Silent Protocol:

0 -VM: General purpose zero knowledge computing layer

Silent Research Labs

Jan 2024

Contents

1 Introduction

2 Decentralized proving through the 0OVM
3 The Concept of Anonymous Verification

4 Silent 0OVM Design
4.1 Silent OVM components
4.2 Anonymous Relaying L

5 Root Network
5.1 Root Network Data Flow
5.2 The root network Processes L
5.3 Key Resharing

6 Conclusion

1 Introduction

Over the past decade ZK systems have gained in prominence. A zero-knowledge proof (ZKP) is a
method of proving the validity of a statement without revealing anything other than the validity
of the statement itself. It is a proof system with a prover, a verifier, and a challenge that gives
users the ability to publicly share a proof of knowledge or ownership without revealing the details
of it. We have seen different applications of zero knowledge systems pop up in recent times like
rollups, zkMLs, privacy systems and end interfaces pushing the utility curve of general-purpose
zero-knowledge arguments up and to the right. Interactive proof systems and arguments (zero
knowledge or otherwise) have made the jump from theory to practice. And this has opened new
doors in the design of different protocols that utilize zk proofs to process state update however it
has generated additional insights into improvements that needs to be brought forward in order to
meet current demand.

There are two main properties that ZK systems bring to the table. First is the property of
succinctness where it becomes magnitudes faster for verifying a proof of computational integrity over
a set of pre-defined set of constraints compared to processing the given computation itself. Second
is the property of "zero knowledge" where hiding certain parts of the computational statement is
possible for proving the correctness of the state transition. These helps to build distributed systems
that scales and also that preservers and protects privacy.

Zero Knowledge systems in the context of blockchains are mainly used to for scaling and for
building privacy systems. These causes two issues, generating a zero-knowledge proof is a computa-
tionally intensive process resulting in high computational fees for on-chain verification and becomes
responsible for creating system bottlenecks due to strenuous computation required for generating
the proofs. One the other hand, on-chain proving systems requires private data from users due to
which building privacy systems on public smart contract enabled blockchains developers become
inefficient due to existing transaction schematics (private DAOs, secure data transfer layer etc.)

In this paper we are defining a proxy for public blockchains known as OVM, which is a chain
agnostic and consensus agnostic transaction verification and a proving marketplace custom built for
enabling scalable ZK applications. Developers can make use of 0VM for inclusion of transaction in
a public state machine in a trustless and privacy preserving manner and for generating zk proofs
efficiently for different proving systems through GPUs, FPGAs and ASICs.

2 Decentralized proving through the 0OVM

Developers can use OVM to either tap into a decentralized proving market or utilize the properties of
anonymous verification facilitated by 0VM. 0VM allows developers and users to verify computation
of arbitrary systems defined within the protocol. It allows for distributed proof generation and acts
as a proof aggregation engine for a variety of zk applications. It is based on the uniplonk variety

to create the processor that allows for verification of proof from different application from different

parties.

0VM allows for high performant proving, while providing availability guarantees that’s common
across decentralized networks. It does this utilizing off-chain aggregation to prove multiple zero
knowledge proofs by uniforming the Verifiers work for families of circuits. Specifically, a single fixed-
cost Universal Verifier that can check proofs for circuits of different: sizes, public input lengths,
selector polynomials, copy constraints, and even different custom gate sets.

0OVM is a chain agnostic and consensus agnostic protocol, that hosts different types of nodes in
order to generate and verify zero knowledge proofs for distributed applications. Based on the type
of nodes(hardware specifications) a transaction workload could be submitted into the network. The
renode layer in OVM is responsible for passing the workload to the "root network" of the protocol
where different prover node based on class specification can process a transaction by signing the
message.

The signers initiated within the 0VM makes up the root network that receives "request" from the
user through the renode layer and processes workload into a certain layer where they get consumed
by the specified category of provers returning an output and only after receiving a majority input into
the request. 0VM leverages maximum parallelization through sharding at both the root network level
and the network level for processing transactions. This parallel processing capability significantly
boosts the network’s efficiency and scalability. Based on type of workload that a user or a developer
wants to file into, the cost of a transaction or a certain cycle of proving gets determined by the

network.

