Transforming England Admitted Patient Care Data to the OMOP Common Data Model Using PIANO

Madina Hasan, The University of Sheffield, <u>m.hasan@sheffield.ac.uk</u> Grace Accad, Simone Croft, Katherine K O'Sullivan, Rosemarie Gough, Emily Chambers, Suzanne Mason evidentli

Standardising England's CUREd+ Health Data for Research

Background

- The CUREd+ Database is a national dataset for England, with a population of 57 million people (2011 to 2023)
- It's composed of 11 different health datasets that were linked using NHS England's patient tracing.
- · All required NHS ethics and Health Research Authority (HRA) approvals are already in place for researchers.

CUREd+ An Urgent and Emergency Care Database

Problem

- Lack of data standardisation limits the use of clinical databases and their integration within secure data environments.
- It also restricts the applicability of this data for collaborative analysis and federated research projects.

Solution

- We're adopting the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM).
- This model provides a standardised structure for real-world health data.

Approach

- We used Evidentli's PIANO platform¹, an AI-supported Extract-Transform-Load (ETL) tool, to map England's Admitted Patient Care² (APC) data to the OMOP CDM 5.4.
- This dataset, one of NHS England's largest and most frequently requested, consists of 51GB in binary format (260GB in CSV format).

Secure and Validated Data Transformation

Security: We performed a risk assessment to securely install PIANO within our secure data environment (SDE).

Three-Phase Pipeline to map APC dataset

- Synthetic Data: Designed the mapping pipeline using a synthetic APC dataset in PIANO's external hub.
- Test Data: Deployed PIANO in our SDE and tested the pipeline on a one-year subset of real APC data to check compatibility and resource needs.
- Full Transformation: Applied the pipeline to the entire APC dataset, processing it in three batches to manage the large scale. We focused on mapping 34 NHS England-designated OMOP-CDM attributes³, plus additional variables for future collaborations.

Testing and Validation

- We used PIANO's integrated quality check tools to ensure the integrity and correctness of our resulting APC-OMOP database.
- To validate the reliability of our process, we replicated a previous study's analysis on a matched patient cohort.

Piano's Workflow for Data Transformation Configure Data Connections **Ingest Source Data** transferm Store analysis-ready data set INGEST QUALITY STORE CONFIGURE TRANSFORM DATA SOURCE TO OMOP POPULATION **ANALSYS-READY** Transform to OMOP **Quality, Population &** with Agile Al DATA CONNECTION(S) DATA WITH & LINEAGE Lineage Reports Agile Al REPORTS ASSET Al trained on source data 34 NHS England-1 designated attributes with additional variables for future projects > APC data (>50GB) was transformed into OMOP-CDM **OMOP (Domain) Tables Table Attributes Context-aware concept domain filtering** Source Mapping

Key Results and Conclusion

Data Processed: We standardised 234 million records (260GB in CSV format) of APC data from 2011 to 2023.

Efficiency: The PIANO platform converted APC data to OMOP-CDM in three months (1.25 FTE), beating the 6–9 month average. This included time spent on the initial learning curve and overcoming technical challenges, with the actual PIANO transformation taking only three weeks.

Automation: PIANO's Al-auto-mapper handled most of the vocabulary standardisation, with only a few requiring manual coding.

Conclusion

- We successfully and rapidly transformed large-scale APC data, overcoming challenges with data sensitivity and limited resources.
- The standardised data was integrated into the Yorkshire & Humber SDE, unlocking its potential for federated health data research.
- This project establishes a clear best practice, showing how automated tools like PIANO can help the NHS adopt the OMOP model more widely and enable more extensive and collaborative research that is sustainable and scales over time.

References: (1) https://doi.org/10.1002/lrh2.10388 (2) h