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Executive Summary 
The artificial intelligence industry's push toward trillion-parameter models has exposed a 
critical gap: while GPU availability has increased, the infrastructure capability to maintain 
stable, efficient training at scale has not kept pace. Industry reports document effective 
training time ratios as low as 90%1 and mean time to failure under 8 hours2 for 
thousand-GPU clusters, directly impacting development costs and competitive timelines. 
For organizations investing in AI development, infrastructure-related failures can extend 
training times from weeks to months, delaying time-to-market in a rapidly evolving 
competitive landscape. 

CoreWeave provides a specialized AI cloud platform meticulously optimized for 
large-scale, GPU-accelerated workloads, differentiating through bare metal performance, 
low-latency networking, flexible configurations, and deep AI/ML operational expertise. 
During a six-week period in May-June 2025, we performed LLM pre-training exercises to 
provide concrete evidence of CoreWeave's value proposition, demonstrating superior 
performance, reliability, and stability crucial for large model training. 

CoreWeave minimizes downtime, averaging an Effective Training Time Ratio (ETTR) of 
98% while maximizing computational efficiency, reducing costs, and accelerating 
time-to-market for large-scale AI. Our experiments demonstrate a Mean Time To Failure 
(MTTF) of 3.66 days for a 1,024-GPU job, representing a 43.7% improvement on MTTF 
over a similarly trained industry model1 when our results are projected up to 16,384 GPUs. 

Our benchmarking shows CoreWeave achieves Model FLOPS Utilization (MFU) exceeding 
50% on NVIDIA Hopper GPUs. This level of efficiency represents up to 20% higher 
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performance compared to the 35%-45% MFU range typically observed in public 
foundation model training benchmarks, significantly bridging the "AI Efficiency Gap."3 
Further benchmarking against specific published results showed MFU improvements of 
18-28% over published results from leading AI labs. Additionally, collaborative testing 
using NVIDIA DGX Cloud Benchmarking Recipes confirmed CoreWeave's NVIDIA Hopper 
GPU infrastructure performs on par with the NVIDIA reference architecture. 

Achieving this level of performance was only made possible by the specific capabilities 
unique to CoreWeave Cloud: bare metal performance, robust health checking, automated 
fleet and node lifecycle management, optimized storage solutions accessed via NVIDIA 
BlueField DPU-managed network links on dedicated network fabric separate from the 
NVIDIA Quantum InfiniBand fabric used to communicate updates during training, 
topology-aware scheduling via CoreWeave's Slurm on Kubernetes (SUNK), and integrated 
detailed observability. 

We additionally demonstrated efficiency gains from in-house implementations of modern 
best practices, including asynchronous checkpointing using tools like Tensorizer, 
massively parallel text processing with the high-speed gpt_bpe tokenizer, and automated 
recovery facilitated via SUNK. 

Key Results 

Table 1. Summary of CoreWeave Benchmark Results Compared to Industry Baselines 

Metric CoreWeave Result Industry Baseline CoreWeave 
Uplift 

Model FLOPS 
Utilization (MFU) 

51–52% (1024 NVIDIA 
H100 GPUs) 

35-45%4,5,6 
+18–28% 

Effective Training 
Time Ratio (ETTR) 

97.5% @ 1024 GPUs 
~90% or lower1 

~8% gain 

Mean Time to Failure 
(MTTF) 

3.66 days @ 1024 GPUs ~0.33 days2 @ 1024 
GPUs 

10× longer 

Checkpoint Save 
Time 

17s (async, 1024 GPUs) 129s (synchronous 
baseline, Section 6.2) 

~8× faster 

Checkpoint Load 
Time 

8.8–34.5s (Tensorizer) 25.9–68.3s 
(torch.distributed, 

Section 6.2) 

2–3× faster 
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Tokenization 
Throughput 

63M tokens/sec 
(gpt_bpe) 

~5-10M tokens/sec 
(HugginFace 
Tokenizers)7 

6–12× faster 

Overview of performance and reliability metrics from large-scale AI training jobs on CoreWeave’s platform, benchmarked 
against public results from industry leading benchmarks. CoreWeave demonstrated 18–28% higher GPU efficiency (MFU), 
10x longer MTTF, and significantly faster checkpointing and tokenization—all contributing to improved cost-efficiency and 

time-to-market for foundation model training. 

 

1. Introduction: The Challenge of Large-Scale AI 
Training 
The AI industry continues its rapid trajectory towards ever-larger models, demanding 
unprecedented levels of computational demand and unwavering infrastructure reliability. 
While hardware advancements provide the necessary raw compute, continuously using 
thousands of GPUs for extended training runs remains a formidable challenge, pushing the 
boundaries of infrastructure design and operational management. 

Training large language models (LLMs) at scale presents significant infrastructure 
challenges that extend far beyond simply acquiring sufficient GPU resources. Training 
models on thousands of GPUs synchronously is immensely complex, with failures 
significantly impacting Time-To-Market (TTM) and total cost. As we will discuss, 
CoreWeave's infrastructure is holistically designed to mitigate these risks.  

This document concentrates on the benchmarking methodology, infrastructure 
advantages, and performance results; this is not a comprehensive guide to the practical 
steps involved in pre-training Ixchel, CoreWeave’s Llama 3-based 30B model. 

1.1. Model Flops Utilization (MFU) 

Central to evaluating training efficiency is Model FLOPS Utilization (MFU), which measures 
the percentage of theoretical peak GPU performance achieved during model training. MFU 
is calculated as the ratio of observed computational throughput to theoretical hardware 
capacity, accounting for the actual FLOPS required by the model architecture. 

For transformer models, theoretical FLOPS per token approximates 6N for the forward and 
backward passes, where N represents total parameters. Our 30B parameter model thus 
requires approximately 180 billion FLOPS per token. With NVIDIA Hopper GPUs delivering 
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989 TFLOPS theoretical peak for BF16 operations, 50% MFU translates to sustained 
throughput of ~495 TFLOPS per GPU during active training. 

This metric's value lies in its hardware-agnostic nature—it excludes implementation details 
like activation checkpointing, data loading overhead, and communication latency, 
enabling fair comparison across different systems and configurations. Industry 
benchmarks typically report 35-45% MFU4,5,6 for large-scale distributed training, with 
efficiency declining as model size and GPU count increase due to growing communication 
overhead. 

1.1. Landscape and Industry Context 

Industry publications and reputable technical reports1 implicitly acknowledge the 
difficulties inherent in large-scale training, referencing significant training interruptions 
even within highly resourced environments. This underscores a critical need within the 
ecosystem: infrastructure platforms that are not just powerful but fundamentally reliable 
and stable when subjected to the intense, long-duration stresses of training foundation 
models. Simply having access to GPUs is no longer sufficient; the infrastructure supporting 
them must be purpose-built for resilience and performance at scale. 

1.2. Technical Hurdles 

Successfully training large models requires overcoming substantial technical obstacles: 

●​ Platform stability: Modern distributed deep learning training techniques 
synchronize parallel processes across a complex array of components that must 
work together seamlessly at each step of the process. Job interruptions are often 
caused by a failure in a single component: ensuring a multi-billion parameter model 
can be trained in a tractable amount of time demands stable and consistent 
infrastructure performance. Unpredictable interruptions, hardware degradation, or 
network slowdowns waste valuable compute resources as well as researcher time 
and can make a difference when training a model over a period of days, weeks, or 
months. 

●​ Data preparation at scale: The multi-trillion token datasets required by large 
models present a massive data engineering challenge. Acquiring, cleaning, 
formatting, and efficiently tokenizing this data is a significant undertaking, often 
becoming a major bottleneck requiring high-throughput storage and considerable 
computational resources distinct from the main training cluster. 

●​ Distributed system scaling: Coordinating thousands of GPUs for distributed model 
training necessitates the use of extremely high-bandwidth, low-latency 
interconnects, such as NVIDIA Quantum-2 InfiniBand. Beyond the fabric itself, 
managing heat, power, and potential hardware failures across a vast fleet becomes 
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a critical operational burden. Furthermore, the intense, synchronous 
communication patterns typical of distributed training (e.g., NCCL all-reduce 
operations) are highly sensitive to outliers; a single slow GPU or network link can 
bottleneck the entire cluster. Maintaining consistent performance across every 
component is essential. 

