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Abstract—The accurate simulation of complex biochemical
phenomena has historically been hampered by the computa-
tional requirements of high-fidelity molecular-modeling tech-
niques. Quantum mechanical methods, such as ab initio wave-
function (WF) theory, deliver the desired accuracy, but have
impractical scaling for modeling biosystems with thousands of
atoms. Combining molecular fragmentation with MP2 pertur-
bation theory, this study presents an innovative approach that
enables biomolecular-scale ab initio molecular dynamics (AIMD)
simulations at WF theory level. Leveraging the resolution-of-
the-identity approximation for Hartree-Fock and MP2 gradi-
ents, our approach eliminates computationally intensive four-
center integrals and their gradients, while achieving near-peak
performance on modern GPU architectures. The introduction of
asynchronous time steps minimizes time step latency, overlapping
computational phases and effectively mitigating load imbalances.
Utilizing up to 9,400 nodes of Frontier and achieving 59% (1006.7
PFLOPY/s) of its double-precision floating-point peak, our method
enables us to break the million-electron and 1 EFLOP/s barriers
for AIMD simulations with quantum accuracy.

Index Terms—chemistry, exascale, quantum, AIMD, GPU

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

Largest AIMD simulation to date employing quantum-
accurate, MP2 wave-function potentials, involving 2,043,328
electrons; >1000x larger in system-size than state-of-the-art.
Fastest time-to-solution at this accuracy of 3.4 s/timestep for
a 5,504-electron protein; >1000x faster than state-of-the-art.
Unprecedented sustained full double-precision performance
of 1006.7 PFLOP/s (59% of Frontier’s FP64-peak) for a
computational-chemistry application.

II. PERFORMANCE ATTRIBUTES

TABLE I
SUMMARY OF PERFORMANCE ATTRIBUTES

Performance attribute This submission

Category of Achievement
Type of Method Used
Results Reported Based On
Precision Reported

System Scale
Measurement Mechanism

Scalability, peak performance, time-to-solution
MBE3/RI-MP2 ab initio molecular dynamics
Whole application including I/O

Double precision

Results measured on full-scale system

Timers, FLOP count
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III. OVERVIEW OF THE PROBLEM

Accurate predictions of molecular characteristics and func-
tionalities are essential for addressing a wide range of societal
challenges. These include developing therapeutic drugs, pro-
ducing biofuels, recycling plastics, and engineering medical
biomaterials. Classical molecular dynamics (MD) simulations
are pivotal for understanding the chemical and physical prop-
erties of biomolecules but are limited by the accuracy of force
fields. These parameterized models, which are fitted to exper-
imental and computational quantum chemistry reference data,
often inadequately represent complex phenomena like bond
breaking and formation, hydrogen bonding, solvent effects,
and non-covalent interactions, critical for accurately modeling
biomolecular energetics and behavior [1].

Recent efforts to overcome these limitations have turned
to deep learning and machine-learned force fields. Despite
progress, challenges such as the scarcity of high-quality train-
ing data and the models’ limited accuracy and interpretability
remain [2].

In contrast, ab initio molecular dynamics (AIMD) simu-
lations offer a more accurate and generalizable approach by
calculating forces directly from electronic structure theories.
However, for AIMD to be practically useful, it must achieve
high quantum mechanical accuracy, with absolute energy
errors < 4 kJ/mol in relative energies (e.g., reaction energies),
while jointly being capable of scaling to biologically relevant
system sizes with thousands of atoms. The primary challenge
in realizing this goal lies in the computational demands of
accurately solving the Schrodinger equation for large molecu-
lar systems. This involves the use of density functional theory
(DFT) or wave-function (WF) theory methods, both of which
have their advantages and limitations. DFT, for instance, offers
a more scalable solution with algorithms developed to scale
as O(N?3) or even O(N), where N is the number of electrons
within the system. However, even the most accurate in the
class of low-scaling DFT approaches, which utilize hybrid
DFT theory, rely on semi-empirical approximations that fall
short in yielding the required accuracy [3[]. Notably, this type



of DFT struggles with the accurate description of non-covalent
interactions, such as van der Waals forces, hydrogen bonding,
and dispersion forces [3]], [4]], which play a critical role in the
chemistry of biomolecular systems [/1].

On the other hand, post-Hartree-Fock (HF) WF-based meth-
ods, such as second-order Mgller-Plesset perturbation theory
(MP2) and its spin-component scaled version SCS-MP2, pro-
vide enhanced accuracy, especially for modeling non-covalent
interactions [4], [5]. However, the computational cost asso-
ciated with MP2, which scales as a prohibitive O(N®) with
respect to the system size, presents a significant challenge.
Efforts to mitigate the computational burden of combined
HF plus MP2 calculations have been persistent, and linear
scaling MP2 methods have been developed (see Ref. [6] and
therein). Yet, the significant computational overhead of these
approaches and the inefficiencies within their underpinning
algorithms in harnessing large-scale parallel computing re-
sources have traditionally made MP2 calculations unsuitable
for bio-scale chemical modeling.

Furthermore, the emphasis on static energy calculations of
all the aforementioned approaches, while valuable, falls short
of capturing the dynamic nature of biomolecular systems.
Dynamic simulations, necessary for predicting macroscopic
properties of these systems, require more sophisticated al-
gorithms capable of calculating quantum mechanical energy
gradients with efficiency and at scale.

This trade-off between accuracy and molecular size is illus-
trated in Fig. 1| The figure compares the maximum number of
electrons modeled against the average error in isomerization
energies per atom—a reliable indicator of relative energy
accuracy—across various DFT and WF methods. This com-
parison includes both static energy evaluations and AIMD
simulations.

Static energy calculations employing hybrid DFT and MP2
methods have been successfully applied to systems containing
as many as 101,920 and 623,016 electrons, respectively [[10],
[12], [16]. In contrast, Fig. E] shows that owing to their
higher algorithmic complexity, AIMD simulations have been
constrained to comparatively smaller systems. The largest
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Fig. 1. Maximum system sizes of static energy evaluations and AIMD
simulations achieved with varying levels of theory and corresponding average
isomerization energy errors. Isomerization energy errors are obtained from
Ref. [7]]. Exact sizes and corresponding references are listed in Table

hybrid DFT and MP2 AIMD simulations have been executed
on systems with 2,560 and 1,400 electrons, respectively [11],
[13]] (see Table [).

