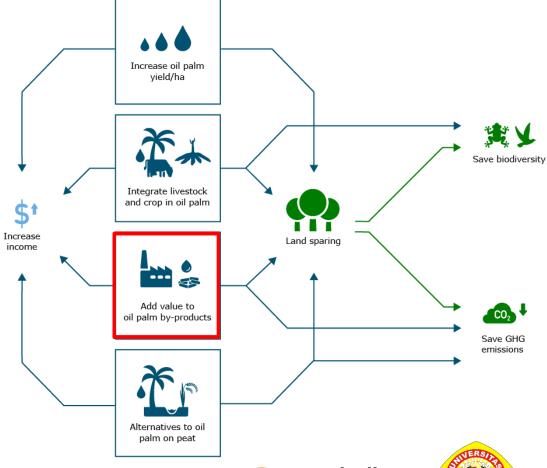
Oil palm mill residue oils

Wolter Elbersen

Workshop Trust in POME biofuels, 6 October 2025



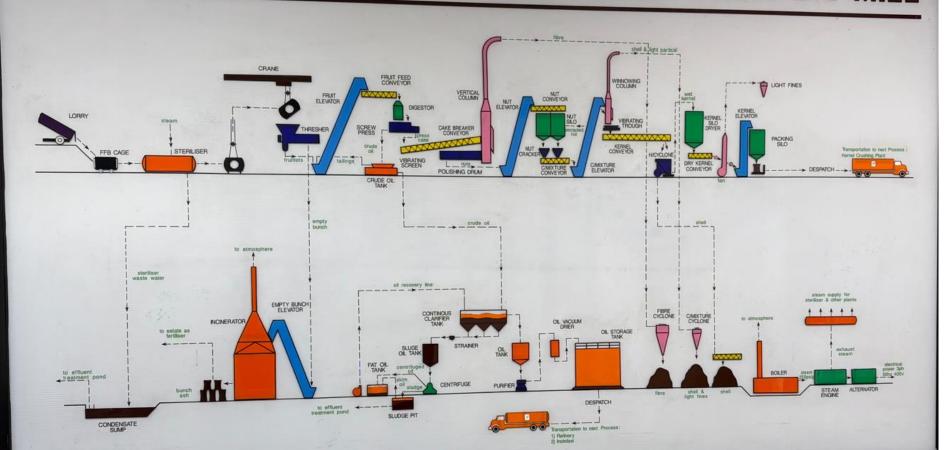
Agenda

- Palm production system and residue oils:
 - POME (Palm Oil Mill Effluent) oil
 - EFB (Empty fruit bunch) oil
 - MF (Mesocarp fibre) / PPF (Palm Press Fibre) oil
- Suggestions for next steps to assure authenticity and understand how the system works or should work
- Follow-up

SustainPalm:

