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Executive Summary 
 

Traditional models of knowledge transfer and collaboration, such as social network analysis 
and bibliometric mapping, focus on relational dynamics and in doing so, overlook the epistemic 
content of disciplinary knowledge and thus its influence on effective interdisciplinary 
collaboration. Addressing this gap, this paper presents a novel adaptation of the Knowledge 
Transfer Graph (KTG), originally developed by Minami et al. (2019), to optimise interdisciplinary 
team formation for solving complex real-world problems. Using Heathrow Airport’s 
decarbonisation goals as a pilot case, the model assesses the epistemic alignment of distinct 
disciplinary perspectives, represented by thematic vectors derived from AI generated action 
places, against a benchmark vector constructed from empirically validated, successful 
decarbonisation strategies. Through Kullback-Leibler (KL) divergence, minimisation and 
constrained optimisation, the model quantifies the cognitive value of each discipline as part of 
an interdisciplinary approach to tackling airport carbon emissions.  

Tested, using synthetic benchmarks with known weights, this adaptation of the KTG offers a 
data-driven and conceptually grounded framework for optimising interdisciplinary team design. 
It achieves this through evaluating the alignment of an interdisciplinary team’s collective 
knowledge set with the epistemic demands of a complex problem.  

The pilot application to Heathrow’s sustainability goals demonstrates its practical utility as a 
guiding framework for interdisciplinary team design in response to complex problems. 
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Literature Review   
 

Effective knowledge transfer is central to innovation and competitive advantage. It involves the 
exchange or dissemination of knowledge between individuals, groups or organisations and is 
closely tied to ‘absorbative capacity’ – the ability to recognise, re-order and apply new 
information based on prior knowledge (Cohen & Levinthal, 1990). Whilst literature emphasises 
the importance of acquiring, managing and optimising the economic value of knowledge, 
enhancing problem-solving capabilities and performance, critics have noted an academic 
overemphasis on factors that encourage knowledge sharing. The investigation of cooperation, 
trust and organisational culture/structure dominates consideration of the epistemic output of 
knowledge sharing and how this can be optimised  (Castro & Moreira, 2023; Yeboah, 2023). 

Further, due to their narrow focus on the dynamics of knowledge sharing channels, many 
frameworks favour abstract academic models with limited capacity to inform practice (Ward et 
al., 2009; Castro & Moreira, 2023; Yeboah, 2023). This focus has ultimately led to little progress 
being made in suggesting how strategic knowledge is created and exchanged (Kowalska-
Styczeń et al., 2018). By design, deterministic approaches navigate the challenging complexity 
of conducting an empirical study in the field (Ward et al., 2009) by simplify complex knowledge 
systems through assuming uniformity, resulting in less representative models.  

 To overcome these difficulties, computational models such as agent-based modelling 
(Appendix A), have been deployed to better map knowledge systems. However, these still 
largely focus on how structural properties influence knowledge diffusion within organisations 
(Kowalska-Styczeń et al., 2018), rather than the epistemic value of what is being transferred. 

Despite the ‘increasing consensus that real-world policy problems are inherently 
interdisciplinary and cannot be addressed with knowledge from only a single scientific or 
academic discipline’ (Newman, 2023), current approaches to modelling such collaboration 
remain limited in both scope and practical utility (Huutoniemi et al., 2010; Newman, 2023; 
Hvidtfeldt, 2016; Kiss et al., 2019). 

Whilst a wide range of conceptual (e.g., Newman, 2023), computational (e.g., Kowalska-Styczeń 
et al., 2018), and bibliometric models (e.g., Marchiori & Franco, 2020), have been developed to 
study collaboration, most of these approaches revolve around the structure of social interaction 
rather than the structure of knowledge itself (Hvidtfeldt, 2016; Fiore, 2008). 

Network analysis techniques, that attempt to map the influence of intellectual structure and 
relationships (Marchiori & Franco, 2020; Alvarez-Meaza et al., 2020) including: social network 
analysis (SNA), often used to map collaboration patterns among individuals or institutions by 
looking at co-authorship, communication or project collaborations (Aboelela et al., 2007; 
Lungeanu et al., 2014) and bibliometric analysis, deployed to quantify the extent of 
interdisciplinarity through citation diversity, co-citation patterns and author affiliations (Kiss et 
al., 2019; Newman, 2023), fail to capture the epistemic value of the knowledge being exchanged 
(Hvidtfeldt, 2016; Miller et al., 2008). This highlights the need for models that engage directly 
with the content and compatibility of the knowledge being transferred, rather than the systems 



transferring it (Kowalska-Styczeń et al., 2018). These models exist above the limitingly narrow 
level of abstraction that prevents real-world applicability, whilst residing below the higher-level 
conceptual frameworks that delve into the epistemology and axiology of multi-, inter- or trans-
disciplinarity. These conceptual frameworks, whilst useful for classification lack operational 
precision and contextual grounding (Newman, 2023) diminishing their ability to inform 
interdisciplinary team formation and knowledge integration (Morse et al., 2007).  

Together, these limitations reflect a broader issue that research surrounding interdisciplinarity 
and knowledge diffusion frequently fails to consider, the effectiveness and contextual relevance 
of knowledge components and the subsequent impact on a team or system’s collective 
epistemic capacity (Hvidtfeldt, 2017; Morse et al., 2007). Addressing this issue requires a new 
approach - one that models the cognitive architecture of disciplinary knowledge sets and their  
integrational value.   

A key motivator for this study, as proposed by Hvidtfeldt (2016), is the notion that effective 
interdisciplinary collaboration is not simply a function of who interacts, but how well their 
knowledge components - concepts, methods and assumptions - can be integrated (Hvidtfeldt, 
2016; Miller et al., 2008; Huutoniemi et al., 2010). Thus, this paper investigates how disciplinary 
perspectives can be combined in ways that are epistemically efficient and contextually 
appropriate, through adaptation of Minami et al.’s Knowledge Transfer Graph (KTG). 

