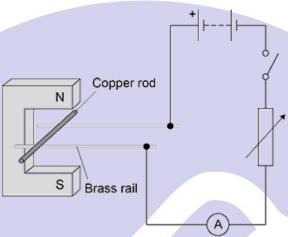

Q1.

The left-hand rule can be used to identify the direction of the force acting on a current-carrying conductor in a magnetic field.

(a) Use words from the box to label **Figure 1**.

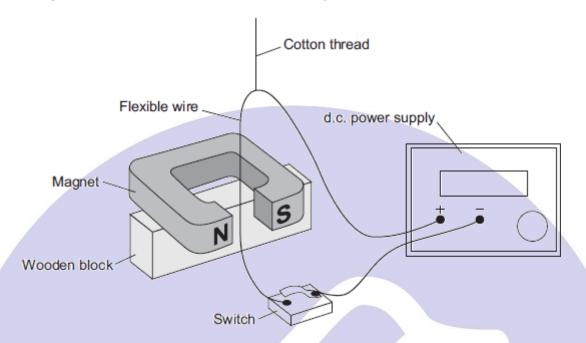

Q2.

A teacher demonstrated how a magnetic field can cause a copper rod to accelerate.

The teacher placed the copper rod on two brass rails in a magnetic field.

The copper rod was able to move.

The figure below shows the equipment used.



(a)	The teacher closes the switch and the copper rod accelerates.
	Explain how Fleming's left hand rule can be used to predict the direction in which the copper rod will move.
(b)	Suggest two changes to the equipment that would increase the force on the copper rod.
	1
	2

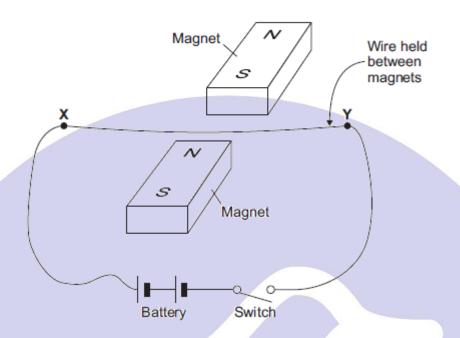
(2)

(Total 7 marks)

The diagram shows a demonstration carried out by a teacher.

When the switch is closed, there is a current of 2 A through the wire. The wire experiences a force and moves.

(a) Use the correct word from the box to complete the sentence.

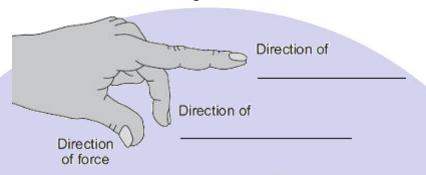

The d	emonstration sl	hows the		eff	ect.
			er could make to ne wire. The tea		
1					
2					
	<u> </u>				
	e one change to the force		r could make to	the demonstra	ation to change t

(1)

(d)	With the switch closed, the teacher changes the position of the wire so that the force on the wire is zero.
	What is the position of the wire?
	Tick (✓) one box.
	The wire is at 90° to the direction of the magnetic field.
	The wire is at 45° to the direction of the magnetic field.
	The wire is parallel to the direction of the magnetic field.
	(1) (Total 5 marks)

Q4.

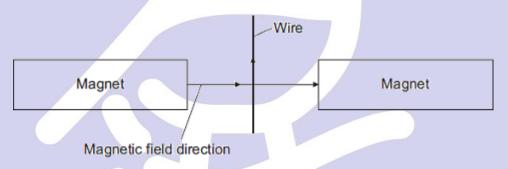
The diagram shows apparatus set up by a student.


osing th	e switch creates a force that acts on the wire XY .	
) (i)	Explain why a force acts on the wire XY when the switch is closed.	
		(
(ii)	The force causes the wire XY to move.	
	Draw an arrow on the diagram above to show the direction in which the wire XY will move.	
		(
(iii)	State the effect that this experiment demonstrates.	
		(

(b)	The powe	ne student replaced the battery with a low frequency alternating current (a.c.) er supply.	
	The	student closed the switch.	
	(i)	Describe the movement of the wire.	
	(ii)	Give a reason for your answer to part (i).	(1)
		(Total 7 ma	(1) arks)

Q5.

- (a) Fleming's left-hand rule can be used to identify the direction of a force acting on a current-carrying wire in a magnetic field.
 - (i) Complete the labels in **Figure 3**.


Figure 3

(2)

- (ii) Figure 4 shows:
 - the direction of the magnetic field between a pair of magnets
 - the direction of the current in a wire in the magnetic field.

Figure 4

In which direction does the force on the wire act?

(1)

(3)

- (iii) Suggest three changes that would decrease the force acting on the wire.

(Total 6 marks)

Figure 2 shows a large cable supported by two wooden poles. The cable is connected to an electricity supply.

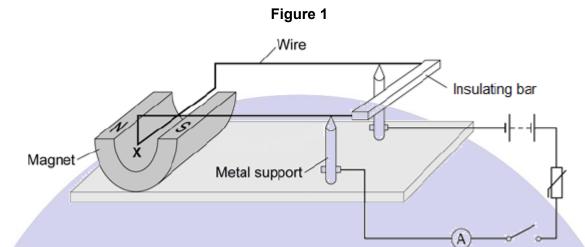
Figure 2

B

Earth's magnetic field

Current = 50 A

(a) There is a force on the cable due to the Earth's magnetic field when the current is in the direction **A** to **B**.


What is the direction of this force?

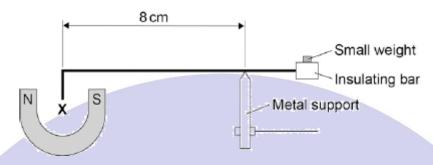
Tick (✓) one box.

Down	
Left	
Right	
Up	

(Total 1 marks)

Figure 1 shows a piece of apparatus called a current balance.

When the switch is closed, the part of the wire labelled **X** experiences a force and moves downwards.


- (a) What is the name of the effect that causes the wire **X** to move downwards?
- (b) Suggest one change you could make to the apparatus in **Figure 1** that would increase the size of the force that wire **X** experiences.

(1)

(1)

(c) **Figure 2** shows how a small weight placed on the insulating bar makes the wire **X** go back and balance in its original position.

Figure 2

The wire **X** is 5 cm long and carries a current of 1.5 A.

The small weight causes a clockwise moment of 4.8×10^{-4} Nm.

Calculate the magnetic flux density where the wire X is positioned

Give the unit.			
	/		
- 4			
		7 /	
	Magnetic flux density =		Unit

(6) (Total 8 marks)