3 The Concept of Anonymous Verification

In a public state machine the way to update the state is to send a state update request, while,
building a zk application that has private data that cant be sent to the network, the problem of
updating the state becomes relevant. This has led to the creation of 3rd party actors in a tx lifecyle
known as, 'relayers’ who pays for the transaction but retrieves the transaction fee back from the
value that is being relayed. This has stopped many types of zk applications(example private voting)
from being developed over time.

To formally characterize the problem of providing a relayer a guarantee or a commitment for
getting repaid for processing a transaction and including it on chain on behalf of the user before the
inclusion takes place, we define the idea of Anonymous Verification.

Anonymous Verification is a communication primitive that enables anonymous inclusion of trans-

action into the blockchain by providing the following guarantees:

1. Every message m sent over the network by the user U is verified by a group of actors A, to

check U has balance > a the required amount of gas.

2. A message m is delivered to the network by the relayer, if and only if the associated signature

of the verified group of actors is accepted by the relaying network.

Through 0OVM we ensures that the 3rd party actors (example relayers) gets paid for their services
by extending trust of a accepted network. The user and relayer agrees on the fact that the user
will pay using funds already deposited in the network. Once the relayer successfully submits the
transaction into the blockchain, they receive their payment as their service fee.

0VM acts as the guarantor for every transaction based on whose guarantee the relayer submits
the transaction.

At a high level, 0VM perform the verification in a trustless and secure manner, where the decen-
tralized base of signers helps us, build the concept of trustless anonymous verification into practice
throuhg OVM. The ideal solution to the problem allows the 3rd party including the transaction in
the system to receive cryptographically secure authentication as a forward payment guarantee based
on which they can conduct their actions trustless anonymous verification. OVM helps us not only
build a decentralized prover network but also allows us to implement an authentication protocol

that provides trustless anonymous verification of user data.

4 Silent OVM Design

0VM provides a architecture that provides trustless anonymous verification and a decentralized base
for offering decentralized proving for building zero knowledge applications. It is built on a series
of components introduced in Section 4.1. We discuss the interaction flow and protocol design for
achieving the properties of anonymous verification through the OVM in Section 4.2. We leave out
details of the verifier circuit hosted by the 0VM through the signer nodes in the root network, for a

future article.

4.1 Silent OVM components
4.1.1 The rooot network

The Root network utilizes the Genarro-Goldfeder 2020 [GG20], to allows efficient threshold-based
signing with no trusted dealer. There are three multi-party computation routines namely: key
generation, key signing, and key resharing. The key generation ceremony allows the nominated
parties to construct the parameters for a new polynomial. The output of the event is conceived as a
public key which becomes the representative for this network. When the renode layer (later defined
in the paper) delegates an outgoing transaction to be signed or validated by the root network, the
root network using the actors delegate the task over to certain set of signers or specialized node
that recognize their participation, prepare a copy of the message to be signed, and enter the signing
ceremony. They either are responsible for validating a transaction or proving a zero knowledge proof.
The key-signing ceremony begins when the required number of participants are present and allows
a signature from the public key generated during the key generation process of the protocol for an

outgoing transaction to be generated. The renode layer receives the output and makes it compatible

with the recipient chain to satisfy the requirements.

Each ceremonies involves a communication round where each participant checks the validity of
all other expected members, as prescribed by the system on top of utilizing a commit-reveal scheme
that helps ensure that secret shares for each participant cannot be changed after joining into a
ceremony. If signers aborts any process which results in an attributable failure, all participants
can make a blame transaction. Finally the Key resharing process allows the parties to add a new

member to the network by sharing the secret without updating the system’s final public key.

4.1.2 Renode Layer

Renode Layer is the component in OVM that aids both in the process of building meta-transactions
processing zero knowledge proofs and posting back and forth from the main network and the root
network with the help of relayers. Meta-transactions utilize EIP-712 [BLE17], with which we can
work using structured data. By building meta-transactions, users can sign and relay transactions
through relayers, who submit them on-chain on their behalf. For processing anonymous verification
the user interacts with the system through the end interface, which is a series of contracts, where the
‘paymaster’ contract is responsible for gas payments in exchange for a service fee, and the "forwarder’
contract verifies the sender’s signature and forwards the request to the target contract with which
the user wants to interact. For processing zero knowledge proofs for zero knowldge applications
(rollups, ZkML circuits) the renode layer is pinged by end application for utilizing the OVM that

wants to communicate with the target application.