The generated model does not aim to replace existing tools like SNA or Bibliometrics but rather, 
to complement them, by focusing on the integration of diverse disciplinary perspectives. The 
model offers a conceptually grounded, data-driven method for optimising interdisciplinary team 
composition to address real-world complex problems. Much of the criticism expressed in this 
paper, concerns academic frameworks’ lack of practical utility. The following section, highlights 
the potential utility of the model in guiding interdisciplinary team formation to address real-
world challenges. 

 

Bridging Theory and Practice  
 

This adaptation of the KTG, goes beyond providing a novel theoretical contribution to academia,  
delivering practical utility in addressing real-world challenges. As mentioned above, academic 
methods for mapping interdisciplinary knowledge integration remain limited and further, 
institutional team formation is largely predicated on job labels or social affiliations. Thus, rarely 
drawing on the optimal epistemic combination to most effectively address a complex problem.    

The model’s simplicity, logical structure and clearly derived computational results, aim to 
encourage an institutional shift in the methodological approach to team design. Rather than 
inferring contributors’ value based on job role, social ties or prior collaboration, it provides a 
practical tool for gauging the contextual relevance and combinatory value of their disciplinary 
perspectives, grounding team formation in the cognitive demand of the problem at hand.  

 



Foundational Knowledge Transfer Graph (KTG) (Minami et al., 2019) 

 

Figure 1 – Original KTG (Minami et al., 2019) 

Developed in response to the limitations of earlier techniques, such as Knowledge Distillation 
(Hinton et al., 2015) and Deep Mutual Learning (Zhang et al., 2018), the KTG presents a flexible 
approach to modelling collaborative learning among deep neural networks. It moves beyond the 
application of fixed Student-Teacher roles by enabling each model (or “node”) to share 
knowledge with others, in a way that better reflects the complexity of real-world collaboration 
where learning often involves multiple sources of influence.  

The KTG models collaborative learning as a directed graph (Appendix B) where nodes represent 
an individual model and edges denote the flow of information between them. What 
distinguishes the KTG is the ability to regulate the degree and direction of transfer through a 
system of gating functions (Appendix C), that manipulate the degree of influence of the transfer 
loss (Appendix D) in the model’s parameter optimisation process. The gradient (Appendix F) of 
each transfer loss is backpropagated only to the target model, not the source. The total loss 
observed (Appendix G), represents a model’s own supervised learning and the cumulative 
influence of its peers, ensuring independent but coordinated learning.  

To determine which combinations of nodes, edges and gate types produce the most effective 
output of a given target node, the KTG framework incorporates a graph optimisation formula - 
the Asynchronous Successive Halving Algorithm (ASHA) (Appendix H). By exploring a range of 
graph structures, the ASHA evaluates the ability of each configuration to maximise the accuracy 
of the target node. It allocates more focus to promising configurations while eliminating weaker 
ones.  

Tests demonstrated that KTGs consistently outperform traditional approaches such as 
knowledge distillation and deep mutual learning, further noting that increasing the number of 



nodes and gate types, improved model performance. This highlights the value of regarding 
which, and to what extent, nodes contribute to the model’s learning. In addition to this, the 
authors found that KTG configurations optimised on one dataset, generalise well to others, 
capturing general principles of good collaboration that can be translated to other tasks 
exhibiting ‘Cross Task Robustness’(Minami et al., 2019). 

Whilst originally designed for neural networks, the KTG offers a widely applicable conceptual 
framework. It provides a methodology to explore complex epistemic systems and the 
integration of sub-systems, such as unique knowledge domains or academic disciplines, within 
them.  

 

Adaption of the KTG  
 

Figure 2 – Reconfiguration of KTG Framework for Interdisciplinary Knowledge Collation 

Building on the work of Minami et al., this study recontextualises the core structural logic of the 
KTG, within an exploratory sequential mixed methods design. The research design aligns with 
the study's critical realist paradigm, which encourages the use of interpretive qualitative 
investigation to understand a phenomenon before building a quantitative model to measure it 
(Hall, 2013). This approach ensures that the adapted model is grounded in real-world data, 
making it a more robust tool for evaluating how distinct disciplinary perspectives contribute to 
solving complex, real-world problems.  

The adapted architecture illustrated in Figure 2, depicts the relabelling of each node as a 
disciplinary perspective, connected via a unique edge, to a central null node, that acts as a 
synthesis point for the collation of disciplinarily siloed insight. The model begins with a problem 
statement, which guides the collection of a set of contextually relevant benchmark case studies 



(peer-reviewed academic papers, official sustainability reports and industry case studies), that 
detail empirically validated success cases relevant to the problem. Through thematic analysis 
of these, a codebook (Appendix I) is derived. From which, a unique benchmark vector is formed 
for each exemplar - a weighted representation of key themes (𝑎, 𝑏, 𝑐, … , 𝑥) - aggregated, to act 
as a proxy for the thematic make-up of an effective, robust and holistic intervention.  

The generated codebook, is then applied to AI generated, disciplinarily siloed, action plans 
(Appendix J), with each plan parsed into a thematic vector that conveys the relative prominence 
of benchmark-derived themes present in each. These discipline specific vectors, serve as the 
source node outputs. Unlike the original model, where knowledge is shared between neural 
agents through backpropagated gradients (Appendix K), this adaptation, introduces a 
conceptual null node as a consistent target and a theoretical knowledge synthesis point. An 
optimisation process, using Sequential Least Squares Programming (SLSQP), then calculates 
the ideal weighting of each disciplinary vector through the minimisation of Kullback-Leibler (KL) 
divergence (Appendix E) between their combined output and the benchmark. The ASHA 
(Appendix H), is then deployed to evaluate disciplinary combinations that form the most 
effective interdisciplinary team of a given size. The model’s output, therefore, reveals 
disciplinary utility (via optimisation) and recommendations for team design (via the ASHA). 