Implementing more sustainable practices in palm oil industry in Indonesia

Oil palm mill 20 to 120 ton FFB/hr = 3.000 to 15.000 ha per mill

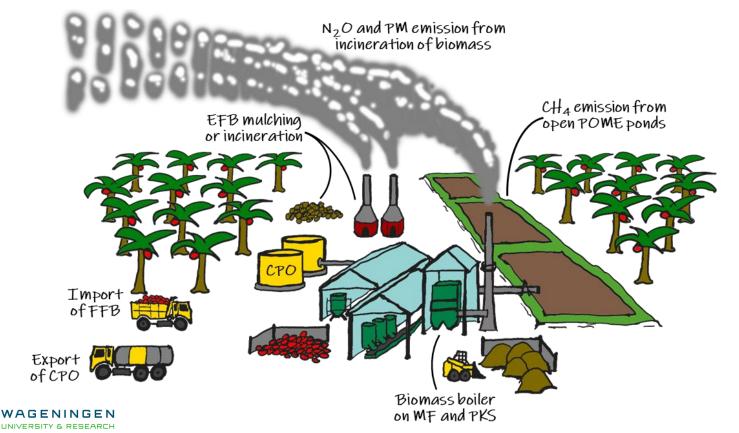


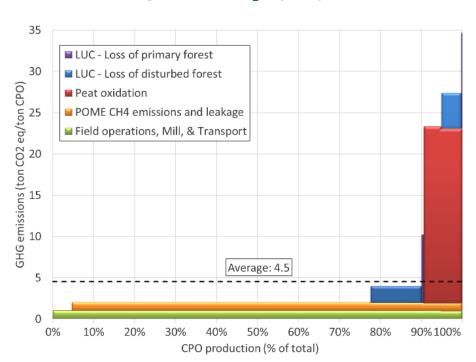
Ref: https://commons.wikimedia.org/wiki/File:District-Kunak Sabah IOI-Baturong-Palm-Oil-Mill-03.jpg


SCHEMATIC FLOW DIAGRAM OF PALM CIL MILL

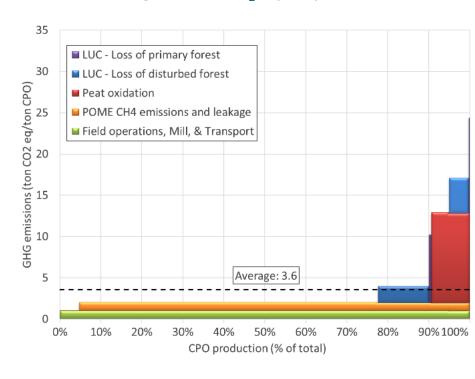
Oil Palm produces 3 to 4 tons of oil per ha/yr

Also residues




Ref: MPOB

Current (Indonesia)



Current (2020) GHG emissions for CPO production in Indonesia

Assuming 80 tons CO₂-eq/ha peat emissions

Assuming 40 tons CO₂-eq/ha peat emissions

Elbersen, W., Slingerland, M., van der Meer, P., Conijn, S., Tarigan, S., O'Keeffe, S., ... & van Duijl, E. (2025). Comparative study on the sustainability of vegetable oils: Comparing the contributions of palm oil in Indonesia, soybean oil in Brazil and rapeseed oil in Germany until 2030/2040 for achieving UN SDGs.

Residual oil in oil palm mill residues in Indonesia and the world

	Oil production	Oil as % of CPO	Indonesia	World
	% of FFB	% of CPO	Million ton per ye	ar (2023)
CPO (Crude Palm Oil)	21,0%	100%	47	76
POME (Palm Oil Mill Effluent)	0,60%	2,86%	1,34	2,17
EFB (Empty Fruit Bunch)	0,60%	2,86%	1,34	2,17
MF (Mesocarp Fibre)	0,60%	2,86%	1,34	2,17
Total	22,8%	109%	51	83

In 2024 15,4 Mton FAME + HVO used in EU

8,5 Mton from "waste"

→ Oil palm residue oil potential is significant

What part of this potential can be mobilized?

*conversion from oil to biodiesel is not 100%

POME oil in Indonesia

- POME is processed anaerobically in ponds generating methane
- >90% of methane is emitted
- Removing all oils from POME can reduce methane emission by ~31%
- Skimming can extract max 50% to 60% of POME oil = 0,36% of OER = 1,3 Mton worldwide
- What part of sludge oil is <u>really recovered</u>?
- Improved oil recovery systems are in development, see "bubble technology"
- Distinguish POME/sludge oil? free fatty acids, short chain fatty acids?
- What happeneds downstream?

POME - Sludge oil composition?

Table 1 Characteristics of SPO used in this study and crude palm oil (CPO) for comparison

