
Conclusions
We harnessed 
multimodal 
oncology data to 
quantify hallmarks 
of ADC response.

Integrating scRNAseq and 
spatial transcriptomics 
provides unprecedented 
insights on target 
expression heterogeneity, 
co-expression and 
bystander effects.

Feature extraction from 
multi-omics data enables 
patients subtyping, novel 
target discovery, 
combination therapy 
selection and biomarker ID 
in a new era of more 
complex, dual payload, 
multi-target ADCs.

→ Quantify hallmarks of ADC efficacy using 
multi-omics data, computational biology and AI.

→ Optimise ADC positioning relative to patient 
populations, indication selection and biomarker 
identification to improve efficacy.

→ MOSAIC1 data comprises 4 omics modalities 10X 
Visium spatial transcriptomics, 10X Chromium Flex 
scRNAseq, bulk RNA-seq and WES, H&E stained 
histology images, and clinical data including detailed 
treatment and response data from 2000 patient 
samples - a subset of which was analysed here.

→ Public datasets TCGA, CPTAC and GTEx also used.

→ Antibody drug conjugates ADCs are a rapidly 
evolving class of cancer therapeutics. 

→ The most prevalent type of ADC comprises a 
monospecific, tumour antigen-targeted                  
antibody conjugated to cytotoxic payload via                      
a molecular linker, yet bispecific, dual-antigen         
targeting ADCs are also advancing in the clinic.

→ Challenges remain in identifying novel targets, 
payload selection, patient selection and clinical 
development optimisation.

→ Few studies have extensively characterised known 
ADC targets pan-cancer across multiple omics 
modalities including spatial transcriptomics.
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→ Ground truth ADC targets were defined (data sources: AACT, ChEMBL, Citeline Trialtrove). Patient level features were computed for 
three indications and aggregated to the gene-level by for example taking the mean.
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Spatial transcriptomics enables estimation of tumour payload 
exposure and the bystander effect

Known ADC targets recovered by single- cell and spatial data derived 
features

Quantifying hallmarks of ADC response and toxicity through AI-powered analysis of the 
Multi-Omics Spatial Atlas In Cancer (MOSAIC)

Multimodal patient data: Multiscale understanding of 
biology, from molecule to cell to tissue to organism
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Cancer cell NECTIN4 expression heterogeneity is concordant between scRNAseq and spatial transcriptomics with 
potential implications for patient response to treatment

→ We trained the LEAP model5 to predict the efficacy of 600 drugs including some with a shared mechanism-of-action to 
ADC payloads.

AI model trained on pre-clinical perturbation data predicts payload 
sensitivity of patient malignant cell populations

→ Test performance for many cytotoxic agents was strong → With pre-trained LEAP models we predicted sensitivity of 
patients cancer cell subpopulations to 600 drugs. This 
included Epothilone B; a microtubule inhibitor akin to MMAE 
that is a well established payload. In bladder cancer 
samples we noted inter- and intra-tumour heterogeneity in 
predicted sensitivity to Epothilone B.

→ Embeddings of single cells from a bladder cancer sample 
CH_B_090a) reveal 6 cancer cell subpopulations with 
distinct NECTIN4 expression.
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→ scRNAseq-derived cancer cell subpopulations map to distinct 
spatial locations and have concordant presence/absence of 
NECTIN4 expression.
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→ Known ADC targets across multiple 
indications have significantly higher 
mean Moranʼs index (left - 
representing spatial autocorrelation 
and target expression heterogeneity), 
and malignant-stromal expression 
fraction difference (right - ns= 
non-significant P0.05. All 
differences are statistically 
significant by Mann Whitney test 
P0.01) unless marked ns.

What information can each modality provide?
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Extract rich immune-TME insights from suite 
of tools integrating H&E images, single cell 
and spatial data.
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→ Bladder cancer patients have pronounced NECTIN4 
expression heterogeneity between cancer cell 
subpopulations identified in scRNAseq.

Example bladder cancer

→ An automated annotation 
pipeline uses 
deconvolution and 
geometric calculations to 
define tumour regions.

→ Spatial permutation tests 
allow us to quantify gene 
co-expression more 
accurately and identify 
patients that may benefit 
from conditional-binding 
bispecific ADCs, as 
opposed to independent 
binders that do not rely 
on co-expression.

Cancer cell NECTIN4 expression heterogeneity Single cells from bladder sample CH_B_090a
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