Importantly, within this mixed methods approach, generative AI is leveraged as a means to 
support the model’s functionality. However, insight is ultimately drawn from thematic analysis 
and mathematical computation. 

 

Case Study  
 

Heathrow Airport was selected as the pilot case for this study, due to its scale and 
organisational complexity. As the UK’s largest airport and major global hub, it is the world’s 
second most carbon-intensive airport, reporting over 18 million tonnes of CO₂ emissions in 
2023 (Heathrow, 2024; Scott, 2025). Additional emissions include 5,844 tonnes of NOx and 37 
tonnes of PM2.5 annually, comparable to the pollution from over 3.2 million cars when 
combined with other London airports (Gayle, 2024). 

As a direct address to its environmental impact, Heathrow’s 2.0 Strategy outlines a sustainable 
transition toward ‘Net Zero Aviation’ (Heathrow, 2024) by 2050, through electrified ground 
operations, the use of sustainable aviation fuel (SAF) and modal shifts in staff/passenger 
transport, as well as other strategies. As part of their ongoing efforts toward sustainable 
development, they launched a £30,000 innovation prize through their Sustainability Centre of 
Excellence, which provides a relevant opportunity to test the model. Rather than proposing 
direct interventions, the study offers a strategic framework to optimise interdisciplinary team 
formation, demonstrating the model’s value as a consultancy style tool.  

 

 

 



Methodology  
The study is structured using an exploratory sequential mixed methods design, chosen to 
ensure that the study produces a robust, qualitatively grounded and empirically validated, tool 
to address complex, interdisciplinary problems (Newell, 2001). Guided by a critical realist 
paradigm that accommodates both interpretive and objective forms of inquiry (Hall, 2013), an 
initial qualitative exploration informs a subsequent quantitative analysis (Tashakkori & Creswell, 
2007).  

 

Qualitative Method - Thematic analysis  

Introduction  
This section outlines the thematic coding process used to support the function of the adapted  
KTG model. A multi-phased thematic analysis was adopted. An initial, inductive analysis of 
Heathrow’s Sustainability Report 2024 (Heathrow, 2024), formed a contextually grounded 
guiding codebook (Appendix I) that acted to ensure that the later deductive analysis, of the 
benchmark papers, remained critically focused and conceptually relevant. Importantly, the 
thematic coding of these exemplars is not restricted solely to a deductive approach, allowing for 
novel themes to emerge beyond those that feature in the Heathrow report.  

Although the Heathrow case is the focus of this pilot, the methodological structure is designed 
to be transferable, enabling effective interrogation of other complex problems. The grounding 
paper is not a prerequisite for an effective thematic approach which could equally deploy a 
purely inductive methodology to identify themes present in the benchmark corpus. However, it 
does help to ensure that contextual relevance is maintained and case specific value is derived.   

This thematic analysis aims to identify and quantify the presence of key themes within a curated 
selection of airport decarbonisation strategies. These themes are used to generate degree-
scaled thematic vectors, which serve as inputs into a computational model.  

 

Preparation for analysis 
Benchmark cases (airport decarbonisation strategies) were gathered using a sampling strategy 
based on a set of inclusion criteria (Appendix L) - met by seven airports (Appendix M). Source 
modes included peer-reviewed academic papers, official sustainability reports and industry 
case studies. 

The analysis was conducted through a critical realist lens, acknowledging the realness and 
quantifiability of carbon emissions and subsequent reduction strategies (ontological realism), 
but accepting that our understanding of them is contextual and shaped by language, societal 
influence and interpretation (epistemological relativism). The integrated methodology 
deployed, is supportive of this approach, as it seeks to interpret patterns in the benchmark 
sources and then transform them into a quantitative input for a computational model.  

As the sole researcher, personal bias and context naturally influence the interpretation of data. 
In light of this, a multi-phased inductive/deductive approach, alongside the application of Braun 
and Clarke’s (2006) six-phase model for reflexive thematic analysis (Appendix N), helps to 



ensure reflexivity and openness to emergent, whilst relevant and focused, insight. The analysis 
is further guided by Naeem et al.’s (2023) ‘A Step-by-Step Process of Thematic Analysis to 
Develop a Conceptual Model in Qualitative Research’, in addition to ThematicAnalysis.net 
(Braun & Clarke, 2006) which provides a concrete grounding to the methodological approach.  

 

Thematic Coding Process: 
Heathrow 2024 Sustainability Report  
For the initial deductive component of the thematic analysis, core themes were identified in   
Heathrow’s Sustainability Report 2024 (Heathrow, 2024). The analytical process followed 
phases 2 to 4 of Braun and Clarke’s (2006) thematic analysis framework, systematically coding 
and grouping data into meaningful patterns before collating them into broader themes. Naeem 
et al. inspired the quotation driven approach which provided increased methodological 
traceability in theme derivation. 

Phase 1 – Inductive Analysis of the Heathrow Sustainability Report  

Keyword Selection 
The keywords drawn from the Heathrow report followed Naeem et al.’s 6Rs of keyword selection 
(Appendix O). For example, from the statement “We supported the use of 180,000 tonnes of SAF 
in 2024, with a 92% lifecycle emissions saving and £71 million in incentives” the following 
keywords were extracted: sustainable aviation fuels (SAF), lifecycle emissions reduction, 
financial incentives and volume commitment. The selection of key quotations reflects specific 
actions targeted at addressing carbon emissions.  

