Capital Hydrogen

5th Consortium Meeting 17th September 2025

Working in partnership to deliver hydrogen for London, the East of England and the South East

Welcome and Introductions

Kelly Manders

Regional Development Manager (East and London)

Cadent

Housekeeping

Please mute microphones to limit disruption

Please turn off webcams if you are not speaking. This will improve general call quality.

Please ask questions using the chat or Q&A functionality.

This meeting will be recorded, and a newsletter summarising the content will be distributed afterwards.

Agenda

Time	Agenda Item	Speaker			
14:00-14:10	Welcome, Introductions & New Members	Kelly Manders <i>Cadent</i>			
	vv diddinid, mm ddddinidia d rve w r idiniddia	Amy Taylor <i>Talan</i>			
14:10-14:25	Breakout Session				
14:25-14:30	Breakout Session Discussion	Kelly Manders <i>Cadent</i>			
14:30-14:40	An update on the East London Hydrogen Pipeline from Cadent	Kelly Manders & Siobhan Grant <i>Cadent</i>			
14:40-14:55	National Gas Blending Programme	Alan Stephen <i>National Gas</i>			
14:55 -15:10	Autoflame	Duncan Cairnie Autoflame			
15:10-15:25	Rux Energy	Marius Bosch <i>Rux Energy</i>			
15:25-15:30	Closing remarks				

capital hydrogen

Thank you to our speakers

Consortium Members

capital hydrogen

Hydrogen Transportation Stakeholders

Hydrogen Production Stakeholders

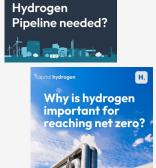
H2TERMINALS

Government, Regional, Third Sector and Local Authority Stakeholders

capital hydrogen

capital hydrogen


Capital Hydrogen communications update



LinkedIn page **1,155** followers 11,825 total impressions Please follow and engage

HYDROGEN PIPELINE LAUNCH

On Thursday 19th June, we hosted the Capital Hydrogen East London Hydrogen Pipeline (ELHP) Launch at ExCeL London. The event saw project partners, policymakers, and ELHP stakeholders come together with a shared mission of accelerating East London's transition to a hydrogen-powered future

REACHING NET ZERO: THE ROLE OF HYDROGEN

Hydrogen is increasingly being brought to the table as a serious contender for decarbonisation. This was especially apparen at this year's Futurebuild conference, where hydrogen's notential consistently featured in key discussions surrounding decarbonisation

Content Brochures, blogs, case studies

Breakout Session

Prompt Questions

Small group discussion for 15 minutes

Suggested conversation prompts

- 1) What opportunities does hydrogen present for your company?
- 2) How can the Capital Hydrogen programme best support you to achieve these?

Discussion

East London Hydrogen Pipeline: Project Summary

Siobhan Grant

Hydrogen Project Delivery Engineer

Cadent

Major Project Lifecycle

Initiation / Feasibility

The initial set-up of the project; development of the Solution Concept; and feasibility assessment.

Pre-FEED

Preliminary Front End Engineering Design

The appraisal of the Solution Options and the selection of the concept.

FEED

Front End Engineering Design

The project definition is developed through further engineering processes to inform key decisions such as routing.

Detailed Design

FEED focuses on developing the concept to a preliminary design, this Stage focusses on the detail.

Construction and Commissioning

This stage encompasses all physical construction and commissioning works.

Operation

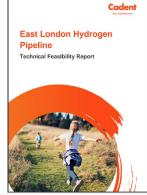
The Operations team will take ownership of operating and maintaining the asset.

