat # 1/λ for given n

 survival_prob = np.exp(- t * inv_lambda_hat)

 recs.append({'n': n, 'survival_prob': survival_prob, 't':t})

 plt.plot(t, survival_prob, label=f"{n} GPUs")

An equivalent fit via Maximum Likelihood Estimation for the parameter λ using scipy:

Univariate Exponential Survival Model, MLE

import pandas as pd
import numpy as np
from scipy.optimize import minimize

df = pd.read_csv("data.csv")
df["n"] = df["Number of GPUs"].astype(int)
df["t"] = pd.to_numeric(df['total_duration'])
df["event"] = (df["num_interruptions"]
​ ​ ​ ​ ​ ​ ​ ​ .fillna(0)
​ ​ ​ ​ ​ ​ ​ ​ .astype(int)

35

​ ​ ​ ​ ​ ​ ​ ​ .apply(lambda x: 1 if x > 0 else
0))

def neg_log_likelihood(log_lambda, n, t, event):
 lambda_ = np.exp(log_lambda)
 logL = event * (np.log(n * lambda_)) - n * lambda_ * t
 return -np.sum(logL)

res = minimize(
 neg_log_likelihood,
 x0=np.log(1e-8),
 args=(df["n"].values, df["t"].values, df["event"].values),
 method='L-BFGS-B'
)

lambda_hat = np.exp(res.x[0])

A.2 Reference Implementation of re-queueing script
See sec. 6.3.1

#!/usr/bin/env bash

MAX_RETRIES="{{ cfg.misc.MAX_RETRIES }}"
["$MAX_RETRIES" -ge 0] || MAX_RETRIES=0

RETRIES_FILE="{{ cfg.misc.CHECKPOINT_DIR }}/retries_$(date +"%T" | sed 's/:/_/g').txt"
SBATCH_FILE="{{ sbatch_file }}"

mkdir -p {{ cfg.misc.CHECKPOINT_DIR }}

Initialize retries from the file or set to 0 if the file does not exist
if [-f "$RETRIES_FILE"]; then
 retries="$(cat "$RETRIES_FILE")"
 ["$retries" -ge 0] || retries=0
else
 retries=0
fi

LOG_RETRIES() {
 echo "${1:?}" > "$RETRIES_FILE"
}

PARSE_JOB_ID() {
 # Match against the expected output format of sbatch or print "ERROR"

36

 head -1 \
 | sed -E 's/^Submitted batch job ([[:digit:]]+)$/\1/; t; Q1' \
 | grep '[[:digit:]]' \
 || echo 'ERROR'
}

(
 set -o pipefail
 exec 3>&1
 TEE_STDOUT() {
 # Force tee to use the same open file description
 # Using /dev/fd/3 opens a new one when stdout is a file
 tee >(cat >&3)
 }

 while ["$retries" -le "$MAX_RETRIES"]; do

 if ["$retries" -ne 0]; then
 printf 'Job failed; restarting. %d attempts left.\n' "$((MAX_RETRIES - retries
))"
 fi
 LOG_RETRIES "$((++retries))"

 # Submit the job and output the job ID
 # "sbatch --wait" will match the exit code of the batch job itself
 JOB_ID="$(sbatch --wait -- "$SBATCH_FILE" | PARSE_JOB_ID | TEE_STDOUT)" && {
 printf 'Job %d finished\n' "$JOB_ID"
 break
 }

 if ["$JOB_ID" = 'ERROR']; then
 break
 fi

 JOB_STATE="$(sacct -j "$JOB_ID" --format=State --noheader -XP)" || {
 printf 'Failed to query state of job %s\n' "$JOB_ID"
 break
 }
 # Exhaustive listing of job states: https://slurm.schedmd.com/job_state_codes.html
 # There are 12 to account for. Other than the ones designated for retrying,
 # their handling differs exclusively in diagnostics printed before exiting.
 # The output of "sacct -P" will sometimes include extra information,
 # like "CANCELLED by 1234," so these case statements all match by prefix.
 case "$JOB_STATE" in
 FAILED*|NODE_FAIL*)
 false ;; # Retry on these states
 COMPLETED*)