Coding 
Once extracted, these keywords were grouped into codes. For example, terms such as “ultra-
rapid EV hubs” and “200kW hubs” were coded under EV charging infrastructure, following 
Naeem et al.'s 6Rs of coding (Appendix P). The coding process for the Heathrow Sustainability 
Report remained entirely inductive in an attempt to identify fundamental codes in aviation 
sustainability strategies, whilst minimising the influence of pre-existing biases. These codes 
were then labelled as directly or indirectly impacting carbon emissions.  

In total, 14 thematic codes were derived, covering core concepts such as energy systems, 
transport infrastructure and governance mechanisms - formalised in a thematic codebook.  

Theme Development 
These codes were then grouped into higher-order themes encapsulating Heathrow’s 
decarbonisation strategy. These themes were designed to be both suitably encompassing, 
whilst specific enough to have a recognisable set of actions associated with them. For instance, 
codes related to investment and planning, such as ‘Carbon Governance and Planning’ and ‘ESG 
Disclosure and Certification’, were grouped under the theme Climate-Aligned Investment and 
Governance, guided by Naeem et al.’s 4Rs of Theming (Appendix Q). This ensured thematic 
integrity and relevance to the research question. 

The thematic map below (Fig.3) provides an example of how keywords informed code creation, 
which in turn, informed theme creation. See supporting document ‘Thematic Codebook’ for the 
full keyword, code and theme derivation process.  



Figure 3 – Thematic Map 

 

Phase 2 – Deductive Analysis of Benchmark Sources  
In the second phase of the study, the thematic codebook developed during phase 1 was applied 
to the set of benchmark documents detailing successful decarbonisation strategies. Initially, 
keyword identification was based on higher-order themes, but these proved imprecise due to 
their conceptual breadth. Subsequently, this approach was replaced by the use of the 
previously established codes, narrowing the conceptual lens. Due to the much larger number of 
codes than higher-order themes, only those with a direct impact on sustainability were selected 
for analysis.  

To avoid the second phase of thematic analysis being constrained by the codes derived from the 
Heathrow paper, a brief inductive analysis was conducted to identify additional themes. 
Keywords and phrases relating to these codes, in addition to those previously derived, 
established a comprehensive list contained in the resultant codebook. Figure 4 provides a 
visual representation of this process. 

 



 

Figure 4 – Deductive Keyword Derivation  

 

 

Limitations of Thematic Analysis 
Whilst this thematic analysis offers a structured method for identifying core themes across 
empirically validated decarbonisation strategies, several limitations must be acknowledged. 
First, as the sole researcher, my academic background may have shaped theme identification 
and interpretation, focusing on technical and institutional narratives rather than behavioural or 
community-led aspects. Second, the use of the Heathrow report as a foundational document, 
may have introduced an inherent bias, limiting the considered value of other, nuanced 
approaches.  

Furthermore, whilst the use of Naeem et al.’s pre-defined structure was beneficial in 
maintaining code consistency, it’s set parameters may have inhibited thematic scope. 
Additionally, reduction of the codebook to only include direct interventions, may have 
inadvertently focused the analysis toward quantifiably supported actions, overlooking those 
more ethical, systemic or socio-environmental.  

Another notable limitation is the inconsistency of source type. Lexical variation between 
academic publications, industry case studies and official sustainability reports may lead to the 
underrepresentation of certain themes, not due to absence, but rather terminological 
difference.  

 



Translation to Quantitative Data  
This phase represents a critical point of integration in the mixed methods design, officially 
known as  ‘quantitizing’ (Nzabonimpa, 2018), where qualitative data is converted into a 
numerical format for computational analysis.  

Natural Language Processing techniques (Appendix R) were deployed to measure the relative 
presence of each theme within the benchmark documents. Frequencies were normalised by 
document length to produce theme vectors for each source. These were averaged, excluding 
null values, to produce a benchmark vector (Appendix S) , an empirical proxy for the thematic 
configuration of a successful airport decarbonisation strategy. 

A key limitation to this translation of qualitative to quantitative data, is that themes present in 
many papers are not weighted more heavily in the final vector. This potentially underrepresents 
their importance in decarbonisation strategies. However, this approach was maintained to 
ensure that less present themes in the benchmark papers, were still considered to have an 
equal potential for impact. 

 

Quantitative Approach – Data-Science, Natural 
Language Processing (NLP) and Quantitative Modelling  
 

Introduction to model development 
This model recontextualises the conceptual application of the Knowledge Transfer Graph (KTG) 
as proposed by Minami et al., through structural and parameter adaptation, to provide a 
computational method for evaluating interdisciplinary collaboration. Whereas the original 
model utilised probabilistic classification outputs from source nodes and minimised Kullback-
Leibler (KL) divergence to optimise knowledge transfer, this adaptation replaces classification 
probabilities with thematic vectors. These vectors are derived from AI generated action plans 
that represent distinct disciplinary perspectives. KL divergence is maintained as the central 
optimisation objective (Appendix T), but has been repurposed to quantify the epistemic 
alignment between each disciplinary vector and the benchmark vector discussed previously.  

In place of image classification data, this adaptation relies on thematically coded textual data, 
used to derive a benchmark vector that mimics the conceptual make-up of a successful 
decarbonisation strategy.   

A prerequisite thematic codebook was created during the qualitative phase of the study, which 
acts similarly to label taxonomies (Appendix U) in traditional machine learning. Themes were 
curated based on preexisting accounts of successful carbon reduction strategies and included, 
for example, SAF ecosystems, electric vehicle transition and building efficiency. Each theme 
was linked to a corpus of keywords and phrases found in the benchmark texts.   