Parameters	SPO ^a	CPO
Total carbon content (%)	87.8	_
Lipid content (wt%)	94.9	_
Free fatty acid content (%)	82.2	5.6 ^b
Saturated fatty acid (%)	82.3	54.1°
Acid number (mgKOH/g)	180.3	6.9°
Moisture content (%)	2.68	0.02°
Ash content (%)	0.33	_
Unsaponifiable matter (%wt)	0.75	$0.19-0.44^{d}$
Peroxide value (meq/kg)	< 0.10	_
P-Anisidine value	22	_
Melting temperature (°C)	45.5	33.8-39.2d
Total nitrogen (%)	0.07	_
Total protein (%)	0.41	-

aFrom this study

Table 2 Fatty acid composition of SPO and crude palm oil (CPO) as comparison

Fatty acid	SPO ^a (%)	CPOb (%)	
Caproic acid (C6:0)	3.7	_	
Enanthic acid (C7:0)	0.8	_	
Caprylic acid (C8:0)	0.5	_	
Lauric acid (C12:0)	0.9	0.5	
Myristic acid (C14:0)	2.1	1.2	
Palmitic acid (C16:0)	64.5	47.8	
Palmitoleic acid (C16:1)	0.1	0.04	
Stearic acid (C18:0)	9.2	4.2	
Oleic acid (C18:1)	14.4	37.0	
Linoleic acid (C18:2)	2.6	9.1	
Linolenic acid (C18:3)	-	0.3	
Arachidic acid (C20:0)	0.6	0.3	
Others	0.6	-	

aFrom this study

^bResults from Melero et al. [45]

cResults from Crabbe et al. [36]

dData from MS814:2007

bDaculte from Crobba at al. [36]

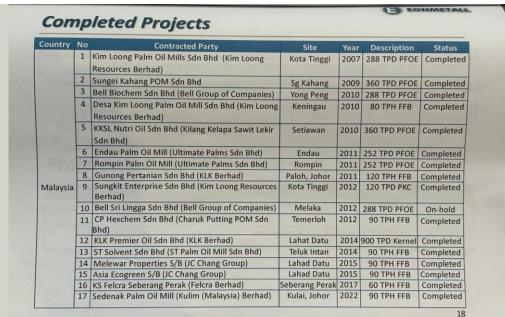
Empty Fruit Bunch oil

- >90% EFB is burned or mulched
- EFB stored on heaps before burning or mulching → methane emissions
- What is the oil yield in case of pressing?
- How common is EFB pressing for EFB liquor/juice production? →
- EFB oil has lower quality compared to CPO
- "EFB liquor is recycled and ends up in (lower grade) CPO"
- "EFB liquor mixed with sludge oil"
- Why so little EFB oil used for biodiesel compared to POME oil?
- How to distinguish EFB oil from CPO? higher chlorine? FFA?

EFB juice

Palm Press Fibre = Mesocarp Fibre + some crushed kernel

- PPF >95% burned as fuel for steam production
- Hexane extracts 80% of PPDF oil Realistic yield is 0,6 x 0,8 = 0,48% of OER
- 76 Mton CPO in world x 0,48/21 = 1,74 million ton worldwide is capacity
- Alternative fuel for steam? → Yes, extracted PPF + some EFB fibre
- Or: biogas from POME + clean PPF → Additional benefit: trigger POME biogas systems → all CH₄ emission avoided
- PPF oil is not on the list of allowed biodiesel feedstocks but should be -
- Expansion of hexane extraction is needed



How many PPF oil extraction plants?

- Hexane extraction also used for Palm Kernel Cake (PKC) extraction
- Indonesia 1030 oil palm mills
- Malaysia approx. 450 palm oil mills
- Current use of PPFoil?
- "I will build a hexane plant if 90% of CPO price is guaranteed for the PPF oil"
- How can the demand for biofuels trigger investments in PPF extraction plants?

Malaysia 15?

Indonesia 2?

Country	No	Contracted Party	Site	Year	Description	-
	1	PT Bangun Java Alam Barmai (DT D		-	Description	Status
		PT Bangun Jaya Alam Permai (PT Best Agro Group)	Kalimantan	2012	388 TPD PFOE	Completed
ndonesia	2	DT Adains and a	Tengah			
2 1717	PT Adei Plantation & Industry (KLK Berhad)	Mandau, Riau	2018	504 TPD PKC	Completed	
	2	PT Inti Indosawit Subur Ukui 1				
	3	T met mosawit Subur Okul 1	Pekan Baru,	2021	268 TPD PFOE	Completed
-			Riau			

PPF oil

- Not food grade cannot be mixed with CPO.
- High in vitamins and Ox stability, phosphorus, but also
- High in FFA,, Cl, Hexane
- Can vitamins be extracted for feed use before biodiesel production?

TABLE 1. INITIAL QUALITIES OF CRUDE PALM OIL (CPO) AND SOLVENT-EXTRACTED PALM PRESSED-FIBRE OIL (PPFO)
FROM DIFFERENT COMMERCIAL PLANTS

	CPO (this study)	PPFO commercial I (this study)	PPFO commercial II (Ummi Kalsum and Rohaya, 2019)	PPFO commercial III (Nur Sulihatimarsyila et al., 2019)	MS 814:2007 specification (Farah Khuwailah et al., 2019; Parveez et al., 2019)
FFA (%)	3.1 - 4.5	5.38 - 8.26	5.09 - 10.6	5.30 ± 0.19	<5%
DOBI value	2.43 - 2.83	1.62 - 2.02	1.15 - 2.17	2.02 ± 0.18	>2.3
Oxidative stability (hr)	14 - 17	18 - 25	-	-	-
lodine value (ppm)	49.11 - 51.22	51.96 - 53.22	-	-	52 ± 0.66
Phosphorus content (ppm)	16 - 27	214 - 247	217 - 1063	633 ± 83	<10
Chloride content (ppm)	1.95 - 10.89	23.41 - 127.23	207.62 - 379.58	-	<2.5
Carotene content (ppm)	537 - 572	1258 - 1750	1025 - 1913	1467 ± 35	500 - 600
Vitamin E (ppm)	771 - 1108	1686 - 2600	1574 - 2999	1527 ± 73	-
Hexane concentrations (ppm)	*N/A	111 - 4046	-	-	-

Remarks: The solvent-extracted PPFO samples were retrieved from a number of solvent extraction plants in Peninsular Malaysia: (I) eight, (II) nine (III) one. Results of oil samples were tabulated in mean \pm standard deviation (n = 3).

^{*}N/A = not applicable

Palm Press Fibre = Mesocarp Fibre + some crushed kernel

 This explains the difference in composition between CPO and PPF oil. PPF oil contains C12:0 and C14:0 acid from palm kernel

Table 3. Fatty acid composition in palm pressed fiber, crude palm oil and RBDPOo via various extraction methods

	CD C	DDDD0	PPF,%			
Free Fatty Acids	CPO, %	RBDPOo, %	Cold extraction	Soxhlet	Reflux	
C12:0	-	-	5.89 ±0.17	7.12 ±0.13	9.09 ±0.09	
C14:0	0.55 ± 0.05	0.60 ± 0.11	2.62 ±0.12	2.91 ±0.15	3.43 ±0.05	
C16:0	46.93 ±0.02	46.30 ±0.04	39.34 ±0.09	40.70 ±0.06	37.01 ±0.08	
C18:2	6.29 ±0.02	6.70 ± 0.03	$10.00 \\ \pm 0.04$	9.48 ±0.09	8.00 ±0.11	
C18:1	42.94 ± 0.10	$42.79 \\ \pm 0.07$	37.74 ± 0.08	36.51 ± 0.14	39.01 ± 0.05	
C18:0	3.14 ± 0.08	3.37 ± 0.13	3.58 ±0.10	3.27 ± 0.09	3.45 ± 0.02	

Samples of CPO and mill residues

Next Steps?

- Know how it works in practice
- Anticipate irregularities
- Include physical checks
- Develop a library of CPO and residue oils → (fast) detection methods
- Check feedstock on arrival in NL
- Assess readiness at mills level for mobilizing residue oils what infrastructure is available? Pressing? Skimming? Bubble? Hexane extraction?
- How can investments be triggered in the needed infrastructure?
- Course on biomass feedstock supply for biofuels? Interested?

Thank you!

wolter.elbersen@wur.nl johan.vangroenestijn@wur.nl puneet.mishra@wur.nl

MesOil project