4.1.3 Encrypted Storage

An encrypted data storage and data retrieval layer help the actors in the root network to process zero
knowledge proof or verification request and to provide anonymous verification for zero knowledge
proofs. The system utilizes an offchain HSM module to post private data-store in order to save
the data of the user details off chain in the permissioned setting. However, the root network in
its permisionless setting encourages the actors in the ceremony to save the data received by the
leader node in its encrypted format and decrypt it using threshold decryption to process a certain

computation, when requested, eliminating the design dependency on external systems.

4.2 Anonymous Relaying

In this section, we go over the entire process of achieving anonymous verification and how we achieve
it. We go through an example of a user sending a relay request and anonymously paying back the
relayer using anonymous verification through the Root Network and the Renode layer.

Step 1. The user U owns a master key and utilizes it to deposit the amount a into the renode
layer, particularly in the paymaster contract. And while doing so, it creates a relay hub-specific

stealth keypair. While interacting with the Renode Layer, the user deposits assets into the paymaster

contract to fuel payments to the relayer. It also provides input data cy accompanying the transaction
that helps the system, specifically the root network in the OVM that helps identify the users relay

hub-specific key-pair in an encrypted format,

cy = E(pkp, spky).

Step 2. Once the user makes the successful deposit into the renode layer, the paymaster contract
emits an event that is listened to by the Root network using an oracle network. The coordinator in
the root network logs the details into the encrypted storage layer using asymmetric key encryption.

If this is an initial deposit, the root network adds a new index and stores the following tuple into
the encrypted storage network,

{spky, By = a}.

if spky already exists, the root network updates the corresponding entry as
{spky, By = By + a,{ou,i}},

where oy ; is a list of user’s signatures for relaying usages.
Step 3. The paymaster contract in the rneode layer does not store the user’s balance when the
user has made the deposit. However, it emits the event when the user U selects an active relayer,

R;4 from the renode layer, and initiates a message payload m with the signed information
(ma C{J = E(ka, SpkU); OuU,; = S(SSkUa {ma C{J7 Rld}))a

where:
e m is the actual transaction payload,

o ¢, = E(pkp, spky) is the encryption of stealth public key spky under the renode trust networks
public key pkp,

o ou,; = S(ssku,{m,c|j, Riq}) is the signature of U on message {m, c{;, Riq} with their stealth

private key ssky.

Step 4. The relayers sends the message to the signer in the root network through the renode
layer.

Step 5. Once the root network receives the message, the coordinator in the permissioned setting
of the network and the leader node in the permissionless setting of the network assembles a group
of singers and players to decrypt the commitment to receive the public key, verify the attached
signature and check the balance available in the now decrypted public key of the user’s relayer hub
specific key in the encrypted storage layer. If found honestly, signers would finish the now-ongoing
ceremony once the threshold is met and approve the tx-payload with their signature.

The pseudocode of the above can be depicted as follows:

1. Decrypts ¢, to get spky = D(skp,cy))
2. Verifies the signature, i.e {True} = V(spky, {m,c{j, Ria},0u,)
3. Checks if spky has enough funds By for max fee payment

4. Only then would it approve tx payload with its signature, and sends it to the selected relayer,

R;; with the following

(m, h(m, cy,00,:),0p = S(skp, {m,h(m,c,00:)}))

5. Waits for the renode layer to notify the renode trust network that the tx has been successfully

posted, the actual fee is deducted, and the balance By is updated in the database

Step 6. The relayer R;; posts the tx approval to the relay hub contract within the renode layer,

which helps the relayer gets a refund guarantee,
(m,h(m,cy,00:),0p, txsigr,,)-

Step 7. Once the renode layer successfully observes the tx being mined, it transfers the balance
from the paymaster contract to the renode Rid for completing the transaction in a permissionless

manner.