2022

2023

2023

2025


Capital Hydrogen Feasibility Report published

Technical **Feasibility** completed

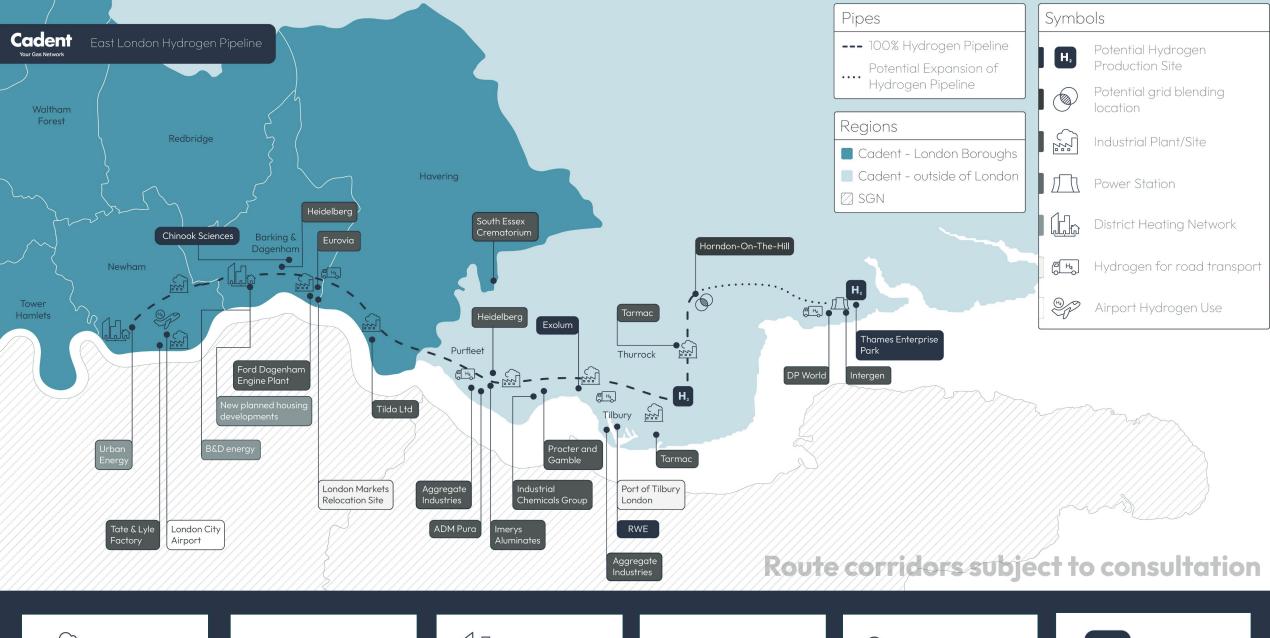
Customer and Producer Data collected

Pre-FEED completed

Pre-FEED Scope

What

Design a pipeline to supply Hydrogen to industrial, power generation, transport and heat network customers within the Cadent North London network who require a supply



How

- Flow Assurance
- Routing Methodology
- Constructability
- Environmental Strategy
- Corrosion Control

- Carbon Abatement
- Hazard and Risk
- Materials
- Process and Operations

- Consenting Strategy
- Value Propositions
- Reuse Opportunities
- Procurement

948 GWh

180 GWh

1828 GWh

1158 GWh

Route Optioneering and Selection

Define Route Options Develop Evaluation Method Scoring and Initial Route Shortlist

Technical Review

Route Refinement and Selection

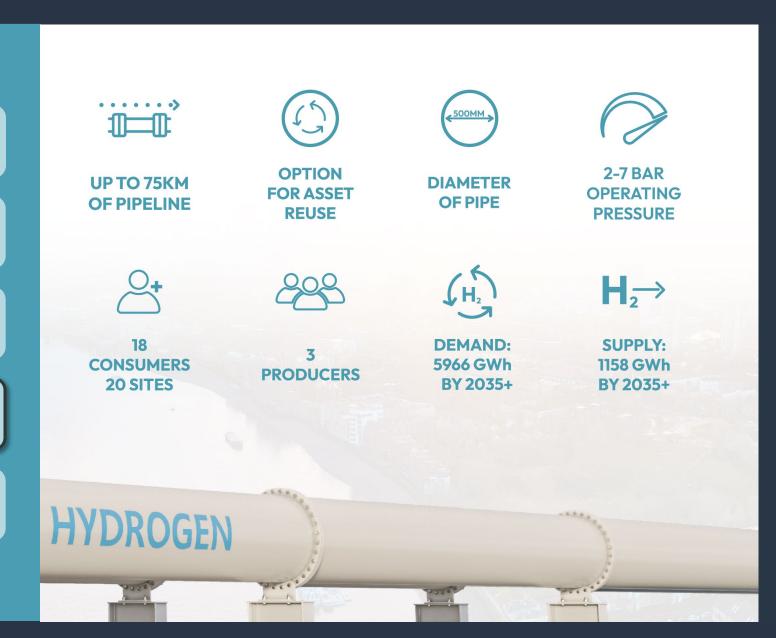
Define & produce metrics for comparison Agree evaluation criteria and weighting, methodology and boundaries