Thus, there is an absence of AIMD methodologies that
utilize high-fidelity, WF-based ab initio potentials, such as
MP2, to enable high-accuracy biomolecular simulations.

A. Summary of Contributions

This work presents innovative algorithmic advancements
that, for the first time, allow for the execution of large-scale
AIMD simulations utilizing MP2 potentials, enabling the study
of biomolecular-scale systems with unprecedented accuracy.

The main algorithmic innovations from this work are:

(1) An efficient multi-layer scheme for distributed many-
GPU AIMD calculations using molecular fragmentation
at the third-order many body expansion (MBE3) level.
This reduces the scaling of MP2 calculations from quin-
tic to linear with system size while retaining quantum
accuracy.

A fully electronically correlated gradient implementa-
tion, based on the resolution-of-the-identity (RI) ap-
proximation [17]], that combines RI-HF and RI-MP2
in a synergistic manner. This approach eliminates ex-
pensive four-center electron repulsion integrals, avoids
the recomputation of expensive three-centre integrals,
and replaces the traditional, computationally-inefficient
bottlenecks of these methods with efficient sequences of
dense matrix multiplications.

An asynchronous time step AIMD scheme that leverages
the dependencies among fragments to asynchronously
allow a subset of the system to progress to the next
time step while the remainder of the previous time
step is completed. This significantly enhances distributed
workload balancing with small time step latencies of the
order of individual fragment latency.

A matrix multiplication auto-tuning scheme for per-
formance portability across different machines that
determines and implements the highest-performance
DGEMM configurations at runtime.

(i)

(iii)

@iv)

This novel approach enables us to perform several AIMD
time steps on a molecular cluster with over 2 million electrons
utilizing 9,400 nodes on Frontier, significantly larger than any
previous AIMD or static energy and/or gradient calculation
at a comparable level of accuracy. These calculations achieve
1006.7 PFLOP/s providing a throughput efficiency of 59% of
attainable FP64 peak on 99.9% of the machine. In addition,
we demonstrate low time step latency of 3.4 s/timestep on
a protein fragment with 1,496 atoms and over 5.5k electrons
attaining a simulation throughput of 25,000 time steps per day
on 1,024 Perlmutter nodes.

IV. CURRENT STATE OF THE ART

In this section, we provide an overview of significant
developments in scalable quantum mechanical approaches for
static energy calculation and AIMD simulations. A subset of
the studies discussed herein are summarized in Table [



TABLE 11
LARGEST STATIC ENERGY CALCULATIONS AND AIMD SIMULATIONS PERFORMED AT VARIOUS LEVELS OF THEORY AND THE CORRESPONDING
BENCHMARK SYSTEMS (AS SHOWN IN FIG.ED. BASIS SETS ARE INDICATED WHERE APPLICABLE.

Level of Static AIMD
Theory Benchmark Basis set Features Ref. Benchmark Basis set Features Ref.
System System
DFT(LDA/ Bulk silicon Local Orbital Bulk methanol MOLOPT- Orbital
GGA)HF (14 x 108¢—) [Flanewave approach (8] (18,432¢) LOZATIE S  Laa n EAI
? GTH optimization
RI and Numeric Maximally
. Bulk water Bulk water . .
DFT (Hybrid) (101,920e ) - Atom-c.entered (10} (2,560e—) Planewave localized Wanmer [11]
Orbitals functions
Ionic liquid cluster RI and Bulk water aug-cc- .
P2 (623,016 ) SeRiRe Fragmentation  [12] (1,400e ) pVDZ RGO
Urea cluster cc-DVDZ RI and This Urea cluster cc-DVDZ RI and This
(2,043,328¢ ) P Fragmentation work (2,043,328¢ ) P Fragmentation work
Lipid transfer Local Orbital Bulk water aug-cc- q
ce e QR oA approach [14] (1,400e~) pVDZ Fragmentation 5,

The DFT framework has facilitated the development of
inherently more scalable approaches than those derived from
WF theory, including algorithms with O(N3) and O(N)
complexities. However, the accuracy of DFT approaches relies
on the usage of an exact exchange-correlation (XC) func-
tional to encapsulate electron-electron interactions. Despite
the theoretical existence of a universal XC functional, DFT
lacks a systematic approach for its determination, rendering
it in practice a semi-empirical theory. This gap has led to
the empirical development of a multitude of approximate
XC functionals, guided by physical insights and statistical
performance evaluations.

DFT approaches are classified in five rungs of an increasing
accuracy ladder: 1) local density approximation (LDA) DFT,
2) generalized gradient approximation (GGA) DFT, 3) meta-
GGA, 4) hybrid GGA/meta-GGA DFT and 5) double-hybrid
DFT [18]. Unfortunately, no scalable methods have been
developed for the fifth rung double hybrids which require a
constituent MP2 calculation. Specifically, to date, the most
accurate large-scale DFT calculations use hybrid DFT. The
FHI-aims code recently performed calculations on a 10,192
molecule ice system (101,920 electrons) but took approx-
imately 40 minutes per SCF iteration [10]. On the other
hand, Ko et al. performed AIMD simulations on condensed-
phase water systems comprising up to 256 molecules (2,560
electrons) at the hybrid PBEO level of theory [[11]. As shown
in Fig. [I] due to its parameterized nature, all levels of DFT
approximation up to hybrid DFT remain far from the accuracy
of post-HF WF theory.

In contrast, post-HF WF methods, such as perturbation
theory, including MP2, and coupled-cluster (CC) theories,
provide superior accuracy in calculating quantum molecular
energies and gradients. However, their practical application
to large molecules is hindered by their steep computational
scaling of O(N?®) for MP2 and > O(N°) for CC calculations.