Remark. The process of anonymous verification assumes all existing entities may try to take ad-
vantage if possible. For instance, a user may claim that her balance is deducted without her consent.
In this case, Root Network should be able to provide her signature for the request, that’s why the list

of these signatures are stored as {oy,;}.

5 Root Network

5.1 Root Network Data Flow

The root network is responsible for processing the workload and returning a request whether be it for
the anonymous verification protocol or for proving a zk proof request for arbitrary zero knowledge
applications. In the Root Network, all processes - keygen, key sign, and key reshare - have a similar
data flow. In the permissioned setting the coordinator and later the leader node initiates a request
and checks if it has enough signers or nodes before starting the process. The coordinator runs the
join-party scheme and waits for other signers to join within a given time. If a player fails to join the
party within that time, the other players blame that player and continue the process. The process
is finalized if all players show up on time. If a node cannot process the shares received from other
players within a given time, it blames the party that failed to provide the share. After the process

is completed, the coordinator sends notifications to all parties involved. Moreover, before a player
quits the process, it broadcasts the generated signature to all parties involved in the same process.

To protect sensitive shares from being leaked to a third party, the Root Network uses libp2p to
ensure the network infrastructure is secure and private. Before working together in a joint-party
scheme, the Root network also ensures that individual signers verify their identities by proving
knowledge of their private keys. Moreover, all signers working together in the network use public
key encryption for transmitting messages within the protocol and conduct message passing directly

without any relay.

5.1.1 Message Security and integrity check during the message processing

The Root Network, to ensure smooth coordination of processes and avoid signing failures, uses a
mechanism called ’blame signaling’ to identify bad signers or players within the network. The coor-
dinator works with all nodes in the network impartially. The messages are verified and transferred
between the nodes/signers and the coordinator by checking and verifying their shares, avoiding man-
in-the-middle attacks or network availability issues. Peers or signers within the network can detect
an abort in the signing process and blame a particular signer. This can lead to the signer losing
their stake in the network once it becomes permissionless. The coordinator continues the signing
process and completes it only after receiving enough shares from the participants. In a permission-
less setting, if the leader node does not receive enough shares from the local party, it can request
the shares from the peers who claim to have them without halting the signing process.

After receiving a share for a specific message, the coordinator checks its validity by verifying
the signatures and ensuring that it meets the majority requirement within the network. Once
this requirement is satisfied, the coordinator signs the message and moves the system forward. The
process for a given message gets finalized once the coordinator signs it. By default, the coordinator, or

leader node in a permissionless setting, will notify all parties involved in the process upon completion.

5.1.2 Increased performance through Parallel and Batch Processing

The Root Network’s coordinator or leader node allows signers to work on multiple signing tasks
in parallel. Once the coordinator receives requests and messages from the renode layer, it starts a
ceremony for a specific message. It waits for others to join, but at the same time, other nodes can
join a new ceremony for a different message due to the unique identification of each message in the
network. Based on the message ID, signers can authorize and sign the request using their key shares
in the network. If a node is slightly late to work on a ceremony with a given message ID, and the
group has already been formed and completed, the coordinator will return an error code to notify
the node that they are not part of the key sign party. This design enables signers to work on different
message processing threads, where ’Session ID’ is applied to allow the underlying communication
management service to dispatch the signing messages to the corresponding process thread without

facing any risks from side-channel attacks.

The Root Network also supports batch processing, where signers can send multiple messages to
the coordinator in a single signing request. This feature helps to reduce network communication
between nodes dramatically. The coordinator stores the intermediate result of each signing round for
different messages and packs them together as a bulk message to send to peer nodes. On receiving
the bulk P2P message, the receiver verifies the correctness of the batch and processes each message

one by one.

5.2 The root network Processes

The Root Network relies on Genarro-Goldfeder [GG20] for its key generation and key signing process;

we recall the protocols in Section 5.2.1 and Section 5.2.2, respectively.

