

ENERGY IN SOCIETY

WORKBOOK

John R. Fanchi

2026

Copyright © 2026 John R. Fanchi

All rights reserved.

No part of this book may be reproduced, or stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without express written permission of the author.

2025927610

Library of Congress Control Number
Printed in the United States of America

A Fanchi Enterprises Publication
<https://www.fanchi.com/>
<F|E>

PREFACE

ENERGY IN SOCIETY WORKBOOK was originally developed for a class called Energy in Society. I taught the class to undergraduate liberal arts students at TCU and a version of the class to MBA students. The material is designed to complement an introductory energy course. Chapter topics are aligned with the textbook ENERGY IN THE 21ST CENTURY, 5th Edition [J.R. Fanchi, 2023, World Scientific: Singapore] for ease of reference. The problems can also be used to complement material from other energy books or online AI.

A List of Problems at the end of the book serves as an index to problems. The problems introduce useful information. Problems with multiple parts provide procedures that can be used with information from different time periods. Many problems can stimulate discussions about topics ranging from technical to economic and geopolitical.

Solutions are provided for all problems and are placed at the end of each chapter. Solving problems, either in class or as self-learning, can improve critical thinking skills and refresh practical math skills.

A variety of unit systems are used in the problems to help the reader become familiar with the range of unit systems being applied to energy topics. Unit conversion calculators are readily available online.

Prof. Dr. John R. Fanchi
Texas Christian University (retired)
January 15, 2026

ABOUT THE AUTHOR

John R. Fanchi has a Ph.D. in physics from the University of Houston and is the author of a variety of books in the areas of physics, earth science, mathematics, and engineering. He has worked in the energy industry, and has taught courses in energy, engineering, and physics at Texas Christian University (TCU), Colorado School of Mines (CSM), and the University of Tulsa. He was co-founder and first President of the International Association for Relativistic Dynamics and is a Distinguished Member of the Society of Petroleum Engineers.

BOOKS BY THE AUTHOR

Confronting the Enigma of Time (2024, World Scientific)
Energy in the 21st Century (5th edition, 2023, World Scientific)
Reason, Faith, and Purpose: The Ultimate Gamble (2021, World Scientific)
The Goldilocks Policy: The Basis for a Grand Energy Bargain (2019, World Scientific)
Principles of Applied Reservoir Simulation (2018, 4th edition, Elsevier)
Math Refresher for Scientists and Engineers (2006, 3rd edition)
Energy: Technology and Directions for the Future (2004, Elsevier Academic)
Shared Earth Modeling (2002, Butterworth-Heinemann)
Parametrized Relativistic Quantum Theory (1993, Kluwer)

TABLE OF CONTENTS

CHAPTER	TOPIC	PAGE
	PREFACE	3
	ABOUT THE AUTHOR	4
1	A BRIEF HISTORY OF ENERGY CONSUMPTION	6
2	FOSSIL ENERGY – COAL	11
3	FOSSIL ENERGY – OIL AND GAS	15
4	ENERGY IN TRANSITION – CLIMATE CHANGE	21
5	ENERGY IN TRANSITION – MORE ISSUES	23
6	NUCLEAR ENERGY	25
7	RENEWABLE ENERGY – SOLAR ENERGY	31
8	RENEWABLE ENERGY – WIND ENERGY	35
9	RENEWABLE ENERGY – ENERGY FROM WATER	39
10	RENEWABLE ENERGY – BIOENERGY AND SYNFUELS	42
11	ENERGY CARRIER, ENERGY STORAGE AND HYBRID ENERGY SYSTEMS	46
12	ELECTRICITY GENERATION AND DISTRIBUTION	52
13	ENERGY ECONOMICS	56
14	FUTURE ISSUES – GEOPOLITICS OF ENERGY	60
15	FUTURE ISSUES – ENERGY IN TURBULENT TIMES	63
	APPENDIX A. UNITS	67
	LIST OF PROBLEMS	69

CHAPTER 1

A BRIEF HISTORY OF ENERGY CONSUMPTION

Problems

Problem 1-1. Scientific Notation

Exponents obey the three laws tabulated as follows:

EXPONENTS*	
Products	$a^m \cdot a^n = a^{m+n}$
Quotient	$\frac{a^m}{a^n} = a^{m-n}$ if $m > n$ $\frac{a^m}{a^n} = 1$ if $m = n$ $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$ if $m < n$
Power	$(a^m)^n = a^{mn}$

*After **Math Refresher for Scientists and Engineers**
(J.R. Fanchi, Wiley, 2006)

The number a raised to a negative power is given by $a^{-m} = \frac{1}{a^m}$. Any nonzero real number raised to the power 0 equals 1, thus $a^0 = 1$ if $a \neq 0$. In the case of the number 0, we have the exponential relationships $0^0 = 0$, $0^x = 0$ for all x . Scientific notation relies on properties of exponents to perform calculations. It is a means of compactly writing very large or very small numbers.