●​ Network contention: Large-scale training generates distinct, high-intensity 
network traffic patterns. One pattern involves inter-GPU communication for 
synchronizing model parameters (compute fabric traffic), while another involves 
reading datasets and writing model checkpoints (storage fabric traffic). Allowing 
these fundamentally different traffic types to contend for the same network 
resources inevitably leads to performance degradation and unpredictable 
bottlenecks for both processes. 

2. Benchmarking Results 
Our benchmarking efforts across dozens of runs over months, including the initial validation 
runs and subsequent focused performance comparisons, demonstrated significant 
efficiency gains achievable on CoreWeave Cloud. 

2.1.1 High MFU Achievement 

Across multiple runs, CoreWeave consistently demonstrated high hardware utilization. The 
initial target throughput for the Ixchel run start was estimated at approximately 450 TFLOPS 
per GPU, translating to a cluster-wide effective throughput nearing 910 PFLOPs.  

Subsequent optimizations and measurements across various configurations, including 
those aligning with external published results, confirmed that the optimized CoreWeave 
platform consistently achieves MFU exceeding 50% on NVIDIA H100 GPUs. This 
significantly surpasses the 35%-45% MFU typically reported in public benchmarks,4,5,6 
representing up to 20% higher performance. 

2.1.2 Comparative Benchmarks 

To provide direct comparison points, we executed training runs aligned with published 
parameters from leading AI labs: 

●​ CoreWeave vs. Leader A: For a 30B parameter model run aligned with 
hyperparameters used by Leader A (on A100s), CoreWeave achieved 51.9% MFU on 
128 NVIDIA H100 GPUs. This represents a 28% improvement over the 40.43% MFU 
reported in their paper. (Note: While GPU types differ, MFU as a percentage of 
theoretical FLOPs allows for meaningful comparison.)8 
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●​ CoreWeave vs. Leader B: For a 30B parameter model run aligned with 
hyperparameters used by Leader B for their MPT-30B model (on NVIDIA H100 
GPUs), CoreWeave achieved 49.2% MFU on 128 NVIDIA H100 GPUs. This 
represents an 18% improvement over the 41.85% MFU reported by Leader B for 
their run.4,9 

Table 2. Comparative MFU Benchmarking Against Public Training Runs 

Origin Lab # GPUs Seqlen Origin MFU CoreWeave MFU 
(H100-80gb) 

Leader A​
(NVIDIA 

A100-80gb)8 
128  8192 40.43% 51.9% 

Leader B​
(NVIDIA 

H100-80gb)4,9 
128  2,048 41.85% 49.2% 

CoreWeave’s H100 GPU MFU results compared to published MFU values from two industry experts, Leader A8 and 
Leader B.9 Despite architectural and hardware differences, CoreWeave consistently outperformed public baselines by 

18–28%, demonstrating superior GPU efficiency and infrastructure tuning for large-model training. 

 

2.1.3 NVIDIA DGX Cloud Benchmark Equivalence 

In collaboration with NVIDIA, we utilized NVIDIA DGX Cloud Benchmarking Recipes to 
evaluate CoreWeave's platform for NVIDIA H100 GPUs across a suite of training and 
fine-tuning applications. Preliminary results demonstrated that CoreWeave's infrastructure 
achieved performance on par with NVIDIA's reference architecture across all tested 
workloads, for both BF16 and FP8 precision. This equivalence underscores the quality and 
optimization level of CoreWeave's environment. 

2.2 Reliability Analysis 

2.2.1 MTTF Analysis 

Beyond raw MFU, the focus on infrastructure stability and automated recovery directly 
impacts overall throughput. Features like proactive health monitoring and automated node 
replacement contribute to achieving high goodput rates (productive time vs. total time), 
measured as high as 99% in some contexts (1,024 or more GPUs), by minimizing 
disruptions. The automated job resubmission via SUNK proved effective in handling 
non-zero exit codes and NCCL timeouts, significantly reducing recovery time compared to 
manual intervention, directly benefiting ETTR and MTTF metrics. 
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The failure analysis process involved correlating job exit codes and SUNK logs with Weights 
& Biases (W&B) training metrics and Grafana infrastructure dashboards for systematic root 
cause identification. This allowed us to track interruptions, quantify recovery times, and 
calculate the overall impact on training efficiency (ETTR) and reliability (MTTF). 

Conventional distributed deep learning training workloads operate in a “lock-step” 
paradigm, such that if one hardware component fails, it brings down the whole job. 
Consequently, the likelihood of job interruption within a given time window scales with the 
number of hardware components involved in the job. 

We performed experiments on clusters ranging from 512 to 1,024 GPUs. To estimate the 
per-GPU failure rate, we fit a right-censored univariate exponential survival model (See 
appendix for details). This model allowed us to leverage information from both job failures 
and jobs that did not end from an unexpected interruption. For the purpose of the model, 
we assume interruptions are generally caused by hardware failures and that these failures 
are independent and identically distributed: we then normalize the data to estimate the 
per-GPU failure rate by multiplying job durations by number of GPUs. 

Figure 1. Estimated Job Survival Probability for Large-Scale Training Jobs 

 

Survival curves for jobs running on 256, 512, and 1,024 GPUs, derived from an exponential failure model fitted to 
observed job durations and interruptions. Larger jobs experience reduced survival times due to increased 

component failure likelihood. 
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From our experiments, we estimate a per-GPU failure rate (nλ) of 3,748.25 days/failure. We 
then use the fitted rate to estimate the mean job lifetime—i.e. expected time to failure 
(MTTF=E[TTF])—for jobs of varying scales by dividing nλ by the number of GPUs in the job by 
(i.e. E[TTF] = λ = nλ / n ). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Mean Job Lifetime vs. GPU Count (Log-Log Scale) 
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Projected mean time to failure (MTTF) across varying GPU cluster sizes, based on an exponential survival model fitted to 
real training job data. The log-log curve highlights the nonlinear decrease in job lifetime as GPU count increases, 

emphasizing the operational fragility of ultra-large training jobs. 

 

Our observed job reliability is a ~10x improvement relative to the rates reported in a 
reputable industry paper (which included interruptions from job preemption, which was not 
a factor for our experiment),2 and a projected 43.7% improvement relative to the 7.8 
unplanned interruptions/day at 16K GPUs observed by the authors of a reputable industry 
study(419 unplanned interruptions over a 54 days window).1 

 

Table 3. Projected Job Reliability at Varying GPU Scales Compared to Industry Baselines 
 

n_gpus n_nodes 

MTTF Industry 
Benchmark1,2 
(days) 

E[TTF] CoreWeave 
(days) E[Failures per day] 

1   3,748.25 0.0003 

2   1,874.13 0.0005 

4   937.06 0.0011 

8 1 47.70 468.53 0.0021 

16 2  234.27 0.0043 

32 4  117.13 0.0085 

64 8  58.57 0.0171 

128 16  29.28 0.0341 

256 32  14.64 0.0683 

512 64  7.32 0.1366 

1,024 128 0.33 3.66 0.2732 

2,048 256  1.83 0.5464 

4,096 512  0.92 1.0928 

8,192 1,024  0.46 2.1856 

16,384 2,048 0.075 0.23 4.3711 
 

Mean Time to Failure (MTTF) estimates for training jobs using between 1 and 16,384 GPUs, derived from a survival model fit to 
CoreWeave’s real training workloads on 512–1,024 GPU clusters. Results are benchmarked against published baselines 
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from an industry-leading reliability study2 and paper,1 showing up to 10x longer job lifetimes and a 43.7% lower failure rate 
at 16K GPUs. 

 

2.2.2 Goodput 

A variety of software events are necessary components of model training. These include: 

●​ Job initialization 
●​ Loading checkpoints and initializing models 
●​ Saving checkpoints 
●​ Forward/backward training steps 

To call the “Active Goodput” of a job is the fraction of the job duration that was comprised 
of training steps. The “Runtime Goodput” of a job (as previously described by Google7) 
discounts the duplicated effort from steps made after the last checkpoint, aka “badput”. 
Assuming a failure can occur randomly anywhere in the inter-checkpoint interval, the 
expected badput for any job is half the inter-checkpoint interval. Our experiments 
generally targeted a checkpointing cadence of around 1-2 hours, i.e. risk appetite 
calibration considered only the wall time lost rather than optimizing checkpointing 
cadence specifically to maximize GPU clock time. 