Score metrics against weighted criteria

Flow Assurance
Vantage Surveys
Constructability
Review
HAZID Reviews

Refine the options and produce recommendation

Technical Review


Define Route Options

Develop Evaluation Method

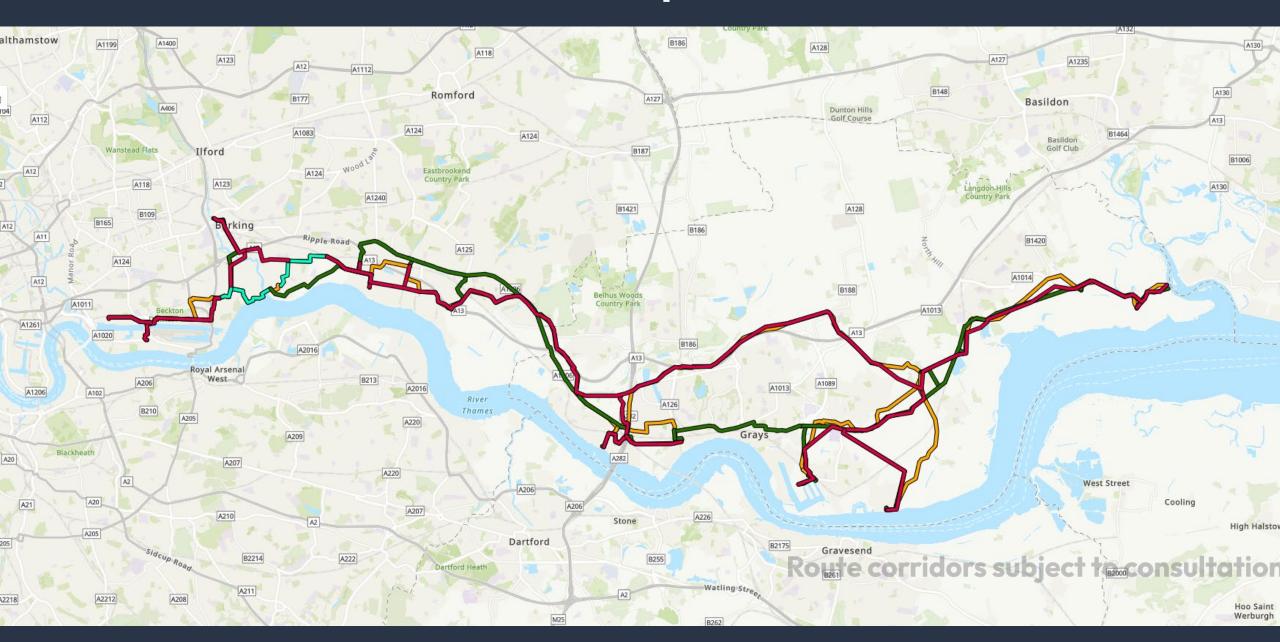
Scoring and Initial Route Shortlist

Technical Review

Route Refinement and Selection

Carbon emissions equivalent to...

9,449one-way flights from
London to New York
per year


which is also equivalent to approximately

49.5 million

trees worth of carbon absorption per year

Route Options

Outcomes of the Pre-FEED

- A strong design foundation produced for the entire project lifecycle
- Project design informed by key technical, environmental, consenting and constructability constraints
- 11 routes generated initially and shortlisted to 3 refined options
- Option for asset reuse
- Phasing strategy developed to enable connection and supply to customers between 2032-2035
- Consenting strategy developed
- Requirements and objectives of the next stage of the project (FEED) identified

 Confirmation that ELHP can successfully transport hydrogen from 3 producers to 20 industrial customers with no connection to large scale storage

 Flow assurance analysis has validated that a 7 barg, 500mm diameter, PE network is suitable for a fully developed ELHP distribution system

Major Project Lifecycle

Initiation / **Feasibility**

The initial set-up of the project; development of the Solution Concept: and feasibility assessment.

Pre-FEED

Preliminary Front End Engineering

The appraisal of the Solution Options and the selection of the concept.

FEED

Front End Engineering Design

The project definition is developed through further engineering processes to inform key decisions such as routing.

Detailed Design

FFFD focuses on developing the concept to a preliminary design, this Stage focusses on the detail.

Construction and Commissioning

This stage encompasses all physical construction and commissioning works.

Operation

The Operations team will take ownership of operating and maintaining the asset.

2022

2023

2023

2025

*2026-29

*2031-32

*2032

*2035

*2035+

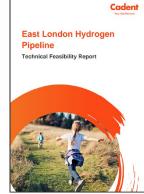
Capital Hydrogen Feasibility Report

published

Technical **Feasibility** completed Customer and Producer Data collected

Pre-FFFD completed **FEED**

Consents and Delivery Plannina


ELHP Detailed Design

Construction and Commissionina heains

Construction and Commissioning complete

Operation and Maintenance

CAPITAL HYDROGEN

- Completion of Pre-FEED Cost Benefit Analysis (CBA)
- Engagement with DESNZ
- HTBM update early next year
- Competition late next year

*Future stage commencement dates

National Gas Blending Programme

Alan Stephen

Business Development Manager

National Gas

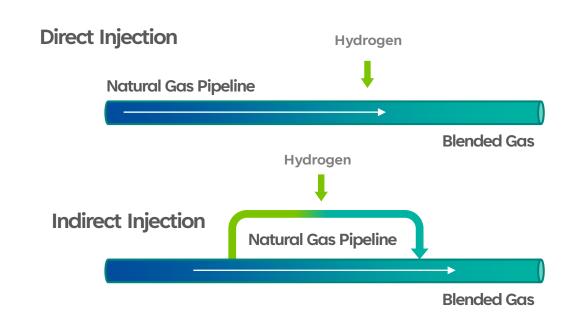
Hydrogen blending into the GB gas transmission network

Blending a Primer

What is a Hydrogen Blend?

Through hydrogen blending producers can **inject hydrogen** into the NTS to a **set percentage**. This enables operation at **optimum levels** depending on local hydrogen demand. It **diversifies** the demand base and **de-risks** projects in the early stages of their production.

Proposals to Blend Hydrogen


2 main blending methods that are dependant on scale of Hydrogen production, and connection location etc.

Direct Injection

Injects Hydrogen into pipeline using a branch connection. Blending of gasses then happens within the pipeline.