 



Generating Disciplinary Representations 
In the original KTG model, each node operates as an independent learning system, that varies in 
its architecture and parameters, to produce a unique probabilistic output over a shared input 
space. In this adaptation, each node is reconceptualised as a distinct academic discipline, 
instantiated by a GPT-4o-generated "action plan", written in response to a shared prompt. 
Prompt design was tightly controlled to enforce strict disciplinary boundaries and prevent 
interdisciplinary outputs, maintaining the modular epistemic architecture of the original KTG 
design.  

Initial implementation involved generating a single plan per discipline. However, early 
evaluation revealed significant variability in the frequency and weighting of identified themes in 
each trial due to the stochastic nature of Large Language Models (LLMs). This method was 
subsequently refined to generate three independent outputs per discipline, mirroring the role of 
mini-batch sampling in Minami et al.’s neural KTG, where repeated input exposure helps 
stabilise learning and improve generalisation.  

Each plan was then parsed using the thematic codebook to produce its own unique vector 
(Appendix CC). These discipline-centred vectors replace the softmax-normalised class 
distributions (Appendix V) used in the original KTG, using distributions across semantically 
grounded themes instead. Each siloed disciplinary response is represented by a weighted 
thematic profile, capturing the conceptual make-up of these unique knowledge domains. The 
adapted method preserves the core principles of independent and diverse node outputs within 
Minami et al’s (2019) KTG, whilst adapting its batch-style logic to AI text generation. 

 

Kullback-Leibler (KL) Divergence Based Evaluation 
The original KTG deployed Kullback–Leibler (KL) divergence to quantify the transfer loss of 
knowledge, measuring how effectively a source model’s output aligned with, and improved, the 
target model’s predictions. This study adapts that use of KL divergence to evaluate epistemic 
alignment between disciplinary outputs and a benchmark vector. Rather than comparing 
probabilistic output vectors, the model compares the normalised frequency vectors of each 
discipline’s thematic make-up (𝑉̂𝑖) against the benchmark vector (𝐵̂𝑖) (Appendix E). 

In the adapted model, KL divergence, functions not as a training loss, but as an evaluation 
metric, serving as a proxy for disciplinary relevance and value. A lower KL score indicates that a 
given discipline’s thematic profile is well-aligned with the benchmark, whilst a higher score 
suggests thematic misalignment, emulating  its role in the original KTG as a measure of 
deviation from an idealised reference. This metric forms the basis of a three phase evaluation 
process: phase 1, calculates the KL divergence of each discipline from the benchmark in 
isolation, measuring the thematic alignment and suggested value of each, in tackling the 
problem; phase 2, uses constrained optimisation to determine the contributory value of each 
discipline within a team; phase 3, uses subset evaluation to identify the most effective 
combination of disciplinary perspectives under team size constraints.  

 



Individual Alignment – Phase 1 
Initial analysis evaluated the individual thematic alignment of disciplinary vectors Economics, 
Environmental Science and Engineering, against the benchmark. Initially, a single action plan 
instantiated each disciplinary perspective; to enhance robustness, this was later updated to an 
average of three independently generated plans per discipline. Parsed using the predefined 
codebook, vectors were derived, normalised and compared to the benchmark. This provided a 
quantitative reflection of each discipline’s value in tackling the problem; the derived thematic 
profile for each, providing insight into their epistemological offering. 

 

Constrained Optimisation of Interdisciplinary Synthesis – Phase 2 
In the original KTG, the target node aggregates backpropagated gradients (Appendix W) from 
source nodes, with diffusion controlled by gate functions and learned weights. These gradients, 
reflecting divergence between source and target distributions, are used to iteratively adjust 
model parameters, enabling the system to learn the optimal configuration and extent of source 
input.  

In this adaptation, the goal is not to train a predictive model, but rather to synthesise 
disciplinary knowledge in a way that most closely approximates a validated benchmark. Each 
discipline’s thematic vector (𝑉̂𝑖), is treated as a potential contributor to a composite 
interdisciplinary vector (𝑉̂𝑤), formed as a weighted sum of disciplinary inputs (Appendix X). 
Optimisation then works to minimise KL divergence between the weighted composite vector 
(𝑉̂𝑤) and the benchmark vector (𝐵̂), by manipulating the weights assigned to each disciplinary 
vector (𝑉̂𝑖) (Appendix Y). This optimisation process is more closely aligned with the optimisation 
of gating functions in the original paper, where the influence of each node is modulated to 
produce a more effective result. 

Sequential Least Squares Programming (SLSQP) (Appendix Z) is used to solve the constrained 
minimisation problem. This shift is a key methodological adaptation from the original KTG, 
moving from gradient-based learning to direct optimisation. Whereas the original KTG optimised 
internal model parameters to align predictions with guidance, this adaptation optimises the 
disciplinary make-up of a composite interdisciplinary output (𝑉̂𝑤), such that it best 
approximates a benchmark.  

The resulting weights (𝑤∗) illustrate the optimal blend of disciplinary contributions required for 
the composite, interdisciplinary output, to most closely reflect the benchmark. A higher weight 
(𝑤𝑖), implies that the epistemological offering of discipline( 𝑖 )plays a larger role in aligning the 
combined output of an interdisciplinary proposal with an effective, robust and holistic approach 
to tackle the given problem. Conversely, low or zero weights, suggest a lesser role or 
redundancy of a disciplinary perspective’s contribution to the collective output.   

 



 

 

ASHA-Based Subset Evaluation – Phase 3 
Whilst the KL divergence-based optimisation determines the ideal weighting of each discipline’s 
epistemological offering to an effective response to the problem, it operates under the 
assumption that all disciplinary perspectives are simultaneously available and contributing. 
However, in real-world scenarios, constraints such as limited team size or financial cost make 
full participation infeasible. 