 

 

Figure 3. Breakdown of Job Runtime for Goodput and ETTR Calculation 

 

 
Schematic illustrating how a training job’s total runtime is divided into productive (goodput) and non-productive (badput) 
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segments. Components include active training, checkpointing, job initialization, failure recovery, and resume overhead. This 
breakdown supports the computation of Effective Training Time Ratio (ETTR). Based on original image from source: Google 

— Introducing ML Productivity Goodput.10 

 

Table 4. Measured Runtime Goodput for Large Training Jobs 
 

# GPUs # Nodes Average Runtime Goodput % 

512 64 99.53% 

1,024 128 99.72% 

 
Runtime Goodput measurements for 512- and 1,024-GPU jobs, where productive time includes checkpointing and 
recovery overhead. Despite large scale, jobs achieved over 99.5% Runtime Goodput, highlighting the efficiency of 

CoreWeave’s infrastructure even under generous accounting metrics. Source: Definition from Google.10 

 

2.2.3 Goodput Ratio (ETTR) 

Google’s Runtime Goodput considers checkpointing time as part of the goodput period. 
We consider that badput, as does an industry leader’s Effective Training Time Ratio (ETTR) 
metric—“the ratio of productive runtime to the available wallclock time of a job run”—which 
additionally takes into account re-queueing time.1  

For the purpose of calculating ETTR, we adopt FAIR’s more pessimistic approach and 
define goodput as the time spent on training iterations, excluding checkpointing, loading 
the model and optimizer state, tearing down the job after failure, etc. We then define lost 
training progress as the interval to the start of the resume job as reported by Slurm plus the 
time taken from the start of the slurm job to the first training step (to account for the 
overhead from restarting) plus half of the inter-checkpoint interval (to account for “wasted 
steps” lost when loading the resume job from the most recent available checkpoint). 

We penalized this goodput metric by subtracting the lost training progress, and divided by 
the total slurm job duration to compute the ratio of productive training time to available 
wallclock time, i.e. ETTR. We computed the per-”# GPUs” ETTR by summing the respective 
components across jobs for a given number of GPUs, and then computing a single ETTR for 
that category. 

Table 5. Effective Training Time Ratio (ETTR) for Large-Scale Jobs 

# GPUs # Nodes ETTR % 
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512 64 98.69 

1,024 128 97.48 

ETTR measurements for 512- and 1,024-GPU training jobs, based on an industry leader’s definition of productive time.2 
This stricter metric excludes checkpointing and recovery overhead, providing a conservative estimate of usable training 

time. Even under this definition, jobs maintained ETTR values above 97%, highlighting the platform’s ability to minimize 
disruption during long training runs. 

 

3. Benchmarking Methodology 
To objectively validate the benefits of CoreWeave's infrastructure and operational 
practices for large-scale AI training, we designed and executed a comprehensive 
benchmarking project. Our methodology focused on measuring key infrastructure-level 
performance and reliability metrics during a realistic, production-quality pre-training task. 

3.1. Benchmarking Goals and Narrative 

The primary goal of this benchmark was not to train a state-of-the-art model but rather to 
rigorously evaluate the capabilities of the underlying CoreWeave Cloud platform in 
supporting such demanding workloads. We focused specifically on quantifying: 

●​ Reliability and stability: Measured primarily through MTTF and the effectiveness of 
automated recovery mechanisms. 

●​ Training efficiency: Measured via the ETTR, which accounts for time lost due to 
interruptions, checkpointing overhead, and recovery compared to the ideal 
theoretical training time. 

●​ Hardware utilization: Measured using MFU to understand how effectively the GPU 
compute resources were used during the active training phases. 

●​ Checkpoint performance: Measured through both checkpoint save time 
(comparing synchronous vs. asynchronous methods) and checkpoint load time 
(comparing torch.distributed vs. Tensorizer), quantifying the overhead of model 
persistence operations. 

●​ Data pipeline efficiency: Measured via tokenization throughput using the gpt_bpe 
tokenizer, demonstrating the ability to prepare trillion-token datasets without 
bottlenecking training. 

●​ Total non-training time & breakdown: Time spent on initialization, data loading 
waits, checkpoint saving/loading, and idle time during interruptions. 

To minimize subjectivity often associated with model selection or dataset novelty, we 
opted for well-understood components: a Llama-style architecture, the publicly available 
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Dolma dataset (augmented), and the widely used Megatron-LM training framework. This 
allows the results to focus squarely on the impact of the infrastructure and CoreWeave's 
operational best practices. 

3.2 Experimental Setup 

Our benchmark culminated in a production-scale pre-training run, internally codenamed 
"Ixchel," utilizing the following configuration: 

●​ Model: 
○​ Parameters: 30 Billion 

■​ This 30B scale was chosen as large enough to necessitate distributed 
training across a significant cluster, thereby exercising the 
infrastructure's capabilities while remaining manageable and 
potentially transferable to different hardware (for example, NVIDIA 
L40 GPUs using FP8 for inference). 

○​ Precision: BF16 
○​ Key Hyperparameters: (Llama 3 style model) 

■​ Sequence Length: 8,192 
■​ Hidden Size: 6,144 
■​ Number of Layers: 60 
■​ Number of Attention Heads: 48 
■​ FFN Hidden Size: 21,504 

●​ Dataset: The foundation was a 3.4 trillion token dataset, curated primarily from the 
public Dolma collection and augmented with additional sources such as Project 
Gutenberg and an internal non-public dataset. Overlapping context data 
augmentation was applied during dataset preparation, creating a final dataset of 
9.7 trillion tokens worth of samples to feed the model during training. The 
motivation underlying this augmentation was to mitigate positional biases and 
truncated contexts. 

●​ Tokenizer: We chose the Nerdstash v2 tokenizer11 for our vocabulary not only 
because it is readily supported in our dataset pipeline (Section 2.4) but also 
because it enabled us to tokenize our entire pretraining dataset using only a 16-bit 
data type per token. This decision alone allows us to create tokenized datasets that 
are half the size of datasets stored in a 32-bit data type, as the vocabulary length of 
Nerdstash 2 does not exceed 216. 

●​ Framework: A CoreWeave fork of NVIDIA's Megatron-LM framework12 served as the 
foundation for training, allowing us to pair megatron’s pre-existing support for 
modern algorithms and integrations (e.g. 3D model parallelism,12 Flash Attention,13 
Transformer Engine14) with additional adaptations and optimizations implemented 
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by the CoreWeave team (e.g. custom data loaders, Tensorizer for checkpointing, 
fault tolerance). 

●​ Parallelism strategy: To efficiently distribute the 30B model across nodes, we 
employed a hybrid parallelism strategy combining: 

○​ Tensor Parallelism (TP = 4) within a node 
○​ Pipeline Parallelism (PP = 1, effectively disabled) was found to be optimal for 

our setup 
○​ Sequence Parallelism (SP) enabled to distribute certain activations across TP 

ranks6 
○​ Data Parallelism (DP = 32 for the 128-GPU validation runs) across nodes 

●​ Parallelism optimizations: We utilized Megatron’s distributed optimizer state and 
overlapped communications to help increase our overall throughput by reducing 
the volume of network communication needed for training. 

●​ Compute infrastructure: Experiments were conducted on clusters of up to 1,024 
NVIDIA H100 GPUs (64 nodes) connected via NVIDIA Quantum-2 InfiniBand, with 
workloads orchestrated by SUNK on CoreWeave Kubernetes Service (CKS). 

3.3 Instrumentation 

Comprehensive monitoring was crucial for capturing the necessary data. We utilized: 

●​ W&B: For real-time tracking of training-specific metrics, including loss curves, 
perplexity, gradient norms, timing breakdowns (forward/backward pass, optimizer 
steps), and calculated MFU. 

●​ Grafana: For visualizing infrastructure and hardware metrics collected via node 
exporters and DCGM, including GPU utilization, power draw, temperature, memory 
usage, and network traffic (both InfiniBand and Ethernet/DPU). 

●​ SUNK/Slurm Logs: For recording job start/stop times, exit codes, node allocations, 
and requeue events. 

While alerting specifically on performance slowdowns (not just hard failures) was identified 
as valuable future work, the existing instrumentation provided deep visibility into job 
execution and failure modes. 

4. The CoreWeave Approach: Purpose-Built for AI 
Scale 
CoreWeave addresses these multifaceted challenges through a specialized, vertically 
integrated cloud platform designed explicitly for the demands of high-performance 
computing and large-scale AI workloads. Our approach incorporates several key 
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differentiators aimed at maximizing reliability, performance, and operational efficiency for 
our clients. 