Significant research has focused on developing more ef-
ficient algorithms and software for MP2 and CC energy
evaluation. Among these, the resolution-of-the-identity (RI)
approximation and the RI-MP2 method [17] have become
prominent for their ability to accelerate calculations with

minimal error introduction. Further efforts to mitigate the steep
computational scaling of MP2 and CC energies and gradients
have led to the development of various lower-order scaling
algorithms [6]]. These exploit the local nature of electronic
correlation through strategies like orbital localization, atomic-
level truncation, matrix element sparsity, or molecular frag-
mentation, enabling their application to larger molecules.

Notable achievements of scalable methods for MP2 include:
1) In 2016, a fragment molecular orbital level 3 (FMO3) MP2
gradient calculation using the 6-31G(d,p) basis was performed
on 64 water molecules using 4,096 nodes (65,536 CPU cores)
of the Mira Blue Gene/Q supercomputer with 45% parallel
efficiency; no dimer or trimer distance cutoffs were reported
[19]. 2) In 2016, a divide-expand-consolidate RI-MP2/cc-
pVDZ/cc-pVDZ-RIFIT calculation was used to calculate the
energy of 1-aza-adamantane-trione supramolecular wires con-
taining up to 2,440 atoms, as well as an RI-MP2 gradient
simulation of insulin (787 atoms) on the Titan supercomputer
[20]-[22]. 3) In 2019, FMO2/RI-MP2 single point gradient
calculations with the 6-31G(d,p) basis set on 6,495 atoms
using up to 768 nodes of the Theta supercomputer [23],
[24], which appears to be the high watermark for MP2 static
gradient calculations; no full HF plus MP2 nor MP2 timings
were reported. 4) In 2021, various FMO2 correlated static
energy calculations on the SARS-CoV-2 spike protein with
23,694 atoms using 3,072 nodes and 147,456 cores of the
Fugaku supercomputer, with wall times of the order of hours
[25]; 5) In 2022 an FMO2/RI-MP2 static energy calculation at
the 6-31G(d)/cc-pVDZ-RIFIT level on an ionic liquid crystal
lattice structure with 146,592 atoms was performed by us on
Summit [12]].

Although static calculations at the MP2 level have been
steadily increasing in size, dynamic calculations have lagged.
As listed in Table [lI, the high watermark for molecular
sizes achieved in AIMD simulations using fragmentation
with MP2 potentials was performed on a 140 water cluster
system (1,400 electrons) using the aug-cc-pVDZ basis set
[13]. The authors comment on the latency per time step as
being large but provide no measure of it [[13]]. To establish
an effective timing benchmark for AIMD simulations using



TABLE III
SINGLE TIME STEP LATENCY (S) FOR AIMD/RI-MP2/cc-pVDZ
(INCLUDING HF COMPONENT) OF VARYING LENGTH POLYGLYCINES
(GLYy) USING COMMON QUANTUM CHEMISTRY SOFTWARE PACKAGES.

| Orca Q-Chem GAMESS NWChem | This work (EXESS)

| No fragmentation | MBE3
Gl nCPU=2, ncore=104 4x 4x 16 x
yn Sapphire Rapids A100 | A100  A100
10 297 252 258 1477 6 2.7 1.1
15 [1976 1050 1573 - 24 4.4 1.4
20 6213 5710 - - 83 6.4 1.6

MP2 potentials, Table [[IIj shows a comparative analysis of the
wall time of Hartree-Fock plus RI-MP2 gradient calculations,
which provides the single AIMD time step latency, across
state-of-the-art quantum chemistry software packages [26]—
[29]. For the MBE3 calculations, the RI-HF approximation
was employed for the Hartree-Fock component, with glycine
chains fragmented into monomers composed of individual
amino acids. The dimer and trimer cutoffs for these MBE3/RI-
MP2 calculations were set at 20 A and 13 A, respectively,
which were obtained by considering all dimers and trimers
with absolute energy contributions to the total molecular en-
ergy greater than 0.1 kJ/mol. Compared to the non-fragmented
calculation, this yields a gradient RMSD of less than 10~*
Hartree/Bohr, which is commonly adopted as a geometry
optimization convergence threshold. Note that to the best
of our knowledge EXESS is the only software reported in
the literature supporting analytic RI-MP2 gradients on GPUs.
As shown in Table I, in combination with the MBE3
fragmentation framework described in later sections, this
work is faster than state-of-the-art CPU software by three
orders of magnitude already on a single node (4xA100).
Below we demonstrate significant additional speedups with
increasing node counts.

Moreover, both static and dynamic MP2 modelings at scale
typically fall short in accuracy due to either the absence of a
sufficiently large basis sets (a minimum requirement being a
double-( polarized basis set such as cc-pVDZ) or because all
calculations, when employing fragmentation, were conducted
at the dimer level, accompanied by cutoffs that prematurely
and inaccurately truncate long-range interactions. For example,
in Ref. [13]] an unjustified short dimer distance cutoff of 5 A
is used, and trimers are not included (more on this in Section
[V-B).

In summary, the current state of the art in AIMD methods
is limited by either the accuracy of the method used to
calculate the forces, or the cost with respect to system size
for the ab initio calculation. The framework described herein
aims to bridge the gap between the scalability and accuracy
dilemma through the use of molecular fragmentation and tailor
made quantum chemistry programs. Our study shows that
when the RI-HF and RI-MP2 methods are implemented in
an optimal fashion, coupled with a rigorous and accurate
molecular fragmentation scheme, AIMD at the correlated level
of theory is possible at the scale of O(10%~) electrons.

V. INNOVATIONS REALIZED
A. Notation

We will adopt the following notation throughout. Indices
i, j, k denote occupied molecular orbitals, whilst a, b, ¢ denote
virtual orbitals and p, ¢, r, s index over all molecular orbitals
(occupied and virtual). Primary and auxiliary basis functions
are denoted u,v,\,0 and P,Q, R respectively. Fragment
monomers are indexed I, J, K. Sums involving any of these in-
dices are implicitly over the full range of the index. Chemist’s
notation is used for electron repulsion integrals (ERIs) where
the vertical bar | denotes the Coulomb repulsion operator %,
for example the three-center integral

(nv|P) = /1/);»(7“1)1%(7"1)71 Yp(ra)dridra. (1)
[T1 — 72
where {1,,} are orbital functions in the primary/auxiliary
atomic orbital (AO) or molecular orbital (MO) basis.
In all sections hereafter, we assume the restricted, closed
shell formulation of HF and MP2, and do not use the frozen
core approximation.