5.2.1 Ceremony: Key Generation

The key generation protocol is largely as follows:

o Each Player P; selects u; €r Z, and computes [KGC;, KGD;] = Com(g") and broadcasts
KGC;. Each Player P; broadcasts E;, the public key for Paillier’s cryptosystem.

e FEach Player P; broadcasts KGD;. Let y; be the value decommitted by P;. The player P;
performs a (t,n) Feldman-VSS of the value w; , with y; as the free term in the exponent.
The public key is set to y = [[, v; . Each player adds the private shares received during the
n Feldman VSS protocols. The resulting values z; are a (¢,n) Shamirs secret sharing of the

secret key x =). u; . Note that the values X; = g™ are public.

e Let N; = p;q; be the RSA modulus associated with E; . Each player P; proves in ZK that he
knows z; using Schnorrs protocol [Sch91], that N; is square-free using the proof of Gennaro,

Micciancio, and Rabin [GMR98], and that hy, he generate the same group modulo N;.

The Root Network requires all players to collaborate to generate key pairs. In the keygen process,
all players should have their clocks synchronized, allowing them to join the key generation process
at almost the same time. Each signer or player in the distributed key generation process establishes
communication channels to share secrets and generate the protocol key pair. Malicious players are
identified and blamed. Each signer stores their secret shares with a backup and forms the public

key by summation over the shares generated by the scheme.

5.2.2 Key Signing, Root network message verification and signature generation

The Root Network runs on input m (sent by the user utilizing the relaying network).

Let S C [1...n] be the set of players participating in the signature procedure. We assume that
|S| =t + 1, where t is the threshold value.

For the signing protocol we can share any ephemeral secrets using a (¢,t + 1) secret sharing

scheme, and do not need to use the general (¢,n) structure.

We note that using the appropriate Lagrangian coefficients A; g each player in S can locally map
its own (t,n) share x; of x into a (t,f + 1) share of z,w; = (A\;s)(2i), ie. © =) ,cgw; . Since

X; = g"" and \; s are public values, all the players can compute W; = g** = X{\i’s.

o Phase 1. Each Player P; selects k;,v; €r Z4; computes [C;, D;] = Com(g™*) and broadcasts
C;i . Define k =3, g ki,7 = > ;cg7 Note that

ky = Z kiv; mod g,
ijes

kx = Z k;w; mod q.
i,jES

o Phase 2. Every pair of players P; , P; engages in two multiplicative-to-additive share con-
version subprotocols, MtA [GG18] and MtAwc [GG20]. Note that the first message for these

protocols is the same and is only sent once.

— P, , P; run MtA with shares k;,7; respectively. Let a;; [resp. [(ij | be the share received
by player P; [resp. P;] at the end of this protocol, i.e. k;y; = au; + ;. Player P; sets
0; = kivi + Ej# a;; + Zj# Bij. Note that the §; are a (¢,¢ + 1) additive sharing of
ky =2 ics0i

— P;, Pj run MtAwc with shares k;, w; respectively. Let p;; [resp. v;; | be the share received

by player P; [resp. P; | at the end of this protocol, i.e.
kiwj = puij + vij
. Player P; sets 0; = k;w; + Zj# Mij + Zj# v;j. Note that the o; are a (¢, +1) additive
sharing of kx =, g 0.
e Phase 3. Every player P; broadcasts
— 0; and the players reconstruct 6 =), g d; = k7. The players compute 5" mod gq.

— T; = g7 h; with ¢; €r Zq and proves in ZK that he knows o;, ¢;.

e Phase 4. Each Player P; broadcasts D;. Let I'; be the values decommitted by P;. The players

compute I' = [[,. 4 T's, and

R = F6_1 = g(zz‘es A/i)k_lry_l = g’yk_l’y_l = gk_l
as well as r = H'(R).

« Phase 5. Each player P; broadcasts R; = R as well as a zero-knowledge proof of consistency

between R; and E;(k;), which each player sent as the first message of the MtA protocol in Phase

93&H§¢

€S
the protocol aborts.

e Phase 6. Each player P; broadcasts Si = R as well as a zero-knowledge proof of consistency

between S; and T;, which each player sent in Phase 3. If

ZU?AHSi

€S
the protocol aborts.

o Phase 7. Each player P; broadcasts s; = mk; + ro; and set s = os;. If the signature (r, s) is

correct for m, the players accept, otherwise they abort.