4.1. Proactive Infrastructure Health and Lifecycle Management 

A cornerstone of our reliability strategy is a proactive stance on infrastructure health. We 
employ continuous, granular health checks that actively monitor the status of critical 
hardware components, including GPUs, network interfaces (both InfiniBand and 
Ethernet/DPU), memory modules, and system thermals. Unlike basic pass/fail checks, our 
monitoring aims to detect subtle degradation or anomalous behavior before it leads to 
outright failure. Nodes failing these rigorous checks or exhibiting concerning trends are 
automatically flagged and removed from the scheduling pool by our infrastructure 
management systems. This automated lifecycle management ensures that client 
workloads are dispatched only to a healthy and performant hardware fleet, significantly 
reducing the risk of hardware-induced job failures or difficult-to-diagnose performance 
issues. The positive impact of this proactive health monitoring and automated node 
management is quantified in our failure analysis results presented later in this paper 
(Section 4.4). 

4.2. Expert, Integrated Support 

Complementing our automated systems is CoreWeave's unique, deeply-engaged support 
model. We provide clients with direct access to our experienced engineering teams—the 
same engineers who design, build, and operate our infrastructure—often through shared 
Slack channels. This facilitates rapid, expert assistance for troubleshooting unexpected 
issues and proactively optimizing workloads for peak performance on the CoreWeave 
platform. Having direct lines of communication to specialists knowledgeable about the 
interplay between hardware, networking, storage, orchestration, and common ML 
frameworks functions as a powerful operational advantage. It accelerates problem 
resolution, fosters knowledge transfer, and enables a level of collaborative optimization far 
beyond the typical break-and-fix support paradigms found in other cloud environments. 

4.3. Optimized and Flexible Infrastructure Components 

Underpinning our operational model is an infrastructure stack where each component is 
selected and configured for demanding AI workloads: 

●​ Networking architecture: We recognize that network performance is paramount 
and employ a multi-fabric design. 

○​ Compute fabric: High-bandwidth, low-latency NVIDIA Quantum-2 
InfiniBand fabrics serve as the standard interconnect for our large GPU 
clusters. This fabric is reserved exclusively for the intense, latency-sensitive 
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inter-GPU communication characteristic of distributed training (e.g., NCCL 
collectives), ensuring maximum performance for synchronizing model 
gradients and parameters across nodes, and using NVIDIA NVLink™ for 
GPUs within the same node. 

○​ Storage connectivity and traffic separation: To handle storage I/O efficiently 
and without interfering with the compute fabric, CoreWeave utilizes NVIDIA 
BlueField-3 Data Processing Units (DPUs). These DPUs manage 
connectivity to our distributed file storage systems, providing high-speed 
(100 Gib/s per DPU) network links specifically for storage access, complete 
with robust tenant isolation. This architecture deliberately segregates 
storage traffic onto a separate physical network path from the NVIDIA 
Quantum InfiniBand compute fabric. This separation is crucial as it prevents 
the compute fabric from becoming congested by potentially large storage 
operations during training (like checkpoint writes or dataset reads) and 
ensures storage I/O performance is not impacted by compute traffic. 
Eliminating this network contention is fundamental to maintaining 
predictable performance and maximizing GPU utilization. 

●​ Compute resources: We provide bare metal access to underlying compute 
resources (CPUs and GPUs). This eliminates the performance overhead, jitter, and 
potential compatibility issues sometimes associated with hypervisor-based 
virtualization, granting users maximum performance potential and direct control 
over the hardware environment. 

●​ Storage solutions: We offer a range of storage options designed for different 
performance tiers and access patterns. This includes high-performance Network 
File Systems (NFS) suitable for many use cases, alongside highly scalable parallel file 
systems like VAST Data for workloads demanding maximum I/O throughput and 
scalability. Access to these systems is provided via the dedicated BlueField 
DPU-managed storage network links. This flexibility allows users to select the 
optimal storage backend for different parts of their workflow, such as utilizing 
VAST's performance characteristics for highly efficient asynchronous 
checkpointing strategies, as explored later in this benchmark (Section 4.2). For our 
experiments, training code was deployed to a “home” mounted volume, and 
training artifacts such as checkpoints and logs were written to a larger “data” 
mount.  

●​ Job scheduling and orchestration: CoreWeave utilizes SUNK (Slurm on 
Kubernetes), a robust and scalable job orchestration system that integrates tightly 
with our infrastructure and Kubernetes control plane. SUNK enables sophisticated 
scheduling policies, including topology-aware placement (critical for minimizing 
communication hops on large, multi-switch InfiniBand fabrics), and provides the 
essential foundation for automated job lifecycle management, including the failure 
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detection and automated resubmission mechanisms central to our reliability 
strategy. 

●​ Serverless supercomputers via CKS: Our compute cluster is a serverless 
abstraction defined via a config that requests a specific target hardware allocation. 
This setup mitigates hardware issues by immediately evicting and replacing in the 
abstract cluster. The logical serverless cluster is configured to use hardware 
constrained to the same data center (prioritizing the same rack and leaf group when 
available), ensuring that we are able to minimize the contribution of physical 
limitations to communication delay between GPU nodes. When nodes are idling, 
automated health checks are performed regularly to ensure the readiness of the 
cluster, and nodes failing these checks are immediately evicted and replaced via 
the serverless Kubernetes mechanism.  

4.4. Enabling Optimized Workflows 

The flexibility and raw performance inherent in CoreWeave Cloud actively enable users to 
implement highly optimized workflows that might be difficult or impossible in more 
restrictive environments. One particularly illustrative example of how CoreWeave's 
infrastructure provides exceptional flexibility in data handling is detailed below: 

●​ Data pipeline efficiency: We leveraged CoreWeave's high-throughput storage 
access and readily available compute resources from outside of our main training 
cluster to implement a highly efficient pipeline to prepare our pretraining dataset. 
We have used a custom tool named gpt_bpe,16 a highly optimized implementation 
of the BPE tokenization method that allows us to tokenize our pretraining dataset 
with the Nerdstash v2 tokenizer. The tokenizer had achieved processing speeds of 
up to 63 million tokens per second, reducing the time required to prepare our 
trillion-token scale dataset as much as 6x compared to HuggingFace Tokenizers.7 
Furthermore, the tokenizer readily supports applying overlapping context data 
augmentation techniques which amplifies our effective pretraining dataset size 
from 3.4 trillion tokens to 9.7 trillion tokens. We have also implemented an 
optimized dataloader within the training framework (Megatron-LM), which allows us 
to use our own dataset format. This ability to customize and optimize the entire 
pipeline—from raw data curation, high-speed tokenization, augmentation, to 
efficient loading—significantly accelerated development iterations and 
contributed to overall training efficiency. 

●​ Job startup efficiency: Jobs were executed in docker containers, utilizing NVIDIA 
pyxis+enroot. To accelerate job start-up time, the container image was saved 
locally to the data mount in compressed SquashFS format. Additionally, 
checkpoints were saved in the highly performant Tensorizer format to minimize 
model load time (see discussion in sec 6.2). 
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4.5. Integrated Observability and Configuration 

Effective management and optimization of large-scale training require deep visibility. Our 
platform features an integrated observability stack combining infrastructure, hardware, 
and GPU metrics (collected via node exporters and DCGM, visualized in Grafana) with 
real-time training metrics captured directly from ML frameworks (logged to and visualized 
in Weights & Biases). This unified view allows users and CoreWeave support teams to easily 
correlate system behavior (e.g., network latency spikes, GPU power fluctuations, memory 
usage) with training performance dynamics (e.g., drops in MFU, slower gradient updates, 
loss curve anomalies), facilitating rapid root cause analysis and informed performance 
tuning. Compared to the often rigid instance types of traditional clouds, CoreWeave offers 
significantly greater configurability and observability across compute instances, storage 
volumes, and network settings, allowing resource allocation to be tailored precisely to 
workload needs. 

4.6. The Vertical Integration Advantage 

Finally, CoreWeave's ability to deliver these capabilities reliably stems from our vertical 
integration. By owning, managing, and optimizing the entire technology stack—from 
physical data center deployment and hardware selection, through network fabric design 
and configuration, operating system builds, the orchestration layer (SUNK), storage 
solutions, and up to the support model—we ensure all components work harmoniously. 
This tight integration enables us to rapidly deploy platform-wide optimizations, swiftly 
resolve complex cross-layer issues that might stump siloed teams elsewhere, and provide 
performance tuning advice uniquely tailored to our specific, high-performance 
environment. 