B. Molecular Fragmentation

We adopt a molecular fragmentation approach whereby the
overall system is divided into individual fragments, called
monomers. The energy and gradient of these fragments can
be individually calculated and gathered to approximate the
original, unfragmented system, according to the following
many-body expansion (MBE)

E:ZE1+ZAE1J+ Z AErjg+... (2
I

I<J I<J<K

The MBE method breaks down the system’s energy into
individual monomer energies and corrections from pairwise
and higher-order interactions. In this framework, E; repre-
sents a monomer’s energy, and AFE, accounts for higher-
order corrections. To prevent double counting, we subtract
lower-order contributions from higher ones. For instance, the
pairwise correction AF;; = Ejj—Ej— FEj involves removing
monomer energies F; and E; from the dimer energy Ey;.
When the system requires breaking a single bond, we add a
hydrogen cap (H-cap) to maintain chemical integrity, replacing
the bonded atom in isolated monomers.

Hereafter, we use the term polymer to denote a group of
monomers forming a cohesive unit. Research demonstrates
that the truncated Eq. (2) at second and third orders, consider-
ing polymers within a threshold distance Ry, yields accurate
energy approximations of the original system using MBE2 and
MBE3 with linear computational costs [30]. However, select-
ing an appropriate R, for large systems can be arbitrary and
imprecise. In response, this study conducts MBE calculations
centered around a reference monomer to accurately determine
the energy contributions from associated polymers, ensuring
a precise method for setting R.,; with minimal accuracy loss.
Additionally, achieving quantum mechanical precision within
2 kJ/mol/monomer for scaled molecular systems necessitates
the use of MBE3 [31]], supported by our recent findings on the



precision of MBE3 RI-MP2 gradients [32]. Consequently, our
approach utilizes an MBE3 expansion to calculate the energy
and gradient of each polymer, incorporating the Hartree-Fock
and MP2 corrections with the RI approximation as follows

By = EJIC-H—HF I EJIC%I—MP2 3)
VE; = VE?I_HF + VEJ{?’I_MP2 ())
where f=1,1J IJK.

C. Resolution-of-the-Identity HF and MP2

We adopt the RI approximation [[33|] for both HF and MP2.
This is based on the observation that products of primary
basis functions can be expressed as a linear combination of
auxiliary basis functions. Under this approach, the four-center
two-electron repulsion integrals can be approximated, with
negligible loss of accuracy, by a combination of two and three-
center integrals

(,U,I/|)\0') ~ (Myl/\U)RI = ZB/IJ,JVchf? (5)
P
where .
BE, = (w|P)Jpg. ©6)
Q

J;é denotes the matrix inverse square root of the positive
definite two-center integrals (P|Q). This can also be directly
transformed to the molecular orbital (MO) basis Bf; =
Z/w CiHCCWB;}LDV'

This formulation enables the computational bottlenecks of
HF and MP2 calculations to be recast as sequences of matrix
multiplications that can be executed at near-peak floating point
performance, thereby significantly reducing the computational
pre-factor of these bottlenecks through a more efficient uti-
lization of the hardware.

For example, the bottleneck of the traditional formulation of
HF is the calculation of O(N*#) four-center electron repulsion
integrals (uv|Ao) [34] and their ensuing combination with the
density matrix D), to form Fock matrix elements

Fuw = 3 Daol(uvo)
Ao

el @

When performed in parallel this is typically an inefficient

process due to the following reasons:

o The calculation of (uv|Ao) involves different workloads,
which can be memory bound and run at low FLOP rates
depending on the specific nature of the AO basis functions
involved. This creates workload imbalance and FLOP-
efficiency issues for parallel execution.

o There are too many (uv|\o) integrals to be stored in
memory, so they are often recomputed at each iteration
of the self-consistent field (SCF) Hartree-Fock algorithm.

« To save on the calculation of the integrals, permutational
symmetry is used. In turn, this causes scattered memory
access patterns (both reads and writes) and potential race
conditions when the (uv|\o) are combined with D), and

the result stored in the Fock matrix F. This renders this
stage usually memory bound and with low bandwidth
utilization on throughput-oriented architectures such as
GPUs, thereby further lowering algorithmic performance.

In contrast, using the RI approximation in Eq. (3)), one can:

« Compute only O(N?) three-center integrals (uv|P) and
O(N?) two-center integrals (P|Q).

o These integrals can be computed once and stored in host
or even GPU memory.

o The formation of the Fock matrix can then be performed
according to the following equation

1
F#V:ZZD)\U[B)I?JB;};V_iB)I\DVBfa} (8)
P Ao

The bottleneck of this formulation can be implemented
using DGEMMs to perform the contraction of slices of
the B tensor. This is now a memory and FLOP-efficient
process, especially for GPU architectures.

Similar considerations apply to the MP2 algorithm, whose
bottleneck under the RI formalism becomes the formation of
the two-electron integrals in the MO basis

(ialjb)rr = > _ BL B, ©)
P
which can also be implemented using DGEMMs.

D. Overarching Algorithm

An overview of our overarching algorithm is shown in
Fig. 2. Our implementation uses a multi-layer dynamic load
distribution scheme utilizing MPI in which a centralized super
coordinator distributes polymers to worker groups from a
centralized polymer priority queue. Workers then compute
the RI-MP2 energy and gradient of their assigned polymers
on GPUs, primarily utilizing dense linear algebra operations
as a result of the RI formulation. The full RI-MP2 gradient
calculation including the calculation of the two and three-
center integrals is performed on the GPUs to avoid CPU
bottlenecks [35]l, [36]. The resulting energy and gradient is
then returned to the coordinator alongside the request for a
new work allocation. The coordinator then stores the energy
and gradient and determines which monomers are ready to be
updated to the next time step. These updates are performed
using velocity Verlet time step integration.