Indirect Injection

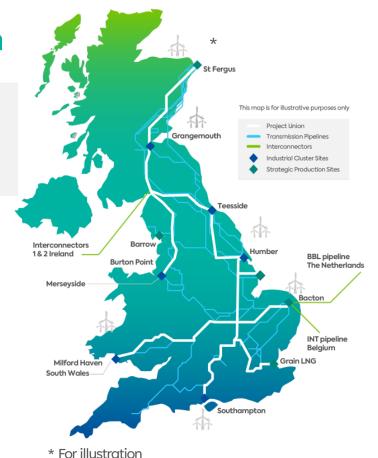
Draws gas from the NTS and blending with Hydrogen via a separate blending loop. The homogenously blended gas is re-injected the network.

National Gas -Key player in Hydrogen Transport Infrastructure

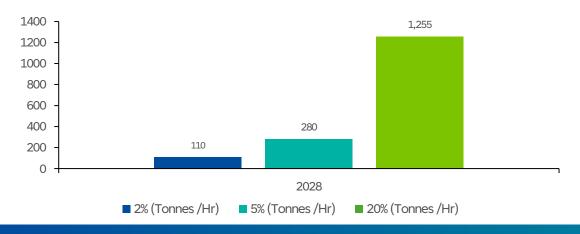
Blend and grow hydrogen economy

Project Union

Deliver on UK's decarbonisation goals by **2050**


Hydrogen Blending

Enabling Hydrogen Blending on the NTS is crucial to building a Hydrogen market Through blending, Hydrogen producers can access a wider demand market and de-risk projects



ProjectUnion

National Gas plans to repurpose NTS assets and build a GB central hydrogen backbone

Blend Volumes available in 2028 **Tonnes/Hr**

DESNZ ConsultationHydrogen blending into the GB gas transmission network

DESNZ Consultation

Questions

- **Q1a.** Do you agree with the assessment of the impacts of blending up to 2%, 5% and 20% hydrogen by volume on NTS connected end users? Please provide evidence to support your response.
- **Q1b**. Are there any further operational and/or financial impacts on end users we should consider? Please provide evidence to support your response
- **Q2**. Do you agree that if transmission blending is enabled and intended to be commercially supported by government, the most appropriate mechanism would be via the Hydrogen Production Business Model? Please provide evidence to support your response.
- Q3. Do you agree with our minded to position, if blending were enabled, to allow both the gas transmission network operator and gas shippers to purchase hydrogen produced for blending? Please provide evidence to support your response.
- Q4. Do you agree that working within the current gas billing arrangements will not result in an increase in billable usage and gas bills for end users connected to the NTS, should transmission level blending be enabled by government? Please provide evidence to support your response.
- **Q5a**. Do you agree with our minded to position, if blending were enabled, to consider further whether to support and enable transmission blending of up to 2% hydrogen by volume? Please provide evidence to support your response
- **Q5b**. Do you have any further concerns on enabling blending up to 2% hydrogen by volume into the NTS? Please provide evidence to support your response.
- **Q5c**. Is there a maximum level of blend that would be feasible with minimum modifications for sites connected to the NTS? Please provide evidence to support your response.
- **Q6a**. We welcome feedback on the economic assessment presented and any further analysis on the costs and benefits of transmission blending
- **Q6b.** Please provide any additional information on the costs of any required modifications or mitigations required for NTS connected sites to be able to accommodate a blend of up to 2% hydrogen by volume. If you do not currently have this information, how long do you expect it take to assess what mitigations might be needed and what the costs of these could be?

DESINZ Consultation |

Consultation Details

Department for Energy Security & Net Zero

Hydrogen blending into the GB gas transmission network

Published 23 July 2025 Closes 11:59pm on 16 September 2025

How to respond

Respond online or

email hydrogentransportandstorage@energysecurity.gov.uk

Summary Technical ask:

End-User acceptability and modifications required at different blend percentages? (2, 5, 20%)

Summary Commercial ask:

What are the costs involved for end users and the market? How much does it de-risk Hydrogen producers?

National Gas Response

Key Response

National Gas is calling for **DESNZ to take a strategic policy decision of up to 5% blend** on the Transmission system. We believe that **5% maximises de-risking for Hydrogen producers** while still managing impacts for end-users. Our current understanding is that **modifications required for 2% and 5% will be broadly similar,** however **further work is required**. A strategic policy decision is required to enable a thorough investigation into <5% blend.

End-User Acceptability

National Gas response looks at blend acceptability at the following archetypes:

Power Stations Storage sites Industrial sites Interconnectors

- We believe that modifications required for 2% and 5% will be broadly similar but accept further work will be needed. We have suggested routes to funding this work.
- In order to remain in line with current EU policies, we are investigating our approach to **managing blends at** interconnectors

De-Risking Producers

- National Gas agrees that blending at 5% will enable hydrogen producers to **fully de-risk projects** and allow them to access lower cost debt to fund their projects
- This in in turn will enable them to reach FID earlier and decrease their hydrogen strike price
- ■Overall subsidy requirements will be lower, and the resulting savings should be redeployed to end-users for any required modifications

Commercial Frameworks

- National Gas agrees that blending should be managed through the HPBM. This should include considerations to ensure direct offtake of hydrogen is incentivised over blending.
- National Gas agrees that current billing arrangements should be sufficient. Shippers and networks should be allowed to buy blends, although highlights that a certification scheme should be enabled to unlock additional value of blends and decarbonise key endusers
- Enabling blend connections will need **improved strategic thinking** to maximise the utility of blending for the whole system. It will optimise production while mitigating impacts to end-users.