- A. 1
- B. 1,000
- C. 1 million
- D. 1 trillion
- E. 1 billion
- F. 1000 billion
- G. 1 quadrillion
- H. 1/100

- I. 1/1000
- J. 1/1,000,000 (micro)
- K. 1/1,000,000,000 (nano)

Problem 1-2. Dimensional Analysis

A. Given:

Energy E has SI dimension Joule = $J = \text{kg}\cdot\text{m}^2/\text{s}^2$

Mass m has SI dimension kg

Time t has SI dimension s.

Velocity v has SI dimension m/s

Speed of light c is a velocity

Show that Einstein's relation $E = mc^2$ has the correct dimensions by showing that both sides of the equation have the same basic units of length, mass, and time (m, kg, s).

B. Given:

Energy density with respect to mass ρ_m has SI dimension J/kg

Mass m has SI dimension kg

What is the SI dimension of the product $m \cdot \rho_m$?

C. Given:

Energy density with respect to volume ρ_v has SI dimension J/m^3

Volume V has SI dimension m^3

What is the SI dimension of the product $V \cdot \rho_v$?

D. Given:

Power W has SI dimension Watt = $W = \text{J/s} = \text{energy} / \text{time}$

What is the SI dimension of the term $(m \cdot \rho_m)/t$?

Problem 1-3. National Energy Need and Cost

Consider a country with a population of 25 million people. Suppose we need 200,000 MJ/person each year to support a satisfactory UN Human Development Index.

- A. How much energy (in MJ) is needed each year by the country?
- B. How much power (in MW) is required?
- C. How many 1000 MW power plants are needed?
- D. How much energy (in MJ) is needed each day?
- E. Suppose the energy is obtained by consuming crude oil with an energy density of 37,000 MJ/m³. How many barrels of crude oil are required each day?
- F. If the price of oil is US\$60/bbl, what is the cost of oil per kWh of energy used each day? Hint: first calculate the energy used each day in kWh/day and the cost of oil per day in US\$/day before calculating the cost of oil per kWh.

Problem 1-4. Power Plant Demand for 400 Quads Annually

Use the following table to answer the questions below.

Typical Power Production Capacity	
Fossil Fuel	1000 MW per plant
Nuclear	1000 MW per reactor
Solar	10 MW per tower
Wind Turbine	4 MW (Denmark, Texas)
Wave	7.5 MW per km coastline*
*Includes power production efficiency estimate (25-50%)	

- A. Express 400 Quads of energy per year as a power (in MW).
- B. How many fossil fuel plants are needed to provide 400 Quads per year?
- C. How many nuclear power plants are needed to provide 400 Quads per year?
- D. How many solar towers are needed to provide 400 Quads per year?
- E. How many wind turbines are needed to provide 400 Quads per year?
- F. How many km of coastline are needed to provide 400 Quads per year using wave energy?

Problem 1-5. Energy Density by Combustion

The combustion of one barrel of oil with a mass of 125 kg provides 5625 MJ energy. What is the energy density of the barrel of oil in MJ/kg?

Problem 1-6. Power Plant Demand for 10 Billion People

Assume an average power plant provides 1000 MW. How many power plants will be needed to provide the energy needed each year for 10 billion people assuming the energy needed per person per year is 200,000 MJ?

Solutions to Problems

Solution 1-1. Scientific Notation

- A. $1=10^0$
- B. $1,000=10^3$
- C. $1 \text{ million}=10^6$
- D. $1 \text{ trillion}=10^{12}$
- E. $1 \text{ billion}=10^9$
- F. $1000 \text{ billion}=10^{12}$
- G. $1 \text{ quadrillion}=10^{15}$
- H. $1/100=10^{-2}$
- I. $1/1000=10^{-3}$
- J. $1/1,000,000 \text{ (micro)}=10^{-6}$
- K. $1/1,000,000,000 \text{ (nano)}=10^{-9}$