Worker groups are confined to a single node and can
utilize any number of GPUs within the node. There can also
be several worker groups per node, each utilizing one or
more GPUs. Each worker group has one rank per GPU with
an additional local coordinator rank to enable dynamic load
distribution within the group.

The following sections will describe in more detail the
synergistic RI-HF and RI-MP2 gradient formulation, the asyn-
chronous time step behavior, and our runtime auto-tuning to
optimize DGEMM routines.
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approximation for varying length glycine chains on a single 40 GB NVIDIA
A100 GPU. The cc-pVDZ/cc-pVDZ-RIFIT primary and auxiliary basis set
were used. Data points are labelled with the speedup of the RI vs non-RI HF
version.

E. Synergistic RI-HF and RI-MP2 gradient formulation

In molecular dynamics simulations, reducing the cost of
each time step is crucial. The fragmentation framework helps
by distributing the computational load across multiple nodes.
However, to decrease latency, it is also necessary to mini-
mize the computational cost of each fragment. Traditionally,
computational chemistry algorithms are optimized for large
molecular fragments that require hours or days per computa-
tion. For quicker time step processing, smaller fragments are
preferable to reduce latency to mere seconds. For example,
although Stocks et al. achieved over 80% of peak floating point

Pluv)* + 3 Cpe(PIQ)*  (10)
PQ

—2) WSS,

nv

nv P

+2  Dyhi,, (11)
%

where S’fw and hfw represent the first derivative of the overlap
matrix and core Hamiltonian, respectively. The remaining
intermediates are calculated through a series of linear algebra
operations (primarily DGEMMs) as defined in the Appendix.

This formulation has been specifically designed such that
the full coefficients of the integral derivatives (2}, (pq, Dy,
and W,,) are computed first. This allows the electron repul-
sion integral derivatives to be calculated and accumulated into
the final gradient on the fly, without needing to be stored.
Due to targeting small fragments, the three-center integrals are
stored directly in GPU memory. While this limits achievable



individual fragment sizes to approximately 1k basis functions
per fragment for a 40 GB GPU, it eliminates large CPU-GPU
transfers. When multiple GPUs are used for a single fragment,
a subset of the three-center integrals are stored on each GPU
(batched by the auxiliary index) such that achievable fragment
size can be increased by using more GPUs.

Whilst RI-HF formally scales as O(N*) relative to O(N?)
for a direct HF calculation with integral screening, RI-HF has
a much smaller pre-factor and can be expressed primarily as a
sequence of matrix multiplications rather than complex four-
center integrals. For very small fragments, this can provide
up to 6x speedup and is faster than previous implementations
where the RI approximation is used only for the MP2 com-
ponent across the full range of accessible fragment sizes, as
shown in Fig. [3

F. Asynchronous time steps

A significant challenge when scaling MBE fragmented cal-
culations to a large number of parallel resources is balancing
the workload due to the different computational costs of
differing sized fragments. Previous single point energy cal-
culations have relied on producing an extremely large number
of fragments that can be dynamically distributed to workers
such that the total computation time is much larger than that of
a single fragment. However, in the context of AIMD, the full
MBE gradient must be recomputed each time step and thus
alternative methods of load balancing are required to increase
efficiency whilst retaining minimal time step latency.

In this work, we propose a novel method to asynchronously
allow a subset of the system to progress to the next time step
whilst the remainder of the previous time step is completed.
This is achieved with no compromise to accuracy and enables
full utilization of computational resources by eliminating all
system wide synchronization.

An arbitrary fragment towards an extremity of the system
is first chosen to be the reference fragment. Polymers for each
time step are then stored in a priority queue ordered first by
the minimum distance of one of the constituent monomers
to the reference fragment, then ordered by decreasing size.
This ensures that polymer calculations are ordered such that
all polymers involving the monomers near the reference are
completed first. This allows these monomers to be integrated
to the next time step and begin computation asynchronously
while the remainder of the previous time step polymer calcu-
lations are completed. Tie-breaking on polymer size ensures
that larger polymers with longer compute latency are started
first, leaving smaller polymers to fill in any gaps at the end of
the time step.

Only polymers that are ready to begin computation are
stored in the priority queue so that a worker’s request for
additional work can be immediately fulfilled by popping a
polymer from the queue as shown in Fig. ] When the energy
and gradient are received from a worker, they are accumulated
and stored until there are no longer any active polymers that
include a particular monomer. That monomer’s component
of the overall gradient is then calculated using the MBE of
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Result

Eumgrs3
{VE,, VEy,VEyk}

the polymer gradients and used to update the monomer atom
positions to the next time step. All of the polymers consisting
of this monomer and other updated monomers can then be
formed and inserted into the queue for the next time step.

Storing all of the trimer gradients independently requires
an enormous amount of memory and becomes a bottleneck to
the formation of the MBE monomer gradients. However it is
guaranteed that the coefficient of all trimer gradients is 1 in
the final MBE so these gradients can be accumulated directly
into a full system gradient, combining only the monomer and
dimer contributions on the fly when a monomer is completed.

Two approaches identify fragments for release based on
system size. For small systems, fragments are dynamically
constructed each time a monomer updates. This involves
searching through all updated monomers to form fragments
with the current monomer. For large systems, frequent searches
create bottlenecks. Therefore, the full polymer list is generated
every few time steps. When a monomer updates, it is added
to a pre-formed list, improving efficiency without sacrificing
accuracy, assuming the fragment cutoff is adequately adjusted
for monomer velocities.

Fragments with broken bonds can also be updated asyn-
chronously, however they cannot be inserted into the queue for
the next time step until the surrounding fragments have also
been updated so that the H-caps can be placed accordingly.
This is maintained as a separate list of dependencies based on
the initial bond structure.

G. GEMM runtime auto-tuning

Vendor-provided general matrix to matrix multiplication
(GEMM) routines are known to perform extremely well on
GPU accelerated architectures. The GEMM API allows the
computation of AB, ATB, ABT or ATBT. Each of these
options may be performed by a different underlying algorithm
and, consequently, may exhibit different performance charac-
teristics. This is demonstrated in Table which shows a
performance difference of up to a factor of 20 between the
different algorithmic variants. It should also be noted that the
best variant varies on a case-by-case basis and can also vary
by machine and library versions.



