Q1.

(a)	magnetic field around the coil changes		
	or the magnetic field (lines) cut by the coil		
	allow the generator effect		
		1	
(b)	because the magnet changes direction	1	
		1	
(c)	stationary	1	
(:)	Annual frances		
(i)	any two from:		
	stronger magnetic field		
	allow stronger magnet allow heavier magnet		
	bigger magnet is insufficient		
	more turns on the coil		
	bigger coil is insufficient		
	do not accept more coils of wire		
	turns pushed closer together		
	spring with a lower spring constant		
	allow less stiff spring		
	allow weaker spring		
	do not accept add an iron core	2	
		[1	3
2.			
(a)	generator (effect)		
	allow electromagnetic induction	1	
(b)	wire cuts through the magnetic field (between the magnets)		
(D)	wife cuts through the magnetic field (between the magnets)	1	
	a potential difference was induced (across the wire)		
		1	
	as it was part of complete circuit (there was a current in the circuit)		
		1	
(c)	the needle will deflect to -0.4 mA	1	
		1	[5]

(a) as the wire moves through the Earth's magnetic field 1 a potential difference is induced between the ends of the wire 1 the wire must be part of a complete circuit 1 (b) new trace shows: twice the frequency 1 twice the amplitude (c) dynamo dc generator is insufficient 1 the alternator pd changes polarity, the 2nd type of generator (d) does not [11] (a) which causes the magnet to turn / spin / rotate

(magnetic) field / lines of force / flux rotate(s) / move(s) / through / in / cut(s) the coil

do **not** credit the idea that movement 'creates' the magnetic field

potential difference / p.d. / voltage <u>induced</u> across the coil do **not** credit just 'current induced'

- (b) any **one** from:
 - more powerful / stronger / lighter magnet
 do not credit 'a bigger magnet'
 - larger / more / bigger / lighter cups / with a bigger surface area
 - longer arms
 - lubricate the spindle
 - add more turns to the coil

[4]

1

1

1

(a)	there is a magnetic field (around the magnet)	1
	(this magnetic field) changes / moves	1
	and cuts through coil	
	accept links with coil	1
	so a p.d. <u>induced</u> across coil	1
	the coil forms a complete circuit	1
	so a current (is induced)	1
(b)	ammeter reading does not change	
	must be in this order	
	accept ammeter has a small reading / shows a current	1
	zero	1
		1
	greater than before	
	accept a large(r) reading	1
	same as originally but in the opposite direction	
	accept a small reading in the opposite direction	•
		1
(c)	0.30	
	allow 1 mark for correct substitution, ie 0.05 = Q / 6	2
	C / coulomb	
	allow A s	
		1 [13]
		[.0]

Q6. (i) (a) generator 1 (ii) alternating current 1 voltmeter / CRO / oscilloscope / cathode ray oscilloscope (iii) 1 (b) (i) time 1 (ii) peaks and troughs in opposite directions 1 amplitude remains constant dependent on first marking point (c) any **two** from: increase speed of coil strengthen magnetic field increase area of coil do not accept larger 2

[8]

(a) the coil moves through the magnetic field or the coil cuts magnetic field lines 1 a potential difference is induced (across the coil) there is a complete circuit, so a current is induced (in the coil) 1 every half turn the potential difference reverses direction so (every half turn) the current changes direction provides a continuous / moveable contact / connection (between the coil and the transformer / contacts / brushes) or stops the wires from twisting together (after disconnection) there is no induced current (c) so no magnetic field (produced around / by the coil) to oppose the movement of the coil [14]

Q8.

(a) the coil moves through the (magnetic) field

or

the coil cuts (magnetic) field lines

a potential difference is induced (across the coil)

there is a complete circuit, so a current is induced (in the coil)

1

1

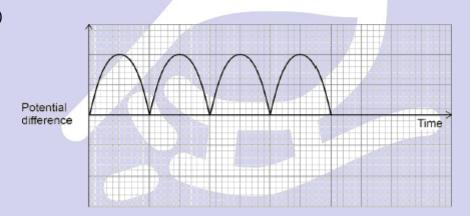
1

(because) each half-revolution, the two ends of the coil swap from one brush to the other

or

each half-revolution, (the two halves of) the commutator switch brushes / contacts

(because) the half of the coil connected to each brush always moves in the same direction


1

(so) the direction of the (induced) current / potential difference does not reverse every half rotation

allow the direction of the (induced) current / potential difference is the same every half rotation

1

(b)

allow a correct graph showing a negative output potential difference only

1

(c) (after disconnection) there is no (induced) current

1

(so) no magnetic field (produced around / by the coil)

1

to oppose the movement of the coil

allow no force opposes the movement of the coil

1

[9]