Through the Root Network, multiple players can collectively sign messages that can be verified
by a single public key. Before the key generation protocol starts, the coordinator in the network
assembles online players and invites them to participate in the ceremony for the signature generation
process. Signers involved in the key sign process participate in the signature generation within a
given time frame. If any player does not cooperate or fails the message signing process, other parties
will flag them. Once a signature is generated, the coordinator batches them and generates the output
from the ceremony. In a permissionless setting of the network, a player can be struck if they fail to

participate.

5.3 Key Resharing

Following [Can+20], key-refresh phase proceeds as follows.

Each party P; samples a Paillier modulus IV; obtained as a product of safe-primes, as well as
ring-Pedersen parameters (s;, t;). Then, P; samples a secret sharing (le7 . ,x?) of 0 € Fy, computes
X, = (Xi1 = gmg, L XD = g"”?>, and broadcasts X ;, N;, s;, t; to all. After receiving all the relevant
values, party P; encrypts each x¥ under Py, ’s Paillier public key Nj and obtains ciphertexts C¥, for
all k # i, which he sends to all parties.

Then, each P; refreshes to a new private key-shares z} = z; +), x@ mod ¢, updates public key-
shares of all parties X7 = X; - [], Xg, and stores new (Ni,s1,t1),...,(Ny, Sn,t,). Concurrently,
each P; (locally) samples y; < F, and communicates the value ¥; = ¢g¥. For malicious security, the

aforementioned process is augmented with the following ZKP’s:
e N; is a Paillier-Blum Modulus.
o ZK-Proof that s; belongs to the multiplicative group generated by ¢; in Z},.

« Schnorr PoK for the discrete logarithms of X}, ..., X" and Y;.

10

e Verify that the plaintext value of C]Z: is equal to the discrete logarithm of X;, for all j # 1.

For the security analysis, reader may refer to the original paper [Can+20].

6 Conclusion

This paper introduced the design and implementation of OVM. It provides a decentralized infras-
tructure for processing and generating zero knowledge proofs for general purpose zero knowledge
applications along side allowing an end agent to get verified and trustless certainty for a future event.
We showed that by leveraging three independent components, untrusted players operating under the
Root network, the renode layer contains the set of smart contracts that allow users to interact with
the relaying network and the relayers themselves, and finally, unrestricted access to decentralized
storage. The protocol can provide distributed solving and can achieve anonymous verification with-
out requiring any middle party or trusted guarantor with a single point of failure. 0VM is designed
not to preclude arbitrary relayer services, ensuring no collusion between the Relayer and Root Net-
work. The Root Network design can be easily extended to support any chain. During the initial
days, the root Network is set up to be permissioned and later is updated to a permissionless. We
presented a framework for achieving decentralised zero knowledge proof generation and for achieving
anonymous verification ensuring furthur development of zero knowledge applications on the public
blockchain..

References

[BLE17] Remco Bloemen, Leonid Logvinov, and Jacob Evans. “EIP-712: Ethereum typed struc-
tured data hashing and signing”. In: Ethereum Improvement Proposals 712 (2017).

[Can+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled.
“UC non-interactive, proactive, threshold ECDSA with identifiable aborts”. In: Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
2020, pp. 1769-1787.

[GG18] Rosario Gennaro and Steven Goldfeder. “Fast multiparty threshold ECDSA with fast
trustless setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 2018, pp. 1179-1194.

[GG20] Rosario Gennaro and Steven Goldfeder. “One round threshold ECDSA with identifiable
abort”. In: Cryptology ePrint Archive (2020).

[GMRI8] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. “An efficient non-interactive sta-
tistical zero-knowledge proof system for quasi-safe prime products”. In: Proceedings of
the 5th ACM Conference on Computer and Communications Security. 1998, pp. 67-72.

11

[Sch91] Claus-Peter Schnorr. “Efficient signature generation by smart cards”. In: Journal of
cryptology 4.3 (1991), pp. 161-174.

12

	Introduction
	Decentralized proving through the 0VM
	The Concept of Anonymous Verification
	Silent 0VM Design
	Silent 0VM components
	Anonymous Relaying

	Root Network
	Root Network Data Flow
	The root network Processes
	Key Resharing

	Conclusion