5. Technical Implementation 
5.1 Developer Experience 

Our team used or developed a number of tools to make the development, execution, 
logging, and monitoring of training runs easier. The team used PyCharm as their primary 
IDE. Coding was generally performed locally on a given engineer or researcher’s laptop, 
with PyCharm configured to deploy changes to their home directory on the slurm cluster 
via SSH. This ensured a secure, version-controlled source-of-truth while permitting 
frictionless development and experimentation.  
 
Jobs were configured and submitted through the development of a dispatch script that 
made use of YAML files for templating sbatch, srun, and fault tolerance daemon processes, 
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allowing the modular configuration of compute, training, logging, checkpoint monitoring, 
and environment parameters that all fill substitutions in the aforementioned template 
scripts. Essentially, once these config files were configured, the srun, sbatch, and fault 
tolerance scripts were generated on the fly.  
 
Debugging is a notable issue with Slurm, due to the inherent issues traditional debuggers 
(like pydevd and debugpy) have in seamlessly connecting to a debug server remotely. 
Work was done to modify a PyCharm remote interpreter to be a wrapper of a normal 
`python` binary to include, on execution, the reverse tunneling of a debug server on a 
compute node over to the login node. To fully enable PyCharm's debugger for Python 
code running on compute nodes, we configured the remote interpreter with SSH port 
forwarding. This setup routed the debugging connection directly back to PyCharm’s local 
debugging client. This is far more desirable than more primitive debuggers like `pdb`, 
which are not thread-aware. 

6. Best Practices for Large-Scale Training on 
CoreWeave 
Based on the experiences and findings from this benchmarking project, we have distilled 
several best practices for maximizing efficiency and reliability when undertaking 
large-scale model training on CoreWeave Cloud. 

6.1. Data Preparation and Loading Strategy 

Efficiently handling massive datasets is paramount, as I/O and preprocessing can easily 
become bottlenecks that starve valuable GPU resources. Our approach involved several 
key steps enabled by CoreWeave Cloud: 

●​ Dataset curation: The focus of this guide is technical considerations, but it merits 
noting that the quality of the model is strictly bounded by the quality of the data 
used to train it. The goal is to “model” the generating distribution of the training 
data: This is only achievable if the data reflects the distribution we are interested in 
modeling. 

●​ Base tokenization: Training data processing was effected upstream of the training 
exercise. We were able to leverage CoreWeave's high-performance compute and 
storage for batch processing on infrastructure independent of the main training 
cluster. Our entire pretraining dataset was subjected to tokenization, data 
augmentation, and construction of fully prepared training samples (8192 token 
contexts) prior to starting the training run, rather than reading in raw text during 
training and performing tokenization, augmentation, and sample construction on 
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the fly while the GPUs are hungrily waiting to eat those tokens. This effectively 
amortizes compute that would otherwise slow or potentially even bottleneck the 
training process. 

●​ Optimized tokenization tooling: Utilize high-performance tokenization tools. Our 
project employed a custom BPE tokenizer written in Golang called gpt_bpe,16 which 
supports the Nerdstash v2 tokenizer that we have intended to target. This tool's 
speed (63M tokens/sec) was critical for processing the 3.4T token base dataset 
efficiently. Additionally, Nerdstash v2 allowed us to store our tokenized pretraining 
datasets in a 16-bit data format due to the limited vocabulary size being no greater 
than 216. Saving tokens in a 16-bit data format, rather than 32-bit, allows us to cut 
down our tokenized dataset’s storage footprint in half. 

●​ Data augmentation for training: We have applied context overlapping during the 
pre-tokenization phase to create a diverse amount of training examples from our 
base dataset, which effectively expands the amount of contextual information 
presented to the model during training from 3.4T to 9.7T tokens after the 
pre-tokenization phase. 

●​ Efficient data loading: Standard data loading mechanisms within training 
frameworks may not always be optimal. Implement or adapt custom data loaders 
designed to work efficiently with the augmented data stream and storage backend 
(e.g., streaming effectively from NFS or VAST). Our approach involved bypassing 
default Megatron-LM loaders to ensure consistent, high-throughput data delivery 
to the GPUs with our custom dataset format with the intent of maximizing training 
efficiency. 

6.2. Checkpointing and Model Loading Optimization 

Frequent and efficient checkpointing is non-negotiable for resilience in long-running 
training jobs, but naive implementations can severely impact performance. 

●​ Asynchronous checkpointing: Standard synchronous checkpointing (saving 
directly from training processes to shared storage like NFS) halts training 
computation during the save operation, directly reducing ETTR. Adopt 
asynchronous checkpointing strategies. CoreWeave recommends using tools 
such as Tensorizer, which was integrated into our benchmark. The optimized 
approach involved: 

○​ Training processes quickly dump their state (model weights, optimizer state) 
using Tensorizer. 

○​ Training resumes almost immediately. 
○​ A separate background process asynchronously writes the checkpoint files 

to durable, high-performance shared storage, such as the VAST Data 
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parallel filesystem, leveraging the dedicated DPU-managed storage 
network. 

●​ Performance impact: Our benchmarks confirmed the value of this approach. Using 
Tensorizer for optimized asynchronous checkpointing to VAST resulted in 
approximately 2x faster model load times compared to baseline methods and 
reduced the overhead impacting training throughput during the save process by 
roughly 1.5x. 

●​ Frequency and verification: Balance checkpoint frequency with performance; 
more frequent checkpointing improves recovery point objective but adds 
overhead. Implement automated verification checks on saved checkpoints to 
ensure integrity. 

6.2.1 Basic Checkpointing 

It’s imperative to insert real numbers into this situation so we can develop heuristics to 
optimize for efficiency. For this, the most important data point to understand is how long a 
single checkpoint takes. 

These numbers will necessarily vary for different model sizes, storage backends, and world 
sizes. We explored this with our 30B model (approx. 390 GiB per checkpoint) using a VAST 
networked filesystem as a storage backend. There are several units this can be framed in, 
so we choose time lost in seconds. For example, consider two identical training 
scenarios—one performs a checkpoint, the other does not. We measure the checkpoint 
overhead as the additional seconds spent compared to the scenario without 
checkpointing. Checkpoint overhead can also be expressed in terms of impact to 
goodput or MFU as well. 

In our tests, the average time cost of a single checkpoint using Megatron's built-in 
checkpointing machinery based on the torch.distributed framework was 106.6 
seconds across 512 workers, or 128.7 seconds across 1,024 workers. 

6.2.2 Asynchronous Checkpointing 

With normal checkpointing, all training must grind to a halt to save a snapshot of the current 
model weights and optimizer state to persistent storage before training is allowed to 
resume. This approach can be improved by leveraging concurrency. The application of 
concurrency here is not entirely trivial: We do not want weights to change partway through 
a checkpoint. We need an immutable snapshot of the model state from one defined point 
in time to work with. The solution: Rather than stop training, we can quickly take a snapshot 
of the weights detached from the trainer's working copy and write that snapshot to disk in a 
separate process or thread in the background asynchronously, allowing the trainer to 

22 



  

resume separately as soon as a stable copy is made. As I/O is much slower than a memory 
copy, this will decrease the time cost of a checkpoint substantially. 

Asynchronous checkpointing is a known pattern and has an existing stock implementation 
in Megatron based on multi-processing. 

In our tests, the average time cost of a single checkpoint using Megatron's built-in 
asynchronous checkpointing machinery was 112.3 seconds across 512 workers, or 134.3 
seconds across 1,024 workers—awkwardly, slightly slower than a basic synchronous 
checkpoint. At a checkpointing cadence of one checkpoint every 30 minutes, on the lower 
end, this would represent 1,665.7 seconds of training time out of 1,800 seconds of 
wall-clock time, reducing overall performance to 92.5% of what it could be with no 
checkpointing costs. 

There is nuance to measuring time cost for asynchronous checkpointing. Although the 
ideal implementation should quickly pass control back to the trainer and incur no further 
costs while running in the background, this is not what occurs in practice. Resource 
contention between the background checkpointing process and foreground trainer 
process may slow down training until the checkpoint is complete. Contended resources 
include CPU time, network bandwidth, and various other system-level resources. 

