
When AI, Trust, and Open Source Collide: Inside the Nx
Supply Chain Breach

Imagine this: you update a tool you have used countless times before. No warnings, no glitches. Everything
appears normal. But this time, the supply chain update does more than install, it steals. In a matter of minutes,
your GitHub tokens, SSH keys, and even cryptocurrency wallets are quietly siphoned away into repositories you
never created. By the next morning, your private code is no longer private.

This nightmare unfolded in August 2025, when attackers compromised the Nx build system, a tool trusted by
thousands of developers across the world. What seemed like a routine package update quickly spiraled into one
of the most damaging and sophisticated supply chain attacks of the year.

The attack was not simply about malicious code running wild. It revealed just how fragile the foundation of The attack was not simply about malicious code running wild. It revealed just how fragile the foundation of
digital trust can be. Artificial intelligence tools, meant to assist developers, were subtly manipulated into aiding
the attackers. GitHub’s own automated workflows, designed for eŨciency and collaboration, were turned
against the very people who depended on them. Entire private repositories, many containing sensitive and
proprietary work, were dragged into the open without warning.

The attack unfolded on August 26, 2025, when malicious versions of the Nx package were quietly pushed to
npm. Hidden inside was telemetry.js, a tiny script with devastating intent.

Once installed, it went hunting on Linux and macOS systems, searching for cryptocurrency wallets, SSH keys,
keystores, environment files, and tokens for GitHub and npm. To add chaos, it even planted a self-destruct
command into shell configs, so the next time a victim opened a terminal, their machine could crash instantly.

Here is how trust was broken, and why this matters for every team writing code today.

Supply Chain Breach: The Silent Harvest

But the theft did not stop there. The stolen data was wrapped in layers of triple-base64 encoding and then
uploaded into the victims’ own GitHub accounts. Ghostly repositories with names like s1ngularity-repository,
s1ngularity-repository-0, and s1ngularity-repository-1 began appearing by the thousands, each one holding
vaults of stolen secrets.

Here is where the attack broke new ground. The malware did not act alone. It hūacked AI command-line tools
such as Claude, Gemini, and Q.

By forcing them to run with reckless flags such as ȿyolo, ȿtrust-all-tools, and ȿdangerously-skip-permissions,
the attackers turned developer productivity tools into reconnaissance agents.

AI, meant to assist developers, became an unwitting accomplice in one of the year’s biggest breaches. Some AI
guardrails blocked the attempts, but enough did not. Hundreds of machines were compromised this way.

By August 27, 9:00 AM UTC, GitHub stepped in and shut down the attacker-created repositories. But in the
eight-hour window before that, the damage had already spread. Stolen data was downloaded and copied.

Then came phase two. Using compromised GitHub tokens, the attackers flipped private repositories to public.
Between August 28, 4:00 PM and August 29, 2:00 AM UTC, more than 400 organisations and users saw over 5,500
private repositories suddenly exposed.

This wasn’t just theft. Sensitive code was broadcast to the public, entire projects were renamed under the This wasn’t just theft. Sensitive code was broadcast to the public, entire projects were renamed under the
chilling pattern s1ngularity-repository-#5letters#, and intellectual property was left wide open for anyone
watching.

The very tools meant to protect innovation were manipulated into betraying it.

The AI Twist in the Supply Chain: When Helpers
Became Traitors

Phase Two: Private to Public

For some teams, it meant years of work and competitive advantage spilled into the public domain overnight.

At first, poisoned npm packages seemed to explain everything. But on August 28, 9AM UTC, researchers
uncovered a deeper flaw: a GitHub Actions workflow misconfiguration.

This meant it wasn’t just packages that were compromised. the very supply chain infrastructure meant to
protect developers had been turned into a weapon.

The Supply Chain Backdoor: A Workflow Gone Wrong

The Fallout

It relied on pull_request_target, which runs with elevated permissions.

PR titles weren’t sanitised, allowing malicious code injection.

Even after removal from the master branch, the workflow lingered in old branches, leaving a
hidden backdoor

By the time
the dust
settled:

And remember, base64
encoding does not hide secrets.
It is as private as invisible ink.
Anyone who grabbed the repos
could decode and abuse the
data.

Even after GitHub took action, Even after GitHub took action,
new malicious repos surfaced.
The monitoring continues
because exposure lingers.

400+
organisations
and users hit

5,500+
repositories
exposed

1,000+
valid GitHub
tokens leaked

Dozens
of cloud and
npm tokens
compromised

Around 20,000
sensitive files
lost

What Security Teams Must Do

Lessons From Nx: The Fragility of Supply Chain Trust

Remediate: Purge malicious Nx versions, upgrade to safe releases, delete dropped files, and clean up shell
configs.

Audit & Detect: Hunt for rogue repos (s1ngularity-repository*), review GitHub audit logs, and monitor
pipelines for suspicious activity.

Rotate Credentials: Revoke and regenerate all tokens (GitHub, npm, SSH, cloud keys). If wallets were
exposed, move funds immediately — they can’t be rotated.

This breach was bigger than a poisoned package, it exposed the fragility of trust in the developer ecosystem.

The lesson is stark: supply chain security is not just dependency scanning. It’s about scrutinising every
workflow, every tool, every layer of trust we take for granted.

When trust breaks, as Nx showed, the fallout isn’t just vulnerabilities patched. It’s secrets leaked, reputations
shattered, and futures exposed.

Developers trusted npm and got poisoned.

Teams trusted GitHub workflows and got hūacked.

Users trusted AI tools and saw them weaponised.

Reference: https://www.wiz.io/blog/s1ngularity-supply-chain-attack

Curated by Oluwafemi Adeleye