TABLE IV
SINGLE-GCD DGEMM PERFORMANCE ON AMD INSTINCT™ MI250X
GPU (ROCM 5.4.3) ON 3 MATRIX SHAPES ARISING IN RI-MP2
GRADIENT CALCULATIONS.

Matrix Shape Performance (TFLOP/s)
m k n NN NT TN TT

960 324480 960 159 19.5 14.3 11
120 2957880 120 292 0332 712 0370
192 738048 192 6.8 0.89 9.4 0.54

Given that matrix transpose operations are inexpensive in
comparison to GEMM operations, it is possible to change
the GEMM variant by transposing one or both of the input
matrices. For example, the calculation C' = AB can be recast
as D = AT followed by C = DT B. This allows the best-
performing variant to be utilized, provided that it is known.

The runtime auto-tuning system employed in this work
dynamically determines the optimal GEMM variant for each
GEMM shape encountered during execution, providing perfor-
mance portability across a range of systems without relying
on machine-specific optimizations. For each GEMM shape, the
auto-tuning system trials each algorithmic variant, measuring
the performance (including any transpose operations) with
CUDA/HIP event timers. Once each variant has been tested,
the determined best variant is used for all subsequent GEMM
calls with the same shape.

The measurement of each variant is performed in-situ to
avoid redundant work. If a given GEMM shape is performed
10 times in a calculation, the first 4 computations are used to
trial each variant while the remaining 6 use the best variant.

Performance improvement from this auto-tuning process can
only be expected if the same GEMM shapes are repeated
throughout the computation. AIMD is an ideal application for
this method as the most expensive GEMM shapes typically
appear 10x to 100x in each gradient calculation, and this
is further multiplied by the number of time steps. The auto-
tuning procedure achieved a speedup of 13% for an AIMD
simulation of a urea trimer, and 12% for a paracetamol trimer
on a single AMD Instinct™ MI250X Graphics Compute Die
(GCD).

VI. How PERFORMANCE WAS MEASURED
A. HPC platforms and software environment

All calculations were performed on the OLCF Frontier and
NERSC Perlmutter supercomputers, ranked number 1 and 14
on the June 2024 TOP500 list, respectively [38]].

Frontier is a Cray EX supercomputer with 9,408 nodes, each
containing an Optimized 3rd Generation AMD EPYC™ 64-
core CPU and 4 AMD Instinct™ MI250X GPUs. Each GPU
has two GCDs, each with 64 GB of HBM2e memory and a
sustainable peak double precision matrix throughput of 22.8
TFLOP/s for a total sustainable peak of the machine of 1.715
EFLOP/s.

Perlmutter is a Cray Shasta machine with 1,536 GPU nodes,
each containing one AMD EPYC™ 7763 CPU and 4 NVIDIA
A100 GPUs. Each GPU has 40 GB of HBM2 memory and
a theoretical peak double precision matrix throughput of 19.5

TFLOP/s (18.4 TFLOP/s sustained) for a total sustainable peak
of the machine of 113 PFLOP/s.

Both systems are connected by a Slingshot-11 dragonfly
interconnect with at most three hops between any two nodes.

B. Benchmark molecular systems

To assess our program’s scalability and computational ef-
ficiency, we tested it on increasing-radii spherical sections of
crystal lattices from selected biomolecules. These include urea
(CH4N20) and paracetamol (CsHgNOz). These molecules
were selected for their significant academic and industrial
relevance. For instance, urea’s different crystalline forms are
utilized across various sectors, including solvent production,
and the pharmaceutical and cosmetics industries. Similarly, the
crystal lattice stability of paracetamol is crucial for therapeutic
applications. These compounds exhibit multiple polymorphs
and a predominance of non-covalent interactions, areas where
hybrid DFT underperforms [39]. Polymorphism—the ability
of materials to exist in multiple crystalline forms—influences
bulk properties like solubility, dissolution and drug efficacy.
Predicting polymorphs is very challenging, as lattice energy
differences between polymorphs are usually under 2 kJ/mol,
beyond the accuracy of force fields and hybrid DFT [40].

Recent advances show that combining MBE3 with scaled
MP2, can accurately predict lattice energies and thus poly-
morph energetics [35]]. Our program leverages this method to
perform calculations that successfully predict the stability of
these crystal structures for the first time at the MP2 level.

Moreover, an isolate of the prion-protein (PrP) protein fibril
(PDB ID: 6PQS5), was utilized to evaluate the program’s energy
conservation and time step latency. PrP isolates have been used
to establish the molecular mechanisms of most prion diseases,
such as fatal familial insomnia [41]]. The system has 360 atoms
across 36 monomers with 7 to 14 atoms per monomer for a
total of 1,380 electrons, equivalent to the previous largest MP2
level simulation [[13]].

Additionally, we apply our program to a crystal structure
of an Alzheimer’s Af 42-residue amyloid fibril (PDB ID:
2BEG). The assembly of amyloid fibrils is a hallmark of
Alzheimer’s disease, and modeling its formation with force
fields presents a significant challenge as this process is pre-
dominantly driven by non-covalent interactions [42]]. Accurate
quantum mechanical simulations could therefore elucidate its
binding nature, assisting in the development of drugs for
Alzheimer’s diagnosis and treatment. The 2BEG structure
comprises five [-strands each including 374 atoms. As part
of the low latency testing, we employ a variant of 2BEG
containing four (-strands (1,496 atoms and 5,504 electrons),
comprising monomers ranging between 7 and 16 atoms. As
the chemical behavior of the above two protein fibril systems
are dominated by non-covalent interactions, such structures
present ideal biological use cases for MP2.

All calculations are performed in FP64 precision with the
cc-pVDZ primary and cc-pVDZ-RIFIT auxiliary basis sets.
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C. Measurement methodology

The program’s correctness has been rigorously tested
against existing CPU based implementations in Q-Chem [28]]
and GAMESS [27]]. The analytic gradients have been addition-
ally validated against finite differences for smaller systems and
checked for energy conservation.