Our measurement for time cost thus accounts for both time spent blocking (the 
synchronous time taken to copy a snapshot of the model state and launch a background 
checkpointing task) and the background performance hit (how many seconds slower the 
trainer runs while the checkpoint is ongoing in the background). The latter metric is 
calculated with the following logic: If the average time taken to progress N training steps 
with no background checkpointing activity is T1, and the time taken to progress N steps 
with background checkpointing activity is T2, then T2 − T1 represents the time cost of the 
background checkpoint, assuming N is set sufficiently high that it covers a span of time 
longer than the background checkpoint. 

As an example, if the average time taken to progress by 10 training steps is 20 seconds with 
no interference, and the time taken to progress by 10 training steps with a background 
checkpoint ongoing for 3 of those steps is 25 seconds, then the background performance 
hit for this checkpoint is considered to be 5 seconds. 

The average amount of blocking time taken by Megatron’s built-in asynchronous 
checkpointing was 99.0 seconds across 512 workers and 121.4 seconds across 1,024 
workers, while the average amount of time lost to the background performance hit was 13.3 
seconds across 512 workers and 12.9 seconds across 1,024 workers. 

6.2.3 Optimized Asynchronous Checkpointing 
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Using CoreWeave's Tensorizer library for serializing and deserializing weights alongside an 
optimized asynchronous checkpointing flow, we were able to substantially reduce the 
performance impact of checkpointing, allowing for greater robustness from more 
frequent checkpointing and more efficient training. 

The first improvement was to minimize time spent directly blocking training while taking a 
snapshot of the model state. Taking a snapshot is essentially writing a copy of the data 
currently in GPU VRAM to buffers in CPU RAM; to optimize this process, we kept persistent 
buffers the size of the model state in CPU RAM to copy data into and reused these buffers 
for each checkpoint, minimizing slow RAM allocations on all but the first checkpoint. We 
also use pinned CPU buffers (i.e. page-locked host memory registered for device-to-host 
DMA transfers via cudaHostRegister), which allowed much faster device-to-host 
transfers handled entirely by the DMA engine. We then launched the background 
asynchronous checkpoint as a thread rather than a process, eliminating any IPC overhead 
in communicating data to be saved. Tensorizer is written in Python, but is designed to 
minimally block the GIL during serialization so that multithreading is viable. 

The second improvement was to minimize the background performance hit. By default, 
Tensorizer makes heavy use of concurrency and will stress a system's resources to finish 
saving a checkpoint as fast as possible; this incurs a background performance hit as it 
starves the foreground training activity of resources. However, as Tensorizer's concurrency 
is configurable, we simply instructed it to use less parallelism and save one tensor at a time, 
which reversed its usual behavior and made it very resource-light at the cost of a longer 
background checkpoint write time. Since the training process wasn't blocked on the 
background checkpoint write time, it was fine for that to take longer. 

With the optimized approach, checkpointing every 30 minutes (1,800 seconds) only 
consumed about 10.3 and 17.1 seconds per checkpoint across 512 and 1,024 workers 
respectively, leaving at least 1,782.9 seconds for actual training. This represents an 8x 
reduction in checkpointing overhead compared to the baseline method, boosting 
effective training performance to 99.1%. 

The average amount of blocking time taken by our asynchronous checkpointing was equal 
to the time cost. The time cost of the background performance hit was so small it could not 
be discerned from random noise in iteration time. 

Table 5. Checkpoint Save Time by Method and Cluster Size 
 

 Method Checkpointing Cluster 
size 

Blocking 
Write Time 

Mean 
Computation 
Time Lost Per 

Effective Training 
@ 30m 
checkpoint 
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Write cadence 

Tensorizer 
 

Synchronous 512 - 106.6s 83.1% 

1,024 - 128.7s 86.0% 

Megatron 512 - 110.5s 83.7% 

1,024 - 118.7s 84.8% 

Tensorizer Asynchronous 
 

512 10.3s 10.3s 99.1% 

1,024 17.1s 17.1s 99.1% 

Megatron 512 99.0s 112.3s 92.5% 

1,024 121.4s 134.3s 92.5% 

 
Average checkpoint save times (in seconds) for synchronous and asynchronous methods across 512- and 1,024-GPU clusters. 

Asynchronous checkpointing—enabled via Tensorizer and background threading—reduced save times by nearly 8x, 
significantly improving training throughput and fault recovery efficiency. Also significantly, the mean computational impact on 

the duration of the training run is measured. 
 

 

6.2.4 Loading 

The counterpart to checkpointing performance is loading performance. Although saving a 
checkpoint is a more frequent occurrence than loading from a checkpoint during training, 
load times are still significant in resilience and error recovery, as they contribute to how 
quickly a training job can restart after an error. 

With the stock checkpointing and loading strategy based on torch.distributed, the 
minimum time it takes to load our 30B parameter, 390 GiB model from networked storage 
onto 512 worker processes is 25.9 seconds with a hot cache (i.e. after loading from the 
same checkpoint several times in quick succession), while the slowest recorded time was 
68.3 seconds with no caching (i.e. loading from a checkpoint that had never been read 
before). 

6.2.5 Optimized Loading 

In addition to providing greatly improved checkpoint save times, Tensorizer also improves 
load times. While our particular application of Tensorizer in the Megatron codebase doesn't 
take full advantage of Tensorizer's full suite of available optimizations for streaming tensors 
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directly to the GPU, it still manages to improve the loading speed in the same testing 
configuration as before to 8.8 seconds with a hot cache, with a slowest recorded time of 
34.5 seconds with no caching. 

Tensorizer's speedup over the baseline method (Megatron-native checkpointing) ranges 
from 2.0x–2.9x. The fastest times for each method may be more representative of the 
potential of each method with a generic fast storage backend, as slowest recorded load 
times with no caching are highly dependent on the speed of a specific storage backend at 
a particular moment in time. 

6.3. Automated Failure Handling and Recovery 

Effective failure handling and recovery minimize downtime and manual intervention by 
automatically detecting job failures, accurately handling termination signals, and swiftly 
restarting stalled or crashed processes. This section outlines essential considerations for 
automated recovery, specifically addressing Slurm signal handling and distributed process 
deadlock prevention. 

 

 

 

 

Figure 4. Job Throughput Over Time with Automated Recovery 

 

 
Throughput (e.g., tokens/sec or TFLOPs) plotted across training steps for multiple jobs during the Ixchel pre-training 

benchmark. Each line represents a unique job ID. Sharp drops indicate job interruptions, followed by automatic recovery 
and resumption to near-peak throughput—highlighting the effectiveness of CoreWeave’s automated job resubmission 

and fault recovery systems. 
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Figure 5. MFU Across Training Jobs 

 

 

 
MFU plotted over training steps for multiple Ixchel pre-training jobs. Most jobs maintain consistently high utilization above 
45%, with brief drops corresponding to failures or job restarts. MFU rapidly recovers after each interruption, underscoring 

the system’s ability to sustain computational efficiency even in the face of transient faults. 

 

6.3.1. Automated Job Resubmission 

Automated job resubmission involves continuously polling job states using Slurm’s sacct 
and automatically restarting jobs upon detecting recoverable failures. Decisions to 
resubmit depend on the observed job states and associated exit codes: 

●​ No action is required for jobs in the RUNNING or PENDING states. 
●​ Automatic resubmission occurs for recoverable failure states identified by Slurm 

(e.g., NODE_FAIL, NCCL communication timeout signals). 
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●​ Manual intervention is required for irrecoverable failure states (e.g., 
OUT_OF_MEMORY, FAILED due to invalid training configurations). 

Failures identified by non-zero exit codes, framework-specific error signals, or NCCL 
communication timeouts indicating process hangs should all be configured to trigger 
automated recovery. Testing has shown that automated recovery is approximately 3x 
faster than manual intervention, making it essential for maximizing training goodput. 

To prevent excessive retries due to persistent code bugs or recurring issues, explicitly set a 
reasonable MAX_RETRIES limit within your job scheduling policies. Additionally, ensure the 
restart logic reliably resumes training from the latest valid checkpoint. 

Our approach for this white paper uses full job resubmissions (sbatch) to ensure 
modularity and clearly defined handling of distinct failure states. However, using Slurm's 
native requeue functionality (scontrol requeue) is another viable approach, particularly 
advantageous when maintaining a consistent job ID across restarts is desirable for 
long-running production jobs. Both approaches share similar error-handling logic and 
checkpoint-based recovery strategies. 

