# **PREOMICS**

## iST-NHS 96x HT

P.O.00151; P.O.00191

### Pelleted cells & precipitated protein



#### Introduction

Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics® iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization visit www.preomics.com/resources or contact info@preomics.com.

#### **Kit Contents**

The kit includes all essential components for proteomic sample preparation: denaturing, reducing, and alkylating agents, enzymes, cartridges, and wash buffers for peptide clean-up.

| Component     | Сар        | Quantity | <b>Buffer Properties</b> |        | S     | Description | Storage                                               |       |
|---------------|------------|----------|--------------------------|--------|-------|-------------|-------------------------------------------------------|-------|
|               |            |          | Organic                  | Acidic | Basic | Volatile    |                                                       |       |
| DIGEST        |            | 24x      |                          |        |       |             | Trypsin/LysC mix to digest proteins.                  | -20°C |
| RESUSPEND     | $\bigcirc$ | 1x 20 mL |                          |        |       | •           | Reconstitutes lyophilized proteolytic enzymes.        | RT    |
| LYSE-NHS      |            | 1x 20 mL |                          |        | •     |             | Denatures, reduces, and alkylates proteins.           | RT    |
| STOP          |            | 1x 15 mL | •                        | •      |       | •           | Stops the enzymatic activity.                         | RT    |
| WASH 1        |            | 1x 25 mL | •                        | •      |       | •           | Cleans peptides from hydrophobic contaminants.        | RT    |
| WASH 2        |            | 1x 25 mL |                          | •      |       | •           | Cleans peptides from hydrophilic contaminants.        | RT    |
| ELUTE         |            | 1x 25 mL | •                        |        | •     | •           | Elutes the peptides from the cartridge.               | RT    |
| LC-LOAD       | $\bigcirc$ | 1x 25 mL |                          | •      |       | •           | Loads peptides on reversed-phase LC-MS column.        | RT    |
|               |            |          |                          |        |       |             |                                                       |       |
| CARTRIDGE     |            | 96x      |                          |        |       |             | Cartridge for 1–100 µg protein starting material.     | RT    |
| WASTE PLATE   |            | 1x       |                          |        |       |             | Deep well plate for collecting waste after washes.    | RT    |
| MTP PLATE     |            | 1x       |                          |        |       |             | LoBind plate for collecting peptides after elution.   | RT    |
| ADAPTER PLATE |            | 1x       |                          |        |       |             | Enables cartridges to be placed on top of 96w plates. | RT    |
| ADAPTER       |            | 8x       |                          |        |       |             | Enables a cartridge to be placed into a tube.         |       |

#### **Pre-Requisites**

Common lab equipment is required for the sample preparation.

| Equipment         | Quantity and Description                                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------------|
| PIPETTE           | Careful sample handling and pipetting reduces contaminations and improves quantification.                      |
| SAMPLE            | Pelleted cells or precipitated protein. For other sample types contact PreOmics for adapted protocols.         |
| 96 WELL PLATES    | 96 deep well & 96 well skirted plates to balance WASTE & MTP PLATES in centrifuge.                             |
| HEATING BLOCK     | Two MTP plate heaters are recommended to support protein denaturation and digestion.                           |
| CENTRIFUGE        | Swing-bucket centrifuges are required for loading, washing, and elution.                                       |
| SONICATOR         | If the sample contains DNA, shear it by sonication (e.g., Diagenode Bioruptor®).                               |
| VACUUM EVAPORATOR | Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.                                      |
| ULTRASONIC BATH   | Optional: can be used to resuspend peptides.                                                                   |
| LABELING REAGENT  | Labeling reagent (e.g., 400 $\mu$ g labeling reagent in 41 $\mu$ L dry acetonitrile for 100 $\mu$ g peptides). |
| LABELING BUFFER   | Anhydrous acetonitrile & quenching buffer (5% hydroxylamine), as recommended by the manufacturer.              |

#### **Procedure**



#### **Method**

## 1. LYSE \*Critical Note\*

- 1.1. Add 50 μL LYSE-NHS to 1–100 μg of protein sample, place it in a HEATING BLOCK (95°C; 1,000 rpm; 10 min).\*NOTE1\*
- 1.2. Optional: Spin down droplets (RT; max. 300 rcf; 10 sec).
- 1.3. If the sample contains DNA, shear it in a SONICATOR (10 cycles; 30 sec ON/OFF). Let sample cool down to RT.