To address this, rather than optimising a single, pre-defined set of disciplines, the Asynchronous 
Successive Halving Algorithm (ASHA) is used to identify the most effective interdisciplinary 
team from a larger pool of candidates. This approach evaluates many fixed-size subsets, 
maintaining the use of KL divergence to evaluate the output of the collective output of a given 
team. This methodological progression elevates the analysis beyond merely suggesting how to 
structure a team based on what each discipline offers, to suggesting who should be chosen to 
form the most effective and epistemically complementary team.  

 

Limitations 
Although this model retains many of the core components of Minami et al.’s original KTG, 
through adaptation, several limitations arise: 

• Quantification of knowledge: The thematic vectors designed to mimic softmax 
distributions are derived from keyword counts which overlook nuances in the theoretical 
and conceptual nature of each disciplines’ approach.  

• Subjective Coding: Unlike traditional models that use fixed categorical labels, themes 
are defined by researcher-selected keywords, introducing an element of interpretive 
bias into the quantitative metrics. 

• Restrictive Source Material: Disciplinary plans are generated by ChatGPT, they are 
thus unlikely to reflect the entire contributory ability of each discipline. 

• Benchmark Anchoring: Optimising for similarity to historical success may 
underrepresent novel disciplinary contributions. 

 

See accompanying notebook for code specific limitations and future directions.  

 

Methodological Summary 
This methodology recontextualises the KTG framework within a novel setting. Qualitative 
disciplinary outputs are translated into normalised thematic distributions, with KL divergence 
retained as the central measure of epistemic alignment. Through constrained optimisation and 
ASHA-based subset evaluation, the model identifies the value of disciplines and optimal 



configurations of interdisciplinary teams to tackle a complex problem. Through direct 
adaptation of Minami et al.’s design, this model looks at the output of interdisciplinary 
collaboration, framing epistemic value as a process of synthesising conceptual, relevant 
insight, from diverse disciplinary perspectives. This computationally grounded methodology 
offers a multi-layered blueprint for interdisciplinary team design, addressing what each 
disciplinary perspective offers, how they should be combined, and who should ultimately 
constitute the team in order to optimise epistemological output.  

 

Results  
 

The following results are taken from a single run of the model (see supporting document 
‘Results of Trial’). Based on the heterogeneity of Large Language Model (LLM) outputs, multiple 
runs will naturally exhibit variation in results. Measures have been put in place to minimise the 
degree of variation, with future development focused on enhancing the model’s fidelity and trial 
consistency.   

 

Individual Alignment 
Table 1:  

Individual KL Divergence:  

Discipline 
KL Divergence vs 
Benchmark* 

Economics 0.7044 

Environmental Science 0.3819 

Engineering 0.6943 

 

*initial analysis measured the thematic alignment of each discipline, in isolation, with the benchmark 
vector. 

 

With the lowest KL score, Environmental Science exhibits a broader perspective that mirrors 
the thematic composition of a successful approach. This suggests that an individual with a 
knowledge set rooted in this discipline would be best placed to provide the most effective 
approach to Heathrow’s sustainability goals when operating in isolation. 

Conversely, Economics and Engineering show high divergence scores. This indicates an 
unbalanced thematic profile with disproportionate focus on a few critical themes. Whilst the 
balance of their thematic composition fails to reflect that of the benchmark, their value lies in 



their specialised contribution. These distinct profiles reveal the role each disciplinary 
perspective plays in the development of an effective response to a complex problem.  

 

Team Optimisation 
The optimisation process shifts the focus away from individual disciplines, to their combined 
value within an interdisciplinary team. It identifies how varied disciplinary profiles are best 
leveraged in a collective response. 

 

Table 2:  

Optimised Weights: 

Discipline Weight 

Economics 0.6009 

Environmental Science 0.1734 

Engineering 0.2257 

 

These results provide a clear and efficient team-building strategy that, in this case, prioritises 
depth of insight from certain disciplines, drawing on the more holistic approach of others, to 
enhance the solution. 

The model attributes the largest weight to Economics (60.1%), utilising its in-depth coverage of 
the benchmark's most dominant themes such as 'Emission Reduction', to deliver a high-impact 
contribution. The optimisation result suggests the incorporation of Engineering (22.6%) as a 
complementary discipline to cover essential technical and infrastructural needs. 

While the low weight of Environmental Science (17.3%) appears paradoxical given its close 
alignment with the benchmark in isolation, its role is strategic. Its broad thematic profile fills the 
remaining thematic gaps, creating a final collective profile that is more closely aligned to the 
benchmark.  

To test the validity of the model’s computational approach, a multi-dimensional test was 
deployed, using a synthetic benchmark with a known ground truth (Appendix AA). The test 
confirmed that the optimisation process could accurately recover the predefined 'true weights' 
used to construct the benchmark, in addition to validating the model’s ability to significantly 
outperform other approaches, that use uniform and random weightings.  

 

 

 
 



Team Discovery (ASHA Algorithm) 
To extend the optimisation process, the Asynchronous Successive Halving Algorithm (ASHA) 
was implemented to evaluate the performance of teams, restricted by size.  

A crucial insight from this analysis is that a greater number of disciplines does not guarantee a 
more optimal team. Overlooking latent value, the model treats strategic complementarity as 
more critical than the number of contributors, focussing on the additive value of each 
perspective. Thus, the model minimises the weight assigned to a discipline if it fails to improve 
the team's initial interdisciplinary, epistemic composition.   

Table 3: 

Top-performing combinations consistently featured Engineering and Political Science, with variations in 
the third discipline:  

Top Combination KL Divergence 
Weight 
Distribution 

(Engineering, Political Science, Anthropology) 0.2251 
[0.643, 0.344, 
0.013] 

(Economics, Engineering, Architecture): 0.2392 
[0.487, 0.514, 
0.000] 

(Economics, Environmental Science, Anthropology) 0.2975 
[0.682, 0.287, 
0.031] 

Note: teams were derived from eight disciplines (Appendix BB) and scored based on the KL 
divergence between their thematic composition and the benchmark. 