Observability for Root Cause Analysis 

After automated recovery, leverage integrated observability tools (e.g., Weights & Biases, 
Grafana, Slurm logs) to rapidly diagnose root causes of both transient and persistent 
failures. Correlating training metrics (e.g., loss spikes, drops in Model Flops Utilization 
(MFU)) with infrastructure metrics (GPU ECC errors, network latency issues, node 
temperature warnings) greatly facilitates targeted troubleshooting. 

Demonstrating Resilience 

The effectiveness of automated recovery should be illustrated clearly through training 
progress visualizations. Graphs such as MFU or loss curves over time should demonstrate 
brief interruptions followed by rapid, automatic resumption. 

6.3.2 Signal Handling and Deadlock Prevention in Distributed Training 

Automated recovery must account for the nuances of signal handling within distributed 
training environments, where incorrect timing or stalled processes can result in 
difficult-to-recover deadlocks. Two key scenarios require careful attention: 

●​ Slurm’s signaling to the Python training processes. 
●​ Stalled Python processes holding critical locks, such as Python’s Global Interpreter 

Lock (GIL). 
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These two scenarios are interconnected because a mishandled termination signal (from 
Slurm) can lead directly to stalled processes, which subsequently may hold locks and 
prevent effective recovery. 

Proper Timing of Slurm and Distributed Training Timeouts 

Slurm alone does not reliably terminate distributed training jobs cleanly. Thus, explicitly 
coordinating timeouts between Slurm and PyTorch distributed parameters is essential. 

Configure these parameters carefully to avoid deadlocks: 

●​ Megatron’s --distributed-timeout-minutes: wraps around torch.distributed's 
process group timeout, ensuring collective operations fail cleanly after a defined 
waiting period. 

●​ Slurm’s job timeout (--time): must be set longer than 
--distributed-timeout-minutes to avoid premature termination. 

●​ Environment variable: set TORCH_NCCL_BLOCKING_WAIT=1 to help PyTorch 
distributed groups handle communication stalls explicitly. 

When Slurm’s --time parameter is shorter than --distributed-timeout-minutes, 
Slurm prematurely sends a SIGTERM to the Python training processes. Python defers 
handling this signal until control returns from C++ extensions (such as LibTorch). If the signal 
arrives during a C++ execution, Python does not handle it immediately. As a result, the 
terminating process may fail to notify its distributed training group, causing other 
processes to indefinitely await a signal that never arrives, leading to a deadlock. 

Handling Stalled Processes with Watchdog and Heartbeat Monitors 

Even with proper signal handling, processes can still stall indefinitely if a Python thread 
holds the Global Interpreter Lock (GIL), preventing standard watchdog threads from 
intervening. To handle these edge cases, leverage PyTorch distributed’s built-in watchdog 
and heartbeat mechanisms: 

●​ Watchdog thread: PyTorch distributed includes a watchdog thread that attempts 
to terminate stalled processes after detecting communication inactivity. However, 
the watchdog requires acquiring the GIL to terminate Python processes. If the 
stalled process already holds the GIL, the watchdog thread itself may deadlock. 

●​ Heartbeat monitor (failsafe): To mitigate the watchdog’s limitation, configure the 
heartbeat monitor as a second-level failsafe. Set environment variables: 

○​ TORCH_NCCL_ENABLE_MONITORING=1 
○​ TORCH_NCCL_HEARTBEAT_TIMEOUT_SECONDS (recommended values 

typically around 30-60 seconds depending on your training workload) 
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When enabled, this heartbeat monitor tracks the watchdog thread. If the watchdog thread 
itself stalls (due to GIL issues), the heartbeat monitor terminates both the watchdog and 
the training processes directly, ensuring a reliable escape from deadlocks. 

6.3.3 Reliable Job Termination with Slurm 

Even when distributed processes correctly exit due to internal timeouts or heartbeat 
monitors, Slurm may fail to recognize the termination and produce an appropriate job exit 
code. To guarantee consistent and predictable job behavior, explicitly set: 
--kill-on-bad-exit=1 in your Slurm srun command.​
This ensures Slurm terminates the entire job step if any individual task encounters a failure, 
thereby maintaining clear and actionable exit states. 

6.4. Monitoring and Observability 

Deep visibility is essential for both reactive troubleshooting and proactive optimization. 

●​ Correlate training and infrastructure metrics: Actively use the combined view 
offered by tools like W&B and Grafana. Understanding the interplay is crucial: Did a 
drop in MFU correlate with increased network latency on the storage fabric during a 
checkpoint or perhaps with thermal throttling on a specific GPU? This correlated 
view accelerates debugging. 

●​ Monitor communication collectives: For advanced users, monitor the performance 
of NCCL communication collectives (like AllReduce). Framework-level logging or 
specialized tools can reveal imbalances or bottlenecks within the InfiniBand 
compute fabric that might not be obvious from system-level metrics alone. 

●​ Future directions: Explore deeper tracing capabilities (e.g., system-level tracing, 
PyTorch Profiler) to analyze fine-grained performance characteristics, such as 
dataloading bottlenecks or specific kernel execution times. Implement alerting 
based on performance degradation (e.g., sustained MFU below a threshold, 
increased communication overhead) rather than just hard failures. 

7. Conclusion: Reliable, Performant AI Training at 
Scale with CoreWeave 
Training state-of-the-art artificial intelligence models at the scale demanded by modern 
LLMs presents formidable challenges that transcend raw compute power. Success 
requires an infrastructure platform meticulously designed for stability, performance, and 
operational efficiency under extreme load, coupled with the flexibility to implement 
sophisticated optimization techniques across the entire workflow. 
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This white paper has detailed CoreWeave's approach to addressing these challenges, 
validated through rigorous benchmarking involving the pre-training of a 30-billion 
parameter model. Our results demonstrate that CoreWeave's specialized cloud, built upon 
bare metal performance, thoughtfully architected networking (including dedicated NVIDIA 
Quantum InfiniBand compute fabrics and NVIDIA BlueField DPU-managed storage 
connectivity), and robust infrastructure management, provides the necessary environment 
for reliable and highly performant large-scale training. 

We have shown that through the implementation of operational best practices and 
platform-specific optimizations, significant improvements in training efficiency and 
reliability are consistently achievable. Key findings include: 

●​ Leading performance: CoreWeave achieves Model FLOPS Utilization (MFU) 
exceeding 50% on NVIDIA H100 GPUs, a figure representing up to 20% higher 
performance than typical industry benchmarks. Direct comparisons showed MFU 
improvements of 18-28% over specific published results, and performance was 
validated to be on par with the NVIDIA reference architecture. 

●​ Infrastructure matters: Proactive health monitoring, automated node lifecycle 
management, and purpose-built network architectures are critical for minimizing 
interruptions and maximizing uptime, contributing to goodput rates as high as or 
higher than 96%. 

●​ Optimized workflows drive efficiency: The platform's flexibility enables crucial 
optimizations, including high-speed custom tokenization (gpt_bpe, Nerdstash v2), 
sophisticated data augmentation, and highly efficient asynchronous checkpointing 
(Tensorizer with VAST). 

●​ Automation enhances resilience: Automated failure detection and job 
resubmission via SUNK significantly improve the Effective Training Time Ratio (ETTR) 
by reducing recovery times. 

●​ Observability Enables Insight: Integrated monitoring across infrastructure 
(Grafana) and training frameworks (Weights & Biases) provides essential visibility for 
rapid root cause analysis and tuning. 