For more information or further conversations contact:

Hydrogen Blend

Alan Stephen alan.stephen alan.

John Stevens john.stevens@nationalgas.com

Harriet Guiry
harriet.guiry@nationalgas.com

Update from Autoflame

Duncan Cairnie

Market Solutions and Strategy Director

Autoflame Engineering Ltd

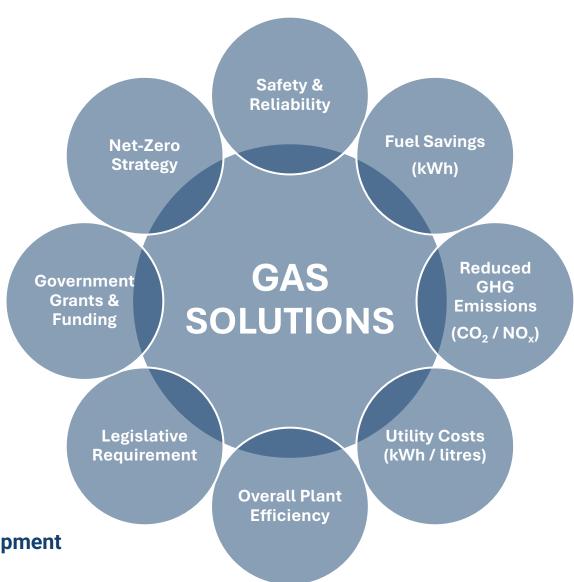
DECARBONISATION STRATEGIES

GAS SOLUTIONS

CAPITAL HYDROGEN CONSORTIUM MEETING
WEDNESDAY 17TH SEPTEMBER 2025

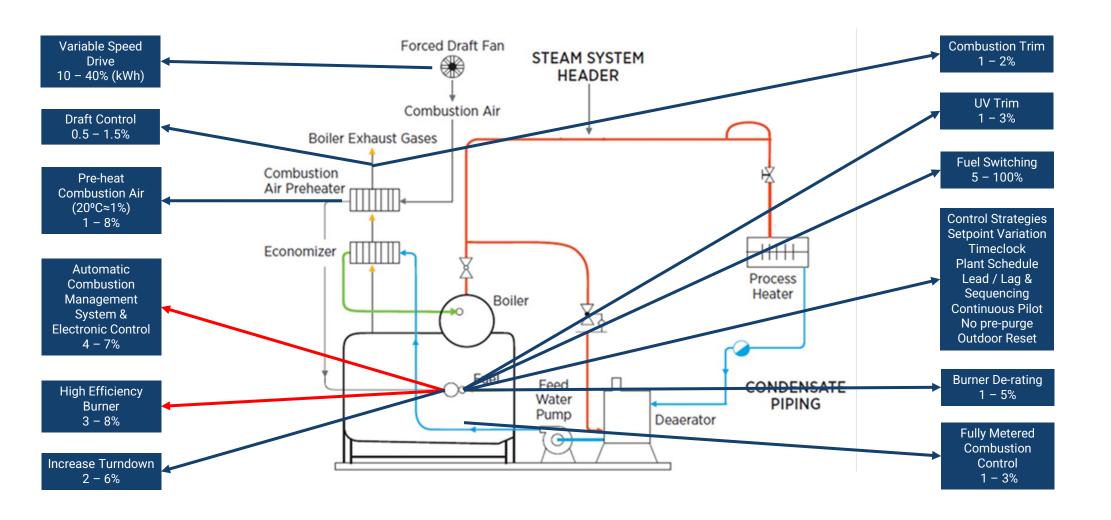
DUNCAN CAIRNIE

MARKET SOLUTIONS AND STRATEGY DIRECTOR
AUTOFLAME ENGINEERING LTD

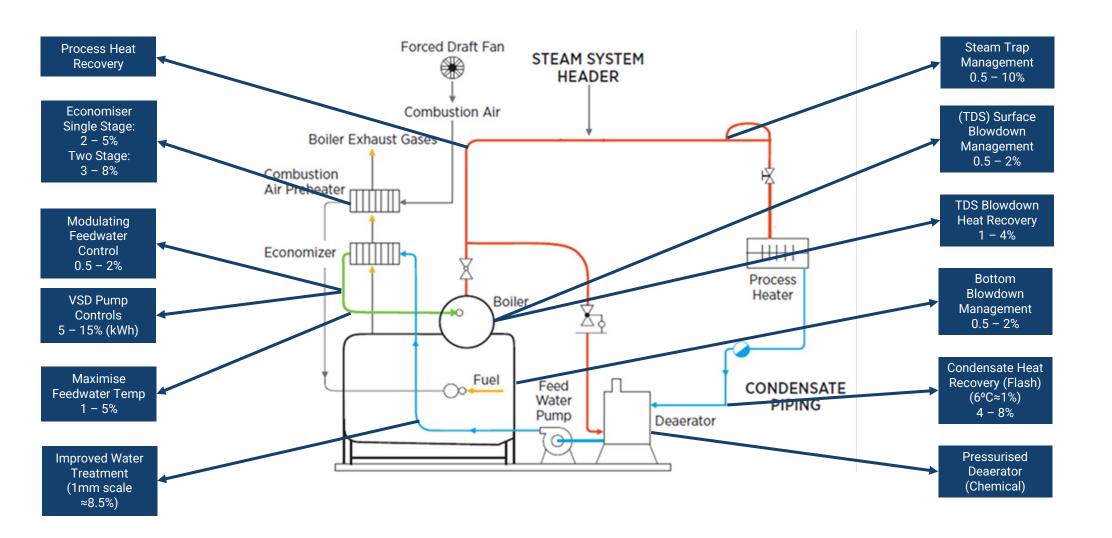

CUSTOMER OBJECTIVES

Customer engagement

- Site analysis and identifying opportunities
- What are the customer aims?
- Gas efficiency expertise
- Optimisation techniques
- Full-service boiler room opportunities
- Gas savings opportunities (dry side and wet side)
- Global leading product lines


Energy Performance Calculator

- Savings / CO₂ reduction calculations
- Engineering and drawing works
- Installation and commissioning
- · Project and contractor management
- Measurement & Verification (M&V)
- Government grants and rebates (when applicable)
- Maintenance testing and 24/7 service support
- Future-proof investment with H₂ approved equipment



GAS SAVINGS – DRY SIDE

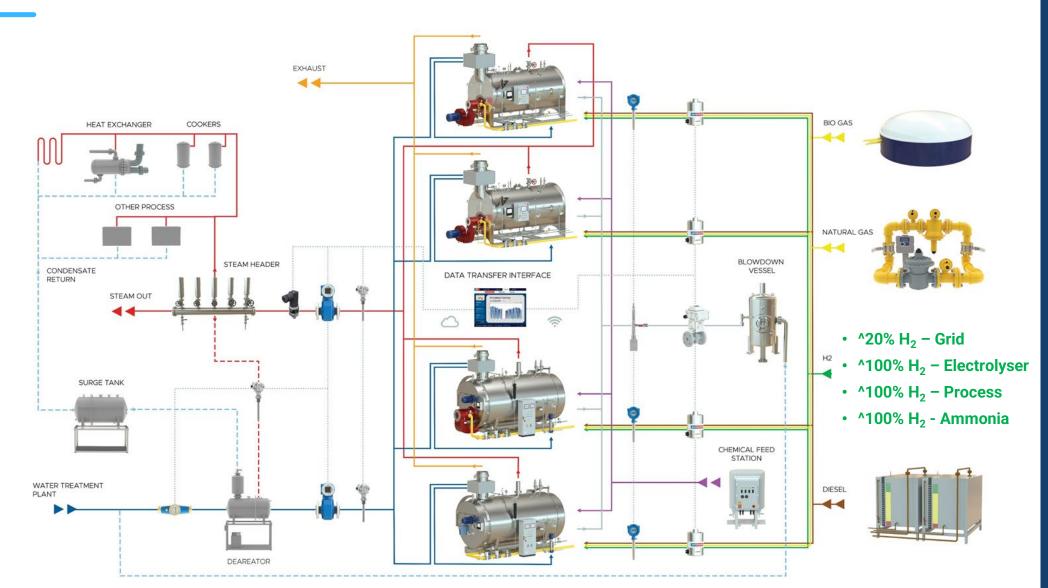