The model frequently pairs, high-impact, quantitative-leaning disciplines (Engineering and 
Economics) with those offering a social or humanistic perspective. This encourages a strategy 
of assembling a predominantly technical core, guided by broader contextual insight when under 
an 𝑁 = 3 size constraint and limited disciplinary availability. The results ultimately highlight the 
value of using the ASHA to reflect realistic constraints of team size and personnel availability.  

 

Conclusion 
 

By shifting the academic focus away from the dynamics of collaboration and toward the 
epistemic make-up of its output, this model provides an innovative, data-driven tool for 
interdisciplinary team design, reframing it as a strategic synthesis disciplinary perspectives.  

The exploratory sequential mixed method design, drawing on qualitative thematic analysis to 
enable quantitative formulation, conduces a grounded, systematic comparison and 
optimisation process.   

Findings from the initial SLSQP optimisation indicated that disciplinary value doesn’t lie solely 
in individual thematic alignment, but in the complementarity of disciplines within a combined 



team. For example, in a team comprising Economics, Environmental Science and Engineering, 
Economics emerged as the most valuable contributory discipline despite Environmental 
Science achieving the lowest standalone KL divergence. This highlights the model’s capacity to 
identify strategic value beyond assumed value. The use of the ASHA, to explore a wider pool of 
disciplines for team formation restricted by size, concluded that high-performing configurations 
often included a focus on technical domains.  

Importantly, this model does not rely on the unrealistic notion that experts are domain specific, 
but rather, that individuals typically bring with them a dominant disciplinary lens, shaped by 
their education and experience. The model therefore serves as a framework for identifying the 
optimal combination of disciplinary knowledge sets within a team, regardless of whether 
individuals formally identify as disciplinary experts.  

The adapted KTG is a generic framework designed to be widely applicable to contexts beyond 
airport decarbonisation. Using of alternative benchmark sources and source node outputs, its 
architecture can be applied to any complex problem that demands the integration of 
disciplinary perspectives, such as healthcare, urban resilience, politics and governance. 

Future developments: 

• Benchmark and Batch Expansion: Incorporating successful decarbonisation reduction 
strategies of other airports or similar organisation, will help to improve the validity of the 
benchmark vector. Increasing the size of source node batches will similarly improve 
their ability to accurately reflect the thematic make-up of a disciplinarily rooted 
approach.  

• Automation: Continued development of the model looks to further leverage AI to gather 
relevant data sources and adapt source node output based on the given problem. This, 
alongside the implementation of computational-led thematic analysis using NLP, will 
enable the model to provide guidance on interdisciplinary team formation without 
human input.   

• Disciplinary Dialogue Simulation: Future development, drawing on more of the original 
KTG methodology, could simulate interaction between disciplines via iterative 
prompting to incorporate intra-node learning – mimicking team collaboration. The 
model could subsequently be used in place of a human team, effectively collating the 
most relevant information from the best suited disciplines to provide a solution, 
validated by previous success cases.  

• Knowledge diffusion consideration: Introducing factors that influence the flow of 
information between parties or nodes will help to improve the model’s real-world 
applicability and provide a more holistic appraisal of interdisciplinary collaboration.  

Ultimately, this paper delivers more than a theoretical model; it provides a practical, data-driven 
tool to guide interdisciplinary team formation based on the epistemological approach of 
disparate disciplinary perspectives. The adapted KTG model, grounded in a mixed methods 
approach, offers an adaptable framework for strategic interdisciplinary team design that aims to 
encourage an institutional shift in the current approach that relies on tradition, intuition or job 
label, to one that is strategically optimised. The models adds value by identifying what each 
discipline has to offer, how this insight is best leveraged and who ultimately constitutes an 
optimal interdisciplinary team.  



References 

Aboelela, S., Merrill, J., Carley, K., & Larson, E. (2007). Social Network Analysis to Evaluate an 
Interdisciplinary Research Center The Challenge of Integration. The Journal of Research 
Administration, XXXVIII(1), 61. 

Alvarez-Meaza, I., Pikatza-Gorrotxategi, N., & Rio-Belver, R. M. (2020). Knowledge Sharing and 
Transfer in an Open Innovation Context: Mapping Scientific Evolution. Journal of Open 
Innovation: Technology, Market, and Complexity, 6(4), 186. 
https://doi.org/10.3390/joitmc6040186  

Braun, V., & Clarke, V. (2006). Thematic Analysis | Just Another University of Auckland Blogs Sites 
Site. Www.thematicanalysis.net. https://www.thematicanalysis.net/  

Castro, R., & Moreira, A. C. (2023). Mapping Internal Knowledge Transfers in Multinational 
Corporations. Administrative Sciences, 13(1), 16. https://doi.org/10.3390/admsci13010016  

Cohen, W., & Levinthal, D. (1990). Absorptive Capacity: A New Perspective on Learning and 
Innovation. Administrative Science Quarterly, 35(1), 128–152. 

Fiore, S. M. (2008). Interdisciplinarity as Teamwork. Small Group Research, 39(3), 251–277. 
https://doi.org/10.1177/1046496408317797  

Gayle, D. (2024, February 27). London is most exposed city in world to air pollution from 
aviation, study finds. The Guardian. 
https://www.theguardian.com/environment/2024/feb/27/london-is-city-most-exposed-to-air-
pollution-from-aviation-global-study-finds 

Hall, R. F. (2013). Mixed Methods: In search of a paradigm. In Conducting Research in a 
Changing and Challenging World (pp. 71–78). Nova Science Publishers Inc. 