Solution 1-2. Dimensional Analysis

- A.
 $E = J = \text{kg} \cdot \text{m}^2/\text{s}^2$
 $mc^2 = \text{kg} \cdot (\text{m/s}) \cdot (\text{m/s}) = \text{kg} \cdot \text{m}^2/\text{s}^2$
- B.
 $m \cdot \rho_m = \text{kg} \cdot (\text{J/kg}) = \text{J}$
- C.
 $V \cdot \rho_v = \text{m}^3 \cdot (\text{J/m}^3) = \text{J}$
- D.
 $(m \cdot \rho_m)/t = [\text{kg} \cdot (\text{J/kg})] / \text{s} = \text{J/s} = \text{W}$

Solution 1-3. National Energy Need and Cost

- A. Energy needed = 25×10^6 people (200,000 MJ/person/year) = 5×10^{12} MJ per year.
- B. Power = $(5 \times 10^{12} \text{ MJ/year}) \times (1 \text{ yr}/3.1536 \times 10^7 \text{ s}) = 1.59 \times 10^5 \text{ MW}$.
- C. Number of power plants = $(1.59 \times 10^5 \text{ MW}) / (1000 \text{ MW / plant}) \approx 159 \text{ plants}$.
- D. Energy per day = $(5 \times 10^{12} \text{ MJ/year}) \times (1 \text{ yr}/365 \text{ days}) = 1.37 \times 10^{10} \text{ MJ/day}$.

E. Barrels of oil per day = $(1.37 \times 10^{10} \text{ MJ/day}) \times (1m^3/37,000 \text{ MJ}) \times (1\text{bbl}/0.1589m^3) = 2.33 \times 10^6 \text{ bbl/day.}$

F. Energy used each day = $(1.37 \times 10^{10} \text{ MJ/day}) \times (1 \text{ kW}/3.6 \text{ MJ}) = 3.81 \times 10^9 \text{ kWh/day.}$

Cost of oil per day = $(2.33 \times 10^6 \text{ bbl/day}) \times (\text{US\$}60/\text{bbl}) = \text{US\$}1.40 \times 10^8/\text{day.}$

Cost of oil per kWh = $(\text{US\$}1.40 \times 10^8/\text{day}) / (3.81 \times 10^9 \text{ kWh/day}) = \text{US\$}0.037/\text{kWh.}$

Solution 1-4. Power Plant Demand for 400 Quads Annually

A. 400 Quads = $4.22 \times 10^{14} \text{ MJ}$

Power = $(4.22 \times 10^{14} \text{ MJ per year}) \times (1 \text{ year} / 3.1536 \times 10^7 \text{ s}) = 1.34 \times 10^7 \text{ MW}$

B. Number of fossil fuel plants = $1.34 \times 10^7 \text{ MW} / 1000 \text{ MW} = 13,400$

C. Number of nuclear power plants = $1.34 \times 10^7 \text{ MW} / 1000 \text{ MW} = 13,400$

D. Number of solar towers = $1.34 \times 10^7 \text{ MW} / 10 \text{ MW} = 1.34 \text{ million}$

E. Number of wind turbines = $1.34 \times 10^7 \text{ MW} / 4 \text{ MW} = 3.4 \text{ million}$

F. Number of km of coastline = $1.34 \times 10^7 \text{ MW} / 7.5 \text{ MW} = 1.78 \text{ million}$

Solution 1-5. Energy Density by Combustion

Energy density = $5625 \text{ MJ} / 125 \text{ kg} \approx 45 \text{ MJ/kg}$

Solution 1-6. Power Plant Demand for 10 Billion People

$200000 \text{ MJ/person/yr} \times (10 \times 10^9 \text{ people}) = 2 \times 10^{15} \text{ MJ/yr}$

Power in MW: $(2 \times 10^{15} \text{ MJ/yr}) \times (1 \text{ yr} / 3.1536 \times 10^7 \text{ s}) \approx 6.34 \times 10^7 \text{ MW}$

of Power Plants needed: $(6.34 \times 10^7 \text{ MW}) / (1000 \text{ MW/plant}) \approx 63400 \text{ plants}$