GAS SAVINGS – WET SIDE

OPPORTUNITIES – MULTIPLE PROCESSES

Opportunity		Payback	Readiness
Plant scheduling		<1	Α
Combustion analysis and tuning		<1	Α
Flue gas shut off dampers		<2	В
Optimized fuel / air ratio control		<2	Α
Burner upgrade		<2	Α
Variable Speed Drive (VSD) oncombustion air fan	\$\$	<2	Α
Pipe and valve insulation / Boiler insulation	\$\$	<2	Α
Combustion air pre-heat		<5	В
Condensing and non-condensing economisers	\$\$\$	<5	В
Waste heat recovery	\$\$\$	<5	В
Sub metering systems		<5	В
Boiler sizing and low load boiler		<10	А

OPPORTUNITIES – HOT WATER

Opportunity		Payback	Readiness
Reduce hot water temperature		<1	Α
Hot water use: efficient nozzles		<1	В
Hot water heater control		<2	Α
Condensing boiler (generator)		<5	A



OPPORTUNITIES – STEAM

Opportunity	Cost	Payback	Readiness
Maximise condensate return	\$	<1	Α
Total Dissolved Solids (TDS) control of blowdown	\$	<2	Α
Maximise feedwater temperature	\$	<2	В
Water treatment to reduce blow down losses	\$	<5	Α
Boiler sequencing and scheduling	\$\$	<2	Α
Modulating water level control	\$\$	<2	А
Blowdown heat recovery	\$\$	<5	В
Failed steam traps and steam leaks	\$\$	<2	Α
Flash steam recovery	\$\$\$	<2	В
Steam accumulator	\$\$\$	<5	В
Add / refurbish boiler refractory	\$\$\$	<5	Α
Pressurised de-aerator	\$\$\$	<5	Α
De-superheaters	\$\$\$	<5	В