Program timings are obtained using MPI_Wtime at the
beginning of each time step in addition to rank local timings
of every fragment calculation.

A FLOP count is performed at runtime by accumulating a
local counter on each rank. On every GEMM call with matrix
dimensions (m x k) x (k x n) the counter is incremented
by 2mnk. This gives a lower bound on the total number of
floating point operations. The counter is accumulated across
all ranks with MPI_Reduce at the end of the calculation so
that an exact lower bound on the floating point performance
is output following every calculation.

The code is benchmarked on the time-to-solution (time step
latency), scaling, and sustained peak performance. To account
for startup effects, the first time step is discarded from the
measurements to obtain long-term AIMD throughput.

Where percentages of peak are presented, they are reported
with respect to the sustainable peak rather than the theoretical
peak to account for thermal throttling.

VII. PERFORMANCE RESULTS
A. Time step latency

When performing molecular dynamics simulations, there is
a critical compromise between size and time scales. Smaller
systems allow lower time step latency which gives access to
longer simulations times. To demonstrate the capacity of our
algorithm to perform large time scale simulations, we perform
simulation of the 6PQS5 and 2BEG systems under the micro-
canonical (NVE) ensemble on 64 (256 A100 GPUs) and 1,024
Perlmutter nodes (4,096 A100 GPUs), respectively.

The 6PQ5 system was simulated for 5 ps. To determine
the optimal dimer and trimer cutoffs, we evaluated the con-
tributions of the dimers and trimers at the starting geometry.
Figure [5|shows the diminishing impact of the dimer and trimer
corrections as the distance between centroids increases. Con-
tributions become negligible when their magnitude falls below
0.1 kJ/mol, allowing for their exclusion from the calculation.
In this case, a dimer cutoff of 22 A and a trimer cutoff of 9 A
is used, yielding ~2k total polymers per time step.

Energy (kJ/mol)

—— ATotal

—9200 — APE — AKE

—400

Time (ps)

Fig. 6. Total energy conservation of the AIMD/MP2 simulation for the 6PQ5
system with asynchronous time steps.

The 5 ps simulation with 1 fs time steps took 3.16
hours for an average time step latency of 2.27 seconds,
enabling simulation of 38 ps/day. The average floating
point throughput was 1.66 PFLOP/s representing 35% of the
sustainable peak. The floating point throughput is primarily
limited by the small fragment sizes, which lead to subopti-
mal GEMM dimensions. In addition, a significant portion of
computational time is allocated to FLOP-inefficient O(N?)
eigenvalue decomposition and integral calculations rather than
the O(N*) GEMM operations. With synchronous time steps,
the time step latency is increased to 3.0 seconds for the same
system, reducing simulation ability to 29 ps/day. Thus, for this
system, the asynchronous time step approach provides a 24%
speedup.

A plot of the energy at each time step of the simulation is
presented in Figure [6] demonstrating that energy is conserved
over the duration of the simulation. This demonstrates the
accuracy of the analytic gradients. The small fluctuations in
the total energy are due to the time step discretization as well
as a small component from polymer corrections dropping in
and out as the distance between the polymers fluctuates around
the cutoff. It is planned to incorporate a smooth transition for
these polymer cutoffs to reduce the effect in future work.

The 4-strand 2BEG system was simulated for 100 fs using
1024 nodes of the Perlmutter supercomputer. The cutoffs were
calculated following the same strategy as the 6PQS5 system,
using a 20 A cutoff radius for dimers and 12 A for the trimers.
Each 1 fs step of the simulation took 3.4 seconds. This leads
to a simulation throughput of 25 ps/day for a system
comprised of 1,496 atoms and 5,504e~ at the MP2 level of
theory. The overall performance of this simulation was 31%
of FP64 R-peak. With synchronous time steps, the time step
latency increases to 5.6 seconds, so the asynchronous time step
scheme provides a 40% increase in throughput by eliminating
global synchronization.

B. Scaling

a) Strong scaling: Figure [/| shows the strong speedup
obtained for a variety of node counts on the Perlmutter
and Frontier systems. The program scaled efficiently up to
6,144 GPUs (1,536 nodes) on Perlmutter (the entirety of the
machine), demonstrating 91% parallel efficiency with respect
to the 64-node calculation. The AIMD -calculations were
performed on a spherical section of a paracetamol crystal
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Fig. 7. Strong scaling of the AIMD implementation from 64 to 1,536 nodes
on Perlmutter and 1,024 to 9,400 nodes on Frontier. Points are labelled with
the parallel efficiency with respect to the smallest number of nodes.

lattice with 80 molecules in a dense 36 A diameter sphere,
with one molecule per monomer. On 1,536 nodes, an average
FLOP rate of 61.31 PFLOP/s was achieved, which corresponds
to 54% of the Perlmutter double precision sustainable peak.

On Frontier, AIMD calculations were performed on two
systems built from 24,000 and 44,532 urea molecules. These
systems were fragmented such that there are 4 molecules for a
total of 32 atoms and 128 electrons per monomer. Calculations
were conducted for 3 time steps on 1,024 to 4,096 nodes for
the 24k urea cluster and 6,164 to 9,400 nodes for the 44,532
urea cluster system. Parallel efficiencies of 92% and 87%
were were observed for the 24k urea system on 4,096 nodes
(16,384 GPUs, 32,768 GCDs) and the 44,532 urea cluster
system on 9,400 nodes, respectively. Additionally, the FLOP
rate obtained at each node count was excellent, with 62%,
61% and 56% of attainable peak achieved on 1,024, 2,048,
and 4,096 nodes, and of 48% of attainable peak on 9,400
nodes (818 PFLOP/s).

b) Weak scaling: The weak scaling calculations were
performed on systematically growing spherical sections of the
urea crystal lattice. The number of fragments in the system
was designed to yield an approximately constant workload
of 4 polymers per GCD, while progressively increasing the
number of GCDs from 4,096 to 32,768. The resulting weak
speedup is shown in Fig. [8] There is a slight drop in efficiency
at 4,096 nodes which is attributed to increased communication
overheads from the dynamic load balancing scheme.