LIST OF PROBLEMS

Chapter	Topic	Page
1	1-1. Scientific Notation	6
	1-2. Dimensional Analysis	7
	1-3. National Energy Need and Cost	7
	1-4. Power Plant Demand for 400 Quads Annually	8
	1-5. Energy Density by Combustion	8
	1-6. Power Plant Demand for 10 Billion People	8
2	2-1. Plate Tectonics	11
	2-2. Coal Supply	11
	2-3. Carbon Dioxide Emissions	11
	2-4. Power Plant Efficiency and Yield	12
	2-5. Coal Volume and Coal Gas	12
	2-6. Volume of Coal Gas in a Long Wall of Coal	12
3	3-1. API Gravity	15
	3-2. Energy Density of Fossil Fuels	15
	3-3. Pipe String	15
	3-4. Oil Reserves	15
	3-5. National Oil Reserves	16
	3-6. Cost of Electricity from Natural Gas	17
	3-7. Unconventional Natural Gas Reserves	17
	3-8. Percent of Oil Imported	17
4	4-1. Carbon Dioxide Emissions in SI Units	21
	4-2. Carbon Dioxide Emission by Car	21
	4-3. Annual Carbon Dioxide Emission by Car	21
	4-4. Carbon Dioxide Production by Electricity Generation	21
5	5-1. Oil Spill	23
	5-2. Environmental Cost	23
	5-3. Cost of Oil Security	23
6	6-1. Mass-Energy Transformation	25
	6-2. Radioactive Decay	25
	6-3. Mass Fraction and Supply of U-235	25
	6-4. Uranium-235 Fuel Usage	26
	6-5. Rate of Uranium-235 Fuel Usage	26
	6-6. Rate of Uranium Oxide Consumption	26
	6-7. Energy Release in a Fission Reaction	26
	6-8. Uranium-235 Consumption in a Fission Reactor	26

Chapter	Topic	Page
	6-9. Uranium Oxide Consumption	26
	6-10. Cost of Tritium for Nuclear Fusion	27
7	7-1. Transformation of Solar Mass	31
	7-2. Quantum of Light	31
	7-3. The Greenhouse Effect	31
	7-4. Solar Intensity and Land Coverage	32
	7-5. Power Plant Energy Conversion Efficiency	32
	7-6. Impact of Solar Intermittency	32
	7-7. SEGS (Solar Electric Generating Station)	32
	7-8. Solar Facility Breakeven	32
8	8-1. Wind Turbine Power and Wind Speed	35
	8-2. Wind Turbine Capacity Factor	35
	8-3. Maui Wind Farm	35
	8-4. Footprint of a Wind Farm	35
	8-5. Wind Farm Project	36
	8-6. Average Power	36
	8-7. Analysis of a Public Article	36
	8-8. Wind Farm CAPEX	36
9	9-1. Energy Intensity	39
	9-2. Deep-Water Wave Power	39
	9-3. Wave Power Harvesting	39
	9-4. Depletion of a Geothermal Reservoir	40
	9-5. Power from a Tide-Pool	40
10	10-1. Cash Flow from Landfill Gas	42
	10-2. Wastewater Treatment Plant	42
	10-3. Dry Wood as Fuel	42
	10-4. Ethanol as Fuel	42
	10-5. Biodiesel from Microalgae	42
	10-6. Effective Solar Intensity in Photosynthesis	42
	10-7. Heating Value of Ethanol	43
	10-8. Ethanol Production from Corn	43
	10-9. Energy Intensity with Solar PV and Algae	43
11	11-1. Density of Materials	46
	11-2. Mass Needed to Provide 1 Quad of Energy	46
	11-3. Volume Needed to Provide 1 Quad of Energy	47
	11-4. Water and Hydrogen in Electrolysis	47
	11-5. Mass of Hydrogen	47
	11-6. Hydrogen and Transportation	47

Chapter	Topic	Page
	11-7. Hydrogen Fuel Cell	48
12	12-1. Simple Electrical Circuit	52
	12-2. Base Load and Peak Load	52
	12-3. Charging an Electric Vehicle	52
	12-4. Comparing the Cost of Lamps	52
	12-5. Electricity for a Household	53
	12-6. Price of Wholesale Electricity	53
	12-7. Cost of Electricity During a Winter Cold Snap	53
13	13-1. Payout on Residential Wind Turbine	56
	13-2. Cost of a PV Cell	56
	13-3. The Effect of Carbon-Tax on Energy Source	56
	13-4. The Effect of Fuel Cost on a Residence	56
	13-5. Cost of Natural Gas	56
	13-6. Cost of Operating a Refrigerator	57
	13-7. Comparing the Cost of Lighting	57
	13-8. Price of Residential Gas	57
	13-9. Price of Gasoline	57
14	14-1. Geography – National	60
	14-2. Geography – Regional	60
	14-3. UN HDI Forecast of Energy Demand	61
	14-4. UN HDI Forecast of Demand for Power Plants	61
	14-5. Oil Imports	61
15	15-1. Environmental Impact	63
	15-2. Geologic Carbon Sequestration	63
	15-3. Forecast of Annual Energy Consumption	64
	15-4. Unconventional Natural Gas Forecast	64
	15-5. Forecast Duration of Energy Transition	64