FULL BOILER HOUSE OPERATIONS

INSTALLATION EXAMPLES

- Brick Manufacturer world's first 100% Hydrogen-fired clay brick (industrial process)
- BK Labtech Training Facility all blends of natural gas / Hydrogen for testing (heating loop)
- **Decarbonising the Distillery Process** awaiting electrolyser completion / 100% Hydrogen (steam system)
- Large Consumer Goods Manufacturer up to 5% Hydrogen from small scale electrolyser blended into natural gas supply line (steam system)
- Pharmaceutical Company 9.9% natural gas savings, increased to 13.3% utilizing Hydrogen from a small scale electrolser (steam system)
- Hospital Facility 16% fuel savings / 100% Hydrogen approved (steam system)
- Building Products Manufacturer 35.4% over 5 upgrade processes / Hydrogen ready (steam system)
- Football Stadium heating system with enhanced sequencing 20% fuel reduction from system upgrade / further 32% fuel reduction from sequencing / 100% Hydrogen approved (heating system)
- Wall Panel Manufacturer 25% fuel savings through condensing boiler, 100% Hydrogen approved burner (hot water process)

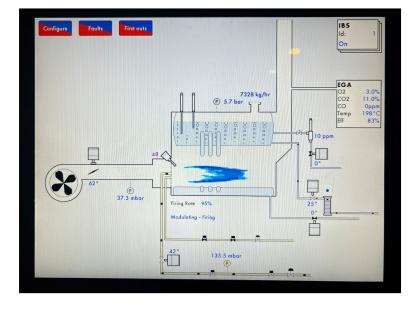
WHERE CAN WE HELP?

Optimization of the plant room and process

- Maximize boiler efficiency
- Reduce wasted energy losses
- Data integration and analysis
- Improve boiler house operations
- Process improvements

Minimize fuel usage

- Reduce fuel usage per ton of steam / product
- Reduce GHG emissions / CO₂ emissions


Future proof the investment

Equipment expansion (staged upgrades)

Limpsfield high efficiency burner

- Low NO_x for MCPD compliance
- H₂ approved and ready (10% to 100%)

Q&A

Update from Rux Energy

Marius Bosch Head of Strategy & Commercial Rux Energy


Unlocking a hydrogen future

Delivered Cost ≠ Gate Price

Today's Hydrogen Cost-Breakdown

This is how we can beat diesel

Source: Harvard University Center for Environment (October 2024)

Today's Hydrogen storage technologies have notorious downsides

Physical Storage

Chemical Storage

Thermo-Pressurized

350 bar 77K Cryocompressed H2

Liquid H2

Adsorption / Physisorption

Molecules

Ammonia

Methanol

Chemical Carriers

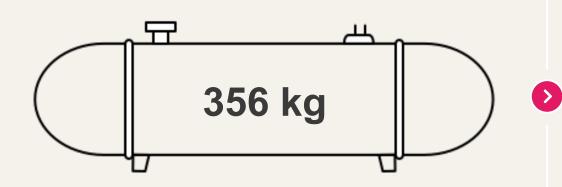
Liquid Organic H2 Carriers

Metal Hydrides

We **SOLVED** this problem

Pathway to cost parity with diesel

Interoperable, high-capacity packaged gas


Rux HARMONY

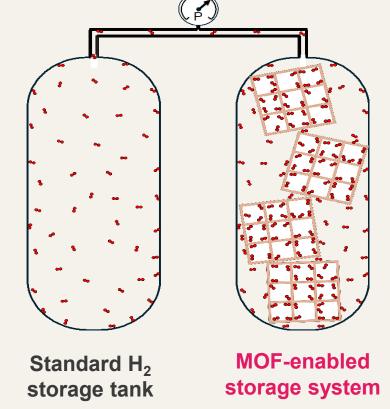
Breakthrough safety and efficiency

We integrate nano-porous materials in ISO-certified, containerised storage systems

350bar Hydrogen tanks

Low pressure Rux-tech enabled H2 tank

World's FOAK Prototype delivered in Dec24


285% uplift

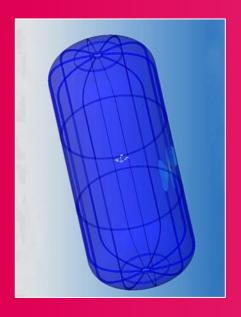
Patented nano-porous materials integrated in next-generation tanks