37

 # This shouldn't be possible since the loop should exit
 # earlier than this on success, but handle it just in case
 printf 'Job %d finished\n' "$JOB_ID"
 break ;;
 TIMEOUT*)
 printf 'Job %d stopped (%s); not retrying\n' "$JOB_ID" "$JOB_STATE"
 break ;;
 CANCELLED*)
 # If the job was intentionally cancelled, don't restart
 printf 'Job %d %s\n' "$JOB_ID" "$JOB_STATE"
 break ;;
 BOOT_FAIL*|DEADLINE*|OUT_OF_MEMORY*)
 printf 'Job %d stopped in an unrecoverable state (%s); cancelling retry
logic\n' \
 "$JOB_ID" "$JOB_STATE"
 break ;;
 PREEMPTED*|SUSPENDED*)
 # Proper handling is unclear in this scenario, but assuming this is because of
 # limited cluster resources, it would be a bad idea to muscle in another job
 # in response to these events, so exit instead
 printf 'Job %d %s; cancelling retry logic\n' "$JOB_ID" "$JOB_STATE"
 break ;;
 # Cases after this point indicate something weird going on with this script
itself
 PENDING*|RUNNING*)
 # Something is wrong with the timing of "sbatch --wait" exiting, or we got the
wrong job ID somehow
 printf 'Error: Job %d was reported as having finished, but is %s; cancelling
retry logic\n' \
 "$JOB_ID" "$JOB_STATE" >&2
 break ;;
 '')
 printf 'Error: Could not retrieve job state\n' >&2
 break ;;
 *)
 printf 'Error: Unrecognized job state: "%s"\n' "$JOB_STATE" >&2
 break ;;
 esac

 done || {
 echo "Job failed after exceeding $MAX_RETRIES attempts. Exiting."
 exit 1
 }
)

38

	Purpose-Built Cloud for AI at Scale: Achieving 20% Higher MFU and 10x Reliability on Thousand-GPU Clusters
	NVIDIA H100 Performance Benchmarks
	A CoreWeave Technical Report
	Wes Brown (Distinguished Engineer), David Marx (Senior Engineer), Anthony Mercurio (Engineer), Eta Syra (Engineer), Sanger Steel (Engineer), Rex Wang (Engineer), Deok Filho (Product Manager)
	Table of Contents
	Executive Summary
	Key Results

	
	1. Introduction: The Challenge of Large-Scale AI Training
	1.1. Model Flops Utilization (MFU)
	1.1. Landscape and Industry Context
	1.2. Technical Hurdles

	2. Benchmarking Results
	2.1.1 High MFU Achievement
	2.1.2 Comparative Benchmarks
	2.1.3 NVIDIA DGX Cloud Benchmark Equivalence
	2.2 Reliability Analysis
	2.2.1 MTTF Analysis
	Figure 1. Estimated Job Survival Probability for Large-Scale Training Jobs
	
	Figure 2. Mean Job Lifetime vs. GPU Count (Log-Log Scale)
	Table 3. Projected Job Reliability at Varying GPU Scales Compared to Industry Baselines

	2.2.2 Goodput
	Figure 3. Breakdown of Job Runtime for Goodput and ETTR Calculation
	
	Table 4. Measured Runtime Goodput for Large Training Jobs

	2.2.3 Goodput Ratio (ETTR)
	Table 5. Effective Training Time Ratio (ETTR) for Large-Scale Jobs

	3. Benchmarking Methodology
	3.1. Benchmarking Goals and Narrative
	3.2 Experimental Setup
	3.3 Instrumentation

	4. The CoreWeave Approach: Purpose-Built for AI Scale
	4.1. Proactive Infrastructure Health and Lifecycle Management
	4.2. Expert, Integrated Support
	4.3. Optimized and Flexible Infrastructure Components
	4.4. Enabling Optimized Workflows
	4.5. Integrated Observability and Configuration
	4.6. The Vertical Integration Advantage

	5. Technical Implementation
	5.1 Developer Experience

	6. Best Practices for Large-Scale Training on CoreWeave
	6.1. Data Preparation and Loading Strategy
	6.2. Checkpointing and Model Loading Optimization
	6.2.1 Basic Checkpointing
	6.2.2 Asynchronous Checkpointing
	6.2.3 Optimized Asynchronous Checkpointing
	Table 5. Checkpoint Save Time by Method and Cluster Size
	6.2.4 Loading
	6.2.5 Optimized Loading

	6.3. Automated Failure Handling and Recovery
	Figure 4. Job Throughput Over Time with Automated Recovery
	
	Figure 5. MFU Across Training Jobs
	6.3.1. Automated Job Resubmission

	Observability for Root Cause Analysis
	Demonstrating Resilience
	6.3.2 Signal Handling and Deadlock Prevention in Distributed Training

	Proper Timing of Slurm and Distributed Training Timeouts
	Handling Stalled Processes with Watchdog and Heartbeat Monitors
	6.4. Monitoring and Observability

	7. Conclusion: Reliable, Performant AI Training at Scale with CoreWeave
	Appendix
	A1. Exponential Survival Model for E[TTF]
	A.2 Reference Implementation of re-queueing script

