CRYSTAL 5UBSTRATES **Product Overview** #### WE ENABLE INNOVATION For over 30 years we've been enabling you to accelerate your research and development, proudly partnering with the most innovative minds in the science and technology sectors. We're purpose designed to support your science and technology innovation, and take your ideas from lab-based concepts to full-scale production. With our capabilities and extensive expertise we're the partner of choice for custom manufacturing solutions and niche product sourcing through our trusted network of UK and international suppliers. Specialising in the following areas: - Energy Research - Hydrogen Technology - Photonics + Optoelectronics - Thin Films + Nanotech - Materials Processing + Testing - RF Shielding - Electroforming - Specialist Metallic Coatings Accelerate your journey. We are PI-KEM. #### MICRO-INFO - 30+ years supplying advanced materials and equipment - Custom manufactured components - Niche product sourcing - Comprehensive range of standard stock products and consumables - Call off purchase options - Support from an expert scientific team - Low minimum order quantity - UK, European & global delivery We offer a wide range of advanced materials and equipment which are available as standard or custom manufacture. Within this catalogue are our most requested lines, however we welcome any enquiry for other specifications. ### CONTENTS #### **Crystal Substrates** About Crystal Substrates 4-5 Crystal Substrate Materials 6-13 Our single crystal supplier SurfaceNet was founded in 2003 by Dipl-Ing. Peter Droste, who has over 40 years of experience in crystal growth and crystal processing. SurfaceNet can provide a wide range of substrates, from simple sapphire and quartz to specially grown crystals with custom dopants and orientations. With constant equipment updates, they are specialists in producing unique and never-before-seen crystals. Their production facility extends over 720 m² and enables them to manage every aspect of substrate manufacturing, from growing crystals to orientating, cutting, polishing and packaging substrates. In addition to crystal products, SurfaceNet also manufacture speciality chemicals and targets according to customer requirements. #### **Our Partners** We distribute on behalf of leading manufacturers of advanced materials & equipment As SurfaceNet's UK & Ireland Distributor, PI-KEM has been a trusted partner for over 20 years. Their extensive experience in crystal growth, production, and manufacturing, allows them to offer a wide range of high-quality single-crystal products for the electronics, energy and optics sector. If you have any upcoming substrate requirements or would like more information, please contact our expert team. # CRYSTAL SUBSTRATES PI-KEM offer a range of single crystals and substrates, both standard and custom grown. Single crystals can be supplied as the following: - Custom sizes and shapes - Standard wafer sizes, eg. 2", 3" or substrates (sizes 5mm x 5mm or 10mm x 10mm) - Standard orientations, as well as custom mis-cuts and tolerances - Single or double side polished surface finish, to standard or custom surface roughnesses We welcome any enquiry for other specifications #### **Materials Available:** - Metal Single Crystals - Oxides - Titanates - Niobates - Gallates - Aluminates - Doped Crystals - Bi-crystals #### **Specifications Available:** - Purity - Doped or undoped - Orientation #### **Structure:** - As cut - Polished - To required Orientation and Size - Vicinal Substrates - Boules, wafers, tiles, prisms, optical components and rods Single crystal substrates are fundamental materials for semiconductor and electronic devices due to their unique physical and electrical properties. #### These include: - **Monocrystalline structure:** Give uniform crystal orientation with no grain boundaries - High electron mobility: Allows faster signal processing and device operation - High mechanical strength: Less likely to deform or fracture - Enhanced thermal conductivity: Dissipate heat efficