
SOLUTION BRIEF

Page Cache
Low Latency Product Page Delivery for Static 
and Dynamic Experiences

to the user. Because Page Cache runs
on Harper’s platform, with database,
cache, application, and messaging systems
in a single runtime, it avoids multi-server
slowdowns and costly operational sprawl,
common with alternative solutions.

When a shopper taps “Buy,” the
page should already be ready. Page 
Cache accepts your framework as-is, 
supporting both server-side rendered and 
static origins, and adds pre-rendering or 
dynamic attributes only where they are 
beneficial. Either way, you get instant, 
current pages with minimal code change 
and a deployment plan that fits your roadmap.

Problem
Every product page starts its life as a 
template, then begs data systems for prices, 
inventory, promos, recommendations, and 
content fragments. Traditional “HTML + 
CDN” helps with assets, but whenever those 
dynamic bits are missing, the page slows. 
Teams layer on microservices, sprinkle in 
edge logic, and still chase cold starts, cache 
misses, and origin bottlenecks. You feel it as 
SEO decay, conversion drag, and operational 
sprawl. The customer feels it as wait time.

Page Cache Solution
Page Cache enables full page load in as 
little as 600ms or less for 95% of users. 
To accomplish this, we generate or accept 
a complete page (framework-rendered or 
prerendered), enrich it with dynamic 
attributes at the last  responsible moment 
(price, availability, personalization, 
promotions), and cache the finished 
experience as a first-class artifact that 
can be served from the closest point

Page Cache can:
Pre-render pages for instant first 
paint and stronger crawlability.

Inject dynamic attributes without 
a round trip to origin.

Deliver globally from dedicated, 
predictable infrastructure.

Work push or pull: push rendered 
pages into Page Cache from your pipeline, 
or let Page Cache pull from your origin and 
materialize the final, cacheable result.

Scale simply as traffic, personalization, 
or catalog depth grows.

(Advanced) Host frameworks 
directly — unify modern app frameworks 
(e.g., React/Next) with Page Cache to minimize 
networking hops, simplify infrastructure, and 
cut costs.



Why Page Cache 
Works
Page Cache works because it delivers 
the final, complete experience—not 
fragments. Pre-rendering eliminates 
assembly, attribute injection brings 
personalization into the delivery path, 
and Harper’s global footprint removes 
the network drag that slows conversions. 
Fewer moving parts mean simpler 
operations, faster iteration, and 
customers who never wait for your 
architecture to catch up.

Adopt Page Cache all at once for 
maximum ROI on day one or plan it out 
over a few sprints. Either way, the outcome
is the same: pages that are fully formed, 
always current, and instantly delivered.

Contact the Harper sales team at 
hello@harperdb.io to get started.

Page Cache Architecture
with Deployment Options

D
at

a 
Tr

an
sf

er
/R

en
d

er
 L

ay
er

D
el

iv
er

y 
La

ye
r

Client

Change Data
Capture Process

Geo Distributed Page Cache

Prerender Server Cluster

Page Cache Page Cache
Page Cache

Dynamic
Attributes

Page Cache

Dynamic
Attributes

Origin with SSR Origin without SSR

Configuration Option:

Contact Sales at 
hello@harperdb.io.

Security

Load Balancing

Data Replicated Across Nodes

A B C D