#### 2. DIGEST

- 2.1. Add 210 μL **RESUSPEND** to **DIGEST** (1 tube for 4 reactions), shake (RT; 500 rpm; 10 min), pipette up/down.
- 2.2. Add 50 μL **DIGEST** to sample and place it in a pre-heated HEATING BLOCK (37°C; 500 rpm; 1–3 h). \*NOTE2\*

#### 3. LABEL

- 3.1. Resuspend LABELING REAGENT in anhydrous acetonitrile (e.g., 4:1 ratio of label:peptides).
- 3.2. Add resuspended LABELING REAGENT to sample, pipette up/down, incubate shaking (RT; 500 rpm; 1 h).
- 3.3. Add 10  $\mu$ L QUENCHING BUFFER (5% hydroxylamine) to sample, pipette up/down.
- 3.4. Add 100 μL STOP to sample (precipitation may occur), shake (RT; 500 rpm; 1 min), pipette up/down. \*SP\*

#### 4. PURIFY

- 4.1. Use ADAPTER PLATE to place CARTRIDGE on top of WASTE PLATE. Label plate and wells.
- 4.2. Transfer sample to CARTRIDGE. Be careful not to damage the bottom layer of the CARTRIDGE.
- 4.3. Spin CARTRIDGE in a CENTRIFUGE (2,250 rcf; 1-3 min). If needed, adjust time to ensure complete flow-through.
- 4.4. Add 200 μL WASH 1 to CARTRIDGE, repeat step 4.3.
- 4.5. Add 200 μL WASH 2 to CARTRIDGE, repeat step 4.3. \*SP\*
- 4.6. Use ADAPTER PLATE to place CARTRIDGE on top of the MTP PLATE. Label plate and wells.
- 4.7. Add 100 μL **ELUTE** to **CARTRIDGE**, repeat step 4.3., keep flow-through in **MTP PLATE**.
- 4.8. Repeat step 4.7, keep flow-through in the same MTP PLATE.
- 4.9. Discard CARTRIDGE and place MTP PLATE in a vacuum evaporator (45°C; until completely dry). \*SP\*
- 4.10. Reconstitute peptides by adding LC-LOAD  $\bigcirc$  to MTP PLATE. For example, add 50  $\mu$ L LC-LOAD to 100  $\mu$ g protein starting material and perform a peptide quantitation assay. Adjust the volume according to specific requirements.
- 4.11. Sonicate MTP PLATE in an ULTRASONIC BATH (5 min) or shake (RT; 500 rpm; 5 min).
- 4.12. Spin MTP PLATE in a CENTRIFUGE (RT; 2,250 rcf; 15 min) and transfer the supernatant to a fresh autosample vial Be careful not to collect from the bottom. \*NOTE3\*

\*NOTE2\*

For automation processes, only use Protein LoBind plates as buffer reservoirs to avoid polymer contamination.

Contact us at info@preomics.com for advice on buffer and plasticware usage on liquid handling platforms.

\*NOTE1\*

Volumes of buffers can be adjusted according to protein starting amounts.

Lysis temperature should be between 60–95°C. Visit our FAQ website for more information and optimized procedures for chemical labeling: www.preomics.com/faq.

\*NOTE2\*

During the digestion, place the silicone mat lightly on top of the CARTRIDGE.

Do not close the silicone mat tightly to prevent pressure buildup.

\*NOTE3\*

At this point, peptide concentration can be measured or directly injected for LC-MS analysis.

\*SP\* - Storage Point: At this point, close the peptide containing tube or CARTRIDGE using the silicon mat.

Peptides can be frozen at -20°C. Storage of peptides should not exceed two weeks at -20°C.

For extended storage, finish the protocol and store at -80°C.

#### **Data analysis**

Consider the following as fixed modifications in your database search:

| MODIFICATION | DESCRIPTION                    | COMPOSITION                       | SPECIFICITY | MASS       |
|--------------|--------------------------------|-----------------------------------|-------------|------------|
| ALKYLATION   | Specific cysteine modification | C <sub>6</sub> H <sub>11</sub> NO | [C]         | +113.084Da |

Please refer to www.preomics.com for our General Terms and Conditions.

For trademark information, visit www.preomics.com/legal/trademarks.