C. Efficiency and peak performance

To showcase our AIMD program’s ability to handle large
scale simulations on Frontier, we utilized 9,400 nodes to per-
form several steps of AIMD simulations at the MBE3/MP2/cc-
pVDZ level on two systems with 44,532 and 63,854 urea
molecules, modeling a total of 1,425,024 and 2,043,328 elec-
trons, respectively. Distance cutoffs of 15.3 A were adopted
for dimers and trimers to maintain high-accuracy. For the
largest system, this led to >2.8 million polymer contributions
to the energy and gradient to be evaluated at each iteration.
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Fig. 8. Weak scaling of spherical urea crystal lattices from 512 to 4,096
nodes on Frontier. Points are labelled with percentage of peak obtained.

Both systems are over 1,000x larger in size than for any
previously attempted AIMD at this level of accuracy.

For the 44,532 urea molecule system, the implementation
completed a full AIMD time step in 13.7 minutes on 9,400
nodes with a floating point throughput of 932.6 PFLOP/s.
For the 63k urea system with 2.04 million electrons, a
full AIMD time step was completed in 25.6 minutes,
performing 1.55 zettaFLOPs on 9,400 nodes with a FLOP
rate of 1006.7 PFLOP/s. This represents 59% of Frontier’s
FP64 R-Peak, marking a milestone in the realm of high-
performance computational chemistry for its blend of
molecular scale, accuracy, and computational efficiency.

All calculations presented in this work performed between
31% and 62% of the attainable FP64 peak demonstrating
efficient usage of the computational hardware. Frontier is one
of the most energy efficient machines, ranking 13" on the June
2024 Green500 list with a computational efficiency of
53 GFLOP/joule. Perlmutter ranks 40" with half the compu-
tational efficiency (27 GFLOP/joule). For systems with larger
fragments the MI250 based system is far superior, however we
observed that for smaller fragments the A100 based Perlmutter
significantly outperformed Frontier, likely balancing out the
energy efficiency differences with improved hardware utiliza-
tion. This appears to be due to more efficient random memory
accesses improving the integral kernel efficiency and faster
vendor provided eigensolver on the A100 system.

TABLE V
CALCULATIONS WITH RECORD PERFORMANCE AND TIME-STEP LATENCY.
Urea 2BEG
(2,043,328¢e7) (5,504e™)

Frontier: 9400 nodes
1006.7 PFLOP/s

Perlmutter: 1024 nodes
3.4 s/timestep




VIII. IMPLICATIONS

As discussed in Sections[[ll]and [[V] the effectiveness of MD
methods has historically been limited by two primary hurdles:
on the one hand, the lack of accuracy in scalable methods used
to calculate forces, on the other, the impractically steep com-
putational scaling with system size of wave-function methods
for quantum-accurate ab initio forces. These limitations have
hindered the applicability of high-fidelity molecular modeling
techniques to addressing critical challenges in many areas
of chemistry, biology, materials science, and physics, where
traditional methods are inadequate due to a simultaneous
requirement for high accuracy and large molecular scales.

This work enables a major leap of capabilities in com-
putational chemistry and molecular dynamics, enabling the
simulation of biomolecular-scale molecular systems with un-
precedented accuracy. We overcome the limitations that previ-
ously confined quantum-accurate AIMD simulations to small
systems. For the first time, our work allows for the simula-
tion of biomolecular systems containing well over a million
electrons, utilizing fully ab initio potentials at the MP2 theory
level. These simulations are significantly more accurate than
any previously conducted at this scale. For systems with 103-
10* electrons, we achieve record time-step latency of a few
seconds. This is unprecedented for AIMD calculations using
MP2 potential, providing a speedup of O(103x) for systems
with more than O(10?) atoms.

These achievements are made possible through the exploita-
tion of exascale supercomputing resources at unprecedented
computational efficiency in computational chemistry simula-
tions. This is evidenced by attaining 59% of the Frontier
supercomputer’s FP64 R-Peak, achieving a 1006.7 PFLOP/s
performance on 9,400 nodes.

This leap forward is not merely incremental; it redefines the
boundaries of what is computationally feasible in molecular
dynamics, setting a new benchmark for accuracy and effi-
ciency in large-scale simulations. The enhanced scalability and
accuracy of our simulation techniques empower the scientific
community to tackle longstanding challenges in both chem-
istry and biology.

In our study, we have demonstrated through proof-of-
concept calculations the potential to tackle two critical prob-
lems that have remained unsolved due to their dual require-
ments for high accuracy and large molecular scale: the identifi-
cation of crystalline polymorphs and the simulation of the fold-
ing and misfolding of amyloid fibrils in Alzheimer’s disease.
However, our findings pave the way for a wide range of novel
applications, including, but not limited to, the exploration
of covalent-binding drugs, intricate ligand-receptor interac-
tions dominated by non-covalent forces, detailed simulation
of enzyme mechanisms, modeling of biochemical reaction
transition states, protein folding processes, DNA interactions
with various biomolecules, and an unprecedented level of
understanding of the molecular basis of diseases.

Each of these applications not only pushes forward the
frontier of scientific knowledge but also lays the groundwork

for practical innovations in technology and industry.
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APPENDIX

The following defines the remainder of the intermediates
for the RI-HF + RI-MP2 gradient calculation in Eq. (I0). The
three-center and two-center gradient coefficients are:
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where the auxiliary quantities are defined as:
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where FP is back transformed to the AO basis to form I'?’
and the RI approximated MP2 amplitudes are:
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The energy-weighted density matrix is:
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and the antl—symmetrlzed electron repulsmn integrals:

with:
12
Lll

Gpa = 2(pq|rs)rr — (ps|rq)ri-

Here, & indicates the sum of intermediate tensors that may
not fill the full domain of the resulting tensor.
The density matrix D is split into HF and MP2 components:

D,u,l/ = DfVF + = Z Ci,u,ciu~

is defined block-wise

DMP2 DﬁIVF
The MP2 relaxed density matrix D2
in the MO basis:
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where:
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and the occupied-virtual block is obtained by solving the Z-
vector equation:
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