Heathrow. (2024, March). HEATHROW’S SUSTAINABILITY REPORT 2024 . Heathrow Airport. 
https://www.heathrow.com/company/about-heathrow/heathrow-2-0-sustainability-strategy 

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. 

Huutoniemi, K., Klein, J. T., Bruun, H., & Hukkinen, J. (2010). Analyzing interdisciplinarity: 
Typology and indicators. Research Policy, 39(1), 79–88. 
https://doi.org/10.1016/j.respol.2009.09.011  

Hvidtfeldt, R. (2016). Interdisciplinarity as Hybrid Modeling. Journal for General Philosophy of 
Science, 48(1), 35–57. https://doi.org/10.1007/s10838-016-9344-x 

Kiss, A., Fritz, P., Lakner, Z., & Soós, S. (2019). Linking the dimensions of policy-related research 
on obesity: a hybrid mapping with multicluster topics and interdisciplinarity maps. 
Scientometrics, 122(1), 159–213. https://doi.org/10.1007/s11192-019-03293-8  

Kowalska-Styczeń, A., Malarz, K., & Paradowski, K. (2018). Model of Knowledge Transfer Within 
an Organisation. Journal of Artificial Societies and Social Simulation, 21(2). 
https://doi.org/10.18564/jasss.3659  

Lungeanu, A., Huang, Y., & Contractor, N. S. (2014). Understanding the assembly of 
interdisciplinary teams and its impact on performance. Journal of Informetrics, 8(1), 59–70. 
https://doi.org/10.1016/j.joi.2013.10.006  

https://doi.org/10.3390/joitmc6040186
https://www.thematicanalysis.net/
https://doi.org/10.3390/admsci13010016
https://doi.org/10.1177/1046496408317797
https://www.theguardian.com/environment/2024/feb/27/london-is-city-most-exposed-to-air-pollution-from-aviation-global-study-finds
https://www.theguardian.com/environment/2024/feb/27/london-is-city-most-exposed-to-air-pollution-from-aviation-global-study-finds
https://doi.org/10.1016/j.respol.2009.09.011
https://doi.org/10.1007/s11192-019-03293-8
https://doi.org/10.18564/jasss.3659
https://doi.org/10.1016/j.joi.2013.10.006


Marchiori, D., & Franco, M. (2020). Knowledge transfer in the context of inter-organizational 
networks: Foundations and intellectual structures. Journal of Innovation & Knowledge, 5(2), 
130–139. https://doi.org/10.1016/j.jik.2019.02.001  

Miller, T., Baird, T., Littlefield, C., Kofinas, G., Chapin, F., & Redman, C. (2008). Epistemological 
Pluralism: Reorganizing Interdisciplinary Epistemological Pluralism: Reorganizing 
Interdisciplinary Research Research. 

Minami, S., Hirakawa, T., Yamashita, T., & Fujiyoshi, H. (2019). Knowledge Transfer Graph for 
Deep Collaborative Learning. 

Morse, W. C., Nielsen-Pincus, M., Force, J. E., & Wulfhorst, J. D. (2007). Bridges and Barriers to 
Developing and Conducting Interdisciplinary Graduate-Student Team Research. Ecology and 
Society, 12(2). https://doi.org/10.5751/es-02082-120208  

Naeem, M., Ozuem, W., Howell, K., & Ranfagni, S. (2023). A Step-by-Step Process of Thematic 
Analysis to Develop a Conceptual Model in Qualitative Research. International Journal of 
Qualitative Methods, 22. https://doi.org/10.1177/16094069231205789  

Newman, J. (2023). Promoting Interdisciplinary Research Collaboration: A Systematic Review, a 
Critical Literature Review, and a Pathway Forward. Social Epistemology, 38(2), 135–151. 
https://doi.org/10.1080/02691728.2023.2172694  

Newell, W. H. (2001). A Theory of Interdisciplinary Studies. Issues in Integrative Studies, 19, 1–25  

Nzabonimpa, J. P. (2018). Quantitizing and qualitizing (im-)possibilities in mixed methods 
research. Methodological Innovations, pages 1–16. https://doi.org/10.1177/2059799118789021 

Scott, A. (2025, February 20). Heathrow Airport has a plan to reduce its nature impacts. It also 
plans to add a new runway. Trellis. https://trellis.net/article/heathrow-airport-plan-reduce-
nature-impacts-new-runway/  

Tashakkori, A., & Creswell, J. W. (2007). The new era of mixed methods. Journal of Mixed 
Methods Research, 1(1), 3–7. https://doi.org/10.1177/1558689806293042 

Ward, V., House, A., & Hamer, S. (2009). Developing a Framework for Transferring Knowledge 
Into Action: A Thematic Analysis of the Literature. Journal of Health Services Research & Policy, 
14(3), 156–164. https://doi.org/10.1258/jhsrp.2009.008120   

Yeboah, A. (2023). Knowledge sharing in organization: A systematic review. Cogent Business & 
Management, 10(1). https://doi.org/10.1080/23311975.2023.2195027  

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond empirical risk 
minimization. In International Conference on Learning Representations (ICLR) 

 

 

This work contains [6000] words  

https://doi.org/10.1016/j.jik.2019.02.001
https://doi.org/10.5751/es-02082-120208
https://doi.org/10.1177/16094069231205789
https://doi.org/10.1080/02691728.2023.2172694
https://doi.org/10.1177/2059799118789021
https://trellis.net/article/heathrow-airport-plan-reduce-nature-impacts-new-runway/
https://trellis.net/article/heathrow-airport-plan-reduce-nature-impacts-new-runway/
https://doi.org/10.1177/1558689806293042
https://doi.org/10.1258/jhsrp.2009.008120
https://doi.org/10.1080/23311975.2023.2195027