These quantified advantages translate directly to tangible benefits for organizations 
undertaking large-scale AI initiatives: Faster time-to-market for model deployment, 
reduced total cost of training through minimized wasted compute, and increased 
predictability for complex research and development efforts. For organizations pushing 
the boundaries of artificial intelligence, CoreWeave offers a demonstrably superior 
platform, combining leading performance with the architectural foresight, operational 
rigor, flexibility, and expert support required to succeed at scale. 
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Appendix 
A1. Exponential Survival Model for E[TTF] 
 
 

Given a job with  GPUs, each GPU has independent exponential failure time with rate λ: 𝑛

 𝑇
𝑖
~ 𝐸𝑥𝑝(λ)

A job fails when any of its GPUs fail, i.e. the time to failure for a job ( ) with  GPUs is 𝑇𝑇𝐹
𝑗𝑜𝑏

𝑛

given by the earliest failure of any of its GPUs: 

 𝑇𝑇𝐹
𝑗𝑜𝑏

= 𝑚𝑖𝑛(𝑇
1
,..., 𝑇

𝑛
)~𝐸𝑥𝑝(𝑛λ)

The log likelihood of a failure event  occurring at time  is given by: 𝑓 𝑡

 𝑙𝑜𝑔 𝑓(𝑡) = 𝑙𝑜𝑔(𝑛λ) − 𝑛λ𝑡

And survival event 𝐒 at time 𝑡 given by: 

 𝑙𝑜𝑔 𝑆(𝑡) =− 𝑛λ𝑡

Giving the full model: 

 𝑙𝑜𝑔𝐿(λ) = ∑[𝑑
𝑖
 𝑙𝑜𝑔(𝑛

𝑖
 λ) − 𝑛

𝑖
 λ 𝑡

𝑖
]

Where  is the “censoring” indicator variable, which takes the value 1 if a failure was 𝑑
𝑖
 

observed and 0 otherwise. 

The model was fit via the lifelines library.17  

 
import pandas as pd 

import matplotlib.pyplot as plt 

from io import StringIO 

 

 

# Input data 

df = pd.read_csv("data.csv") 
df.rename(columns={ 

   "ended with unplanned interruption": "event", 
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   "Number of GPUs": "n", 

   "total job (active) duration (sec)": "duration" 

}, inplace=True) 

 

# seconds -> days 

df["duration_days"] = df["duration"] / 86400 

 

# Fit using duration * n to model per-GPU failure 

df["duration_scaled"] = df["duration_days"] * df["n"] 

ef = ExponentialFitter() 

ef.fit(df["duration_scaled"], event_observed=df["event"]) 

 

t = np.linspace(0, 30, 100)  # time in days 

 

recs = [] 

plt.figure(figsize=(10, 6)) 

for n in [256, 512, 1024]: 

   n_lambda_hat = ef.lambda_ # fitted value is nλ 

   inv_lambda_hat = n / n_lambda_hat # 1/λ for given n 

   survival_prob = np.exp(- t * inv_lambda_hat ) 

   recs.append({'n': n, 'survival_prob': survival_prob, 't':t}) 

   plt.plot(t, survival_prob, label=f"{n} GPUs") 

 

 

 

An equivalent fit via Maximum Likelihood Estimation for the parameter λ using scipy: 

 
# Univariate Exponential Survival Model, MLE 
 
import pandas as pd 
import numpy as np 
from scipy.optimize import minimize 
 
df = pd.read_csv("data.csv") 
df["n"] = df["Number of GPUs"].astype(int) 
df["t"] = pd.to_numeric(df['total_duration']) 
df["event"] = (df["num_interruptions"] 
​ ​ ​ ​ ​ ​ ​ ​ .fillna(0) 
​ ​ ​ ​ ​ ​ ​ ​ .astype(int) 

35 



  

​ ​ ​ ​ ​ ​ ​ ​ .apply(lambda x: 1 if x > 0 else 
0)) 
 
def neg_log_likelihood(log_lambda, n, t, event): 
    lambda_ = np.exp(log_lambda) 
    logL = event * (np.log(n * lambda_)) - n * lambda_ * t 
    return -np.sum(logL) 
 
res = minimize( 
    neg_log_likelihood, 
    x0=np.log(1e-8), 
    args=(df["n"].values, df["t"].values, df["event"].values), 
    method='L-BFGS-B' 
) 
 
lambda_hat = np.exp(res.x[0]) 
 
 
A.2 Reference Implementation of re-queueing script 
See sec. 6.3.1 
 
#!/usr/bin/env bash 
 
MAX_RETRIES="{{ cfg.misc.MAX_RETRIES }}" 
[ "$MAX_RETRIES" -ge 0 ] || MAX_RETRIES=0 
 
RETRIES_FILE="{{ cfg.misc.CHECKPOINT_DIR }}/retries_$(date +"%T" | sed 's/:/_/g').txt" 
SBATCH_FILE="{{ sbatch_file }}" 
 
mkdir -p {{ cfg.misc.CHECKPOINT_DIR }} 
 
 
# Initialize retries from the file or set to 0 if the file does not exist 
if [ -f "$RETRIES_FILE" ]; then 
  retries="$(cat "$RETRIES_FILE")" 
  [ "$retries" -ge 0 ] || retries=0 
else 
  retries=0 
fi 
 
LOG_RETRIES() { 
  echo "${1:?}" > "$RETRIES_FILE" 
} 
 
PARSE_JOB_ID() { 
  # Match against the expected output format of sbatch or print "ERROR" 
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  head -1 \ 
  | sed -E 's/^Submitted batch job ([[:digit:]]+)$/\1/; t; Q1' \ 
  | grep '[[:digit:]]' \ 
  || echo 'ERROR' 
} 
 
( 
  set -o pipefail 
  exec 3>&1 
  TEE_STDOUT() { 
    # Force tee to use the same open file description 
    # Using /dev/fd/3 opens a new one when stdout is a file 
    tee >(cat >&3) 
  } 
 
  while [ "$retries" -le "$MAX_RETRIES" ]; do 
 
    if [ "$retries" -ne 0 ]; then 
      printf 'Job failed; restarting. %d attempts left.\n' "$(( MAX_RETRIES - retries 
))" 
    fi 
    LOG_RETRIES "$((++retries))" 
 
    # Submit the job and output the job ID 
    # "sbatch --wait" will match the exit code of the batch job itself 
    JOB_ID="$(sbatch --wait -- "$SBATCH_FILE" | PARSE_JOB_ID | TEE_STDOUT)" && { 
      printf 'Job %d finished\n' "$JOB_ID" 
      break 
    } 
 
    if [ "$JOB_ID" = 'ERROR' ]; then 
      break 
    fi 
 
    JOB_STATE="$(sacct -j "$JOB_ID" --format=State --noheader -XP)" || { 
      printf 'Failed to query state of job %s\n' "$JOB_ID" 
      break 
    } 
    # Exhaustive listing of job states: https://slurm.schedmd.com/job_state_codes.html 
    # There are 12 to account for. Other than the ones designated for retrying, 
    # their handling differs exclusively in diagnostics printed before exiting. 
    # The output of "sacct -P" will sometimes include extra information, 
    # like "CANCELLED by 1234," so these case statements all match by prefix. 
    case "$JOB_STATE" in 
      FAILED*|NODE_FAIL*) 
        false ;;  # Retry on these states 
      COMPLETED*) 
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        # This shouldn't be possible since the loop should exit 
        # earlier than this on success, but handle it just in case 
        printf 'Job %d finished\n' "$JOB_ID" 
        break ;; 
      TIMEOUT*) 
        printf 'Job %d stopped (%s); not retrying\n' "$JOB_ID" "$JOB_STATE" 
        break ;; 
      CANCELLED*) 
        # If the job was intentionally cancelled, don't restart 
        printf 'Job %d %s\n' "$JOB_ID" "$JOB_STATE" 
        break ;; 
      BOOT_FAIL*|DEADLINE*|OUT_OF_MEMORY*) 
        printf 'Job %d stopped in an unrecoverable state (%s); cancelling retry 
logic\n' \ 
          "$JOB_ID" "$JOB_STATE" 
        break ;; 
      PREEMPTED*|SUSPENDED*) 
        # Proper handling is unclear in this scenario, but assuming this is because of 
        # limited cluster resources, it would be a bad idea to muscle in another job 
        # in response to these events, so exit instead 
        printf 'Job %d %s; cancelling retry logic\n' "$JOB_ID" "$JOB_STATE" 
        break ;; 
      # Cases after this point indicate something weird going on with this script 
itself 
      PENDING*|RUNNING*) 
        # Something is wrong with the timing of "sbatch --wait" exiting, or we got the 
wrong job ID somehow 
        printf 'Error: Job %d was reported as having finished, but is %s; cancelling 
retry logic\n' \ 
          "$JOB_ID" "$JOB_STATE" >&2 
        break ;; 
      '') 
        printf 'Error: Could not retrieve job state\n' >&2 
        break ;; 
      *) 
        printf 'Error: Unrecognized job state: "%s"\n' "$JOB_STATE" >&2 
        break ;; 
    esac 
 
  done || { 
    echo "Job failed after exceeding $MAX_RETRIES attempts. Exiting." 
    exit 1 
  } 
) 
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