Our patented materials act like a molecular

sponge for hydrogen

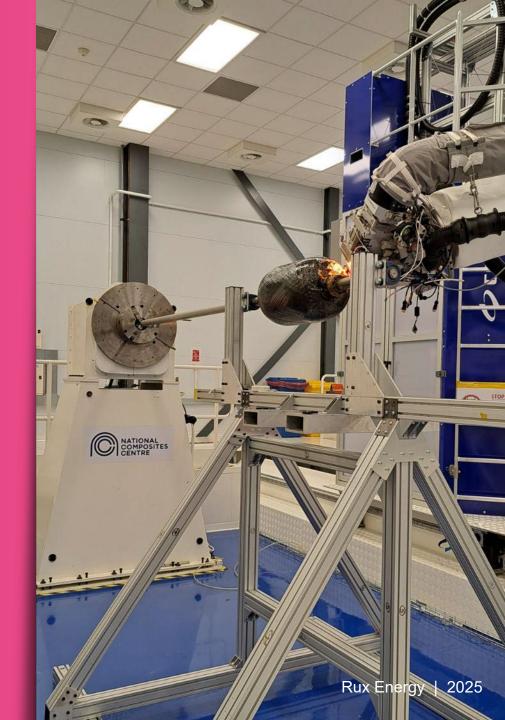
H₂ always remains gaseous, seamless adsorption, no energy required

Rux Metal-Organic Framework (MOF)


Gaseous Hydrogen molecule (H₂)

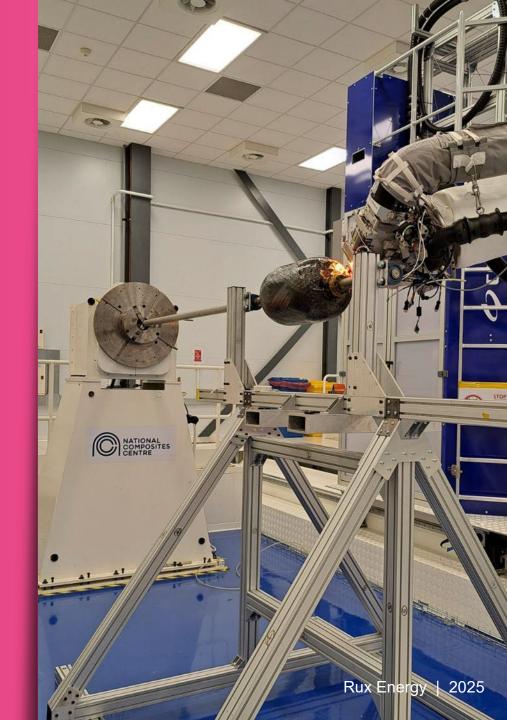
Rux Energy | 2025

Innovation in cryo-compressed composite storage tanks



- World's first-of-a-kind nanoporous materials-enabled carbon composite storage tank delivered in late 2024
- Developed in collaboration with the National Composites Centre (NCC) UK

Successful Proof-of-Concept testing & validation


- Prototype validates Rux's storage technology, delivering 3x the capacity of 350bar (Type III/IV) hydrogen storage tanks
- Prototype filled with ~25kg of nanoporous material from Rux's experimental manufacturing facility in Sydney
- Results confirmed strong alignment with uptake modelling

Commercial in Confidence

Rux's **FOAK systems** cut H2 storage & distribution costs by **40–70%**

Levelised Cost of Hydrogen Delivery (LCOHD) (£/kg)

based on exemplary 1tpd H2 demand across 20 years project

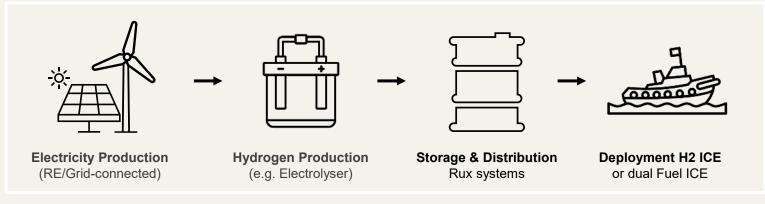
Low-cost H2 for e-Methanol production: US\$600/tonne-eMeOH within reach

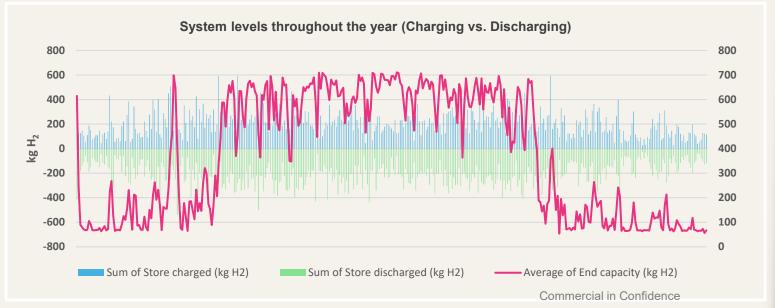
Geologic Hydrogen Project via Rail - North America

- Annual demand target: **100,000 tonnes** of stimulated H₂
- No pipeline → dedicated rail line, 2 trips/day, 270 t/day
- Offtake: e-Methanol production (~120km through existing rail corridor)
- Total cost: **US\$1.75/kg H2 delivered** (LCOH: ~US\$1/kg H₂+ Rux logistics: US\$0.75/kg H₂)

Why this matters?

Intra-regional bulk H₂ transport via rail is already feasible


Low-cost H_2 = Low-cost e-fuels



Industrial-scale use cases stimulate H2-derivatives demand

Domestic Renewables Powering Cost-Efficient Workboat Operations – Outperforming Fossil Fuels Under Carbon Pricing

Any Questions?

Thank you for joining!

www.capitalhydrogen.co.uk

