
The Shortcomings of 
Traditional Approaches

SOLUTION BRIEF

Prerender with
Dynamic Attributes
Fast Pages, Live Data—No Trade-offs Required

In digital commerce, speed drives growth. Faster pages improve user experience, 
boost conversions, and lift SEO—but dynamic content often gets in the way.

When prices, inventory, or promos are always changing, pre-rendering can
seem out of reach. Most tools treat dynamic data as a blocker. Harper makes 
it a feature.

Most modern web stacks force a choice
between speed and flexibility.

Frameworks like Next.js attempt to bridge
the gap with features like Incremental Static
Regeneration (ISR), but they still rely on 
external APIs and separate data layers that 
introduce latency and complexity. Every 
dynamic update requires cache revalidation, 
regeneration logic, and additional 
infrastructure to scale cleanly.

Meanwhile, traditional CDNs offer excellent
performance for static assets, but treat 
caching as an all-or-nothing operation. You 
can cache the whole page or not at all. 
That binary model makes serving real-time 
data messy, brittle, and expensive.

At scale, even small performance penalties
compound, adding milliseconds for every 
round-trip between origin, application, 
and data layers.

The Harper
Solution
Harper makes pre-rendering viable for
dynamic, data-rich experiences. By unifying
the database, cache, messaging, and app
layer into a single distributed platform, 
Harper delivers the speed of static
rendering with the flexibility of live
data, no rewrites required.

95% of users served
in under 600 ms, 
including network 
time.
Assumes in-region PoPs, pre-rendered HTML with 
dynamic values computed in ~200 ms server time, 
HTTP/2+keep-alive, and typical broadband/LTE 
conditions. First-hit connections and large payloads 
may be higher.



How it works:
You pre-render the core layout and 
content of a page—everything that 
rarely changes—and cache it globally. 
The fast-changing elements, like price 
or inventory, are stored in a lightweight 
attributes table directly within Harper’s 
runtime. When a request comes in, 
those values are injected on the fly 
with nearly no detectable latency 
penalty, typically in just 1 or 2 
milliseconds.

Unlike ISR or API-bound solutions, 
Harper eliminates the need to 
regenerate entire pages or manage 
complicated revalidation logic. Your 
frontend doesn’t change. Your stack 
doesn’t have to move. You just layer 
Harper in front and start shipping faster 
experiences.

And because Harper’s architecture 
is distributed by default, both content 
and data live closer to every user, 
delivering consistently fast performance 
VVno matter where in the world your 
AAAAAAcustomer are.

Pre-Render w/ Dynamic
Attributes

D
at

a 
Tr

an
sf

er
/R

en
d

er
 L

ay
er

D
el

iv
er

y 
La

ye
r

Client

CDN Property

D
at

a 
R

ep
lic

at
ed

 A
cr

o
ss

 N
o

d
es

Change Data
CaptureProcess

Geo Distributed Page Bank

Global Traffic Manager
(Load Balancing)

Pre-Render Server Cluster

Base Page
Cache

Dynamic
Attribute

Tables

Origin

Single Harper Node

Page Assembly </>
Able to accommodate multiple client types

(mobile, desktop, bots, users, etc)

6

5

4

3

2

1

Pre-rendering doesn’t have to come at the 
cost of freshness, and real-time data doesn’t have to slow you down.

Harper’s dynamic attribute prerendering unlocks a new model for digital commerce 
performance: fast, flexible, and fully future-ready. Whether you’re optimizing for search 
bots or real buyers, the results speak for themselves.
Ready to move faster? Let’s talk.

Conclusion

Contact Sales at 
hello@harperdb.io.


