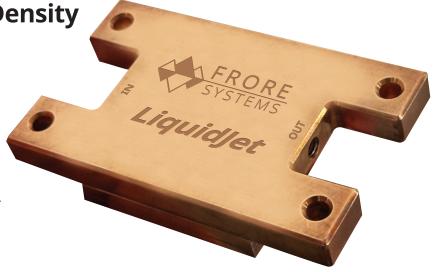
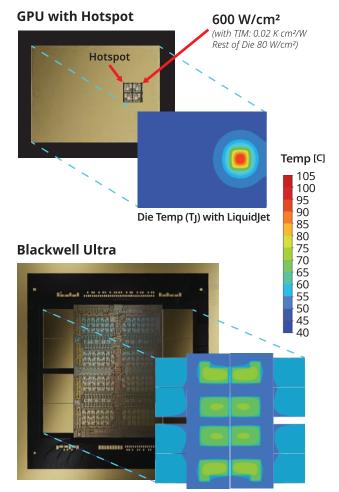
LiquidJet[™]Coldplate

2x Higher Hotspot Power Density

50% More Heat Removal
4x Lower Pressure Drop


Our breakthrough design with innovative 3D short-loop jet channel microstructures - an industry first - enables:


- 2x higher hotspot power density of 600 W/cm² @40°C inlet temperature
- 50% higher KW/lpm
- 4x lower pressure drop
- Customized designs to exactly match any SOC power map
- Easy drop-in upgrade

Performance on Blackwell Ultra

	Best Skived Coldplate	LiquidJet Coldplate
SOC Power (W)	1400	1400
Microstructure Pressure Drop (psi)	0.94	0.24
PG25 Flow Rate (lpm)	2.1	1.4

Note: Max Channel Width 0.15mm | Inlet Flow Temp: 40C | TIM: PTM7950

^{*} Measured on a thermal test vehicle.

LiquidJet[™]Coldplate

Customizable Cooling

Legacy coldplates rely on outdated skiving 2D microchannel manufacturing, limiting their ability to adapt to new chip layouts and increasingly non-uniform high power density requirements.

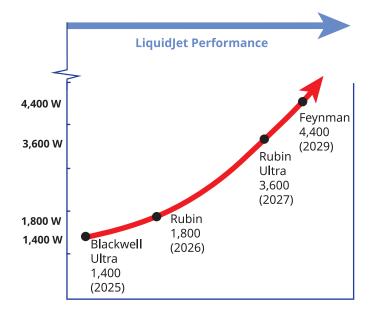
Frore Systems takes a different approach, adapting semiconductor manufacturing to metal wafers, fabricating 3D short-loop jet channel microstructures that are designed precisely to the power maps of modern GPUs.

Customizable to match the exact power density of your SOC.

The result is LiquidJet, a coldplate that evolves as fast as the chips it cools.

With these advances, data centers can achieve:

Cooler GPUs


More AI tokens/second

Lower total cost of ownership (TCO)

Improved power usage effectiveness (PUE)

LiquidJet - Redefining AI Data Center Liquid Cooling.

Future-proof supporting NVIDIA Feynman SoC & beyond

