Quantifying hallmarks of ADC response and toxicity through AI-powered analysis of the Multi-Omics Spatial Atlas In Cancer (MOSAIC)

European Conference on Computational Biology July 20 - July 24, 2025

Christian Bromley¹, Chiara Regniez¹, Barbara Bodinier¹, Tobias Zehnder¹, Jonas Beal¹, Nour Kanaan¹, Claire Baudier¹, Alexandra Hardy¹, Quentin Bayard¹, Andy Karabajakian¹, Elo Madissoon¹, Xenia Snetkov¹, the MOSAIC consortium², Nathan Noiry¹, Alberto Romagnoni¹, Eric Durand¹, Caroline Hoffmann¹, Atanas Kamburov¹

Background

- → Antibody drug conjugates (ADCs) are a rapidly evolving class of cancer therapeutics.
- The most prevalent type of ADC comprises a monospecific, tumour antigen-targeted antibody conjugated to cytotoxic payload via a molecular linker, yet bispecific, dual-antigen targeting ADCs are also advancing in the clinic.
- Challenges remain in identifying novel targets, payload selection, patient selection and clinical development optimisation.
- Few studies have extensively characterised known ADC targets pan-cancer across multiple omics modalities including spatial transcriptomics.

Cancer cell NECTIN4 expression heterogeneity is concordant between scRNAseq and spatial transcriptomics with potential implications for patient response to treatment

scRNAseq - Visium -Single cells from bladder sample CH_B_090a Cancer cell NECTIN4 expression heterogeneity Spatial NECTIN4 Deconvolution T_CD8 cluster c02 that have non-zero NECTIN4 expression → Bladder cancer patients have pronounced NECTIN4 Cancer cell expression heterogeneity between cancer cell subpopulations Spot clusters subpopulations identified in scRNAseg.

→ Embeddings of single cells from a bladder cancer sample (CH_B_090a) reveal 6 cancer cell subpopulations with distinct NECTIN4 expression.

→ scRNAseq-derived cancer cell subpopulations map to distinct spatial locations and have concordant presence/absence of NECTIN4 expression.

Objectives

- Quantify hallmarks of ADC efficacy using multi-omics data, computational biology and Al.
- → Optimise ADC positioning relative to patient populations, indication selection and biomarker identification to improve efficacy.

Data

- → MOSAIC¹ data comprises 4 omics modalities (10X) Visium spatial transcriptomics, 10X Chromium Flex scRNAseq, bulk RNA-seq and WES), H&E stained histology images, and clinical data including detailed treatment and response data from >2000 patient samples - a subset of which was analysed here.
- → Public datasets TCGA, CPTAC and GTEx also used.

Spatial Clinical

Target co-expression across spots informs bispecific ADC assessment

1 Owkin Inc., New York, USA; 2 University Hospital Erlangen; Institut Gustave Roussy (IGR) Paris; Centre Hospitalier Universitaire Vaudois (CHUV Lausanne; Charité Universitätsmedizin Berlin; University of Pittsburgh

AI model trained on pre-clinical perturbation data predicts payload sensitivity of patient malignant cell populations

→ We trained the LEAP model⁵ to predict the efficacy of >600 drugs including some with a shared mechanism-of-action to ADC payloads.

→ Test performance for many cytotoxic agents was strong

Model performance of payload-like drug molecules

Test performance across splits: Spearman correlation

With pre-trained LEAP models we predicted sensitivity of patients cancer cell subpopulations to >600 drugs. This included Epothilone B; a microtubule inhibitor akin to MMAE that is a well established payload. In bladder cancer samples we noted inter- and intra-tumour heterogeneity in predicted sensitivity to Epothilone B.

exposure and the bystander effect

Spatial transcriptomics enables estimation of tumour payload

Known ADC targets recovered by single-cell and spatial data derived features

→ Ground truth ADC targets were defined (data sources: AACT, ChEMBL, Citeline Trialtrove). Patient level features were computed for three indications and aggregated to the gene-level by for example taking the mean.

Cancer	Minimum pre-clinical		Minimum phase II		
	N drugs	N targets	N drugs	N targets	
Bladder	39	14	21	10	
Lung adeno	53	21	27	15	
Breast	158	47	44	12	

→ Known ADC targets across multiple indications have significantly higher mean Moran's index (left representing spatial autocorrelation and target expression heterogeneity) and malignant-stromal expression fraction difference (right - ns= non-significant P>0.05). All differences are statistically significant by Mann Whitney test (P<0.01) unless marked ns.

Known ADC target entering clinical trials for the disease All other protein coding genes

Multimodal patient data: Multiscale understanding of biology, from molecule to cell to tissue to organism

What information can each modality provide?

Hallmark of ADC benefit	H&E/ IHC	Bulk RNAseq	WES	scRNAseq	Spatial transcript- omics	MOSAIC & Multimodal AI
Protein function and subcellular localisation	Yes					Yes
Target expression level or amplification	Yes	Yes	Yes	Yes	Yes	Yes
Target expression hetero- geneity	Yes			Yes	Yes	Yes
Target specificity on cancer cells	Predicted			Yes	Predicted	Yes
Target co-expression				Yes	Yes	Yes
Payload sensitivity		Predicted		Predicted	Predicted	Predicted
Immune TME contexture				Yes	Yes	Yes
Bystander effect estimation					Yes	Yes

References

[1] MOSAIC Consortium, Hoffmann, C. (2025) 'MOSAIC: Intra-tumoral heterogeneity characterization through large-scale spatial and cell-resolved multi-omics profiling'. bioRxiv, p. 2025.05.15.654189. Available at: https://doi.org/10.1101/2025.05.15.654189

[2] Bausch-Fluck, D. et al. (2018) 'The in silico human surfaceome', Proceedings of the National Academy of Sciences, 115(46), pp. E10988–E10997. Available at: https://doi.org/10.1073/pnas.1808790115.

[3] Khera, E. et al. (2020) 'Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping', Neoplasia (New York, N.Y.), 23(2), pp. 210–221. Available at: https://doi.org/10.1016/j.neo.2020.12.001.

Predictors'. arXiv. Available at: https://doi.org/10.48550/arXiv.2502.15646.

Delivery to Solid Tumors by Antibody-Drug Conjugates: Implications for Bystander Effects', The AAPS journal, 22(1), p. 12. Available at: https://doi.org/10.1208/s12248-019-0390-2. [5] Bodinier, B. et al. (2025) 'Predicting gene essentiality and drug response from perturbation screens in preclinical cancer models with LEAP: Layered Ensemble of Autoencoders and

[4] Burton, J.K., Bottino, D. and Secomb, T.W. (2019) 'A Systems Pharmacology Model for Drug

Conclusions

We harnessed multimodal oncology data to quantify hallmarks of ADC response.

Integrating scRNAseq and spatial transcriptomics provides unprecedented insights on target expression heterogeneity, co-expression and bystander effects.

The analysis of the TME contexture can inform optimal combinations therapies for ADC + TME drugs like IO

Feature extraction from multi-omics data enables patients subtyping, novel target discovery, combination therapy selection and biomarker ID in a new era of more complex, dual payload, multi-target ADCs.