
By the time most migration bugs reach production, the damage is already done. The goal of this checklist is not perfection. It is an early 
failure in controlled conditions. Use this before, during, and after migration.

How to detect and fix incompatibilities early

Dependency graph sanity checks

Runtime smoke tests, not just builds

OS-specific CI pipelines

Configuration validation at startup

Publish-time trimming validation

EF-specific migration checks

What to do

What to do

What to do

What to do

What to do

What to do

What this catches

What this catches

What this catches

What this catches

What this catches

What this catches

Generate a full dependency graph for the solution.

Identify packages referenced in more than one version.

Lock shared packages to a single version across all projects.

Run basic request flows against the published output.

Exercise background jobs, migrations, and rarely used endpoints.

Test after trimming and single-file publish if enabled.

Run CI on the same OS as production.

Add Linux pipelines if containers are involved.

Validate file paths, casing, and platform APIs.

Validate required configuration values during application startup.

Fail fast on missing secrets or invalid settings.

Avoid lazy access to critical configuration.

Test seriali zation paths after publish.

Audit reflection-heavy code.

Disable trimming selectively if required.

Verify exact version alignment of all E F Core packages.

Load-test critical queries.

Review lazy loading usage explicitly.

Runtime MethodNotFoundException

Transitive dependency conflicts

EF Core design-time failures

Runtime-only binding failure s

Reflection and trimming issues

Lazy DI initialization crashes

W indows-only API usage

Case-sensitivity bugs

Process execution failures

F irst-request crashes

Environment-specific misconfiguration

Hidden reliance on web.config behavior

M issing types at runtime

Broken serializers

Silent behavior changes after publication

M igration tooling failures

Performance regressions

EF Core 8 behavior changes

If different projects reference different versions of the same package, assume production failure is scheduled, not possible.

A green build answers the wrong question. Published artifacts tell the truth.

If production runs on Linux, Windows CI is incomplete by definition.

Configuration errors should stop deployment, not surprise users.

Trimming optimizes what you explicitly describe. Legacy code rarely does.

EF issues often pass correctness tests and fail operationally.

Final takeaway

Most .NET migration failures are detectable early if you test the right things at the right time. The checklist is short because the problem space is repetitive.

If you apply these checks consistently, migration stops being a gamble and becomes an engineering process. That is the difference between “it compiled” 
and “it survived production.”

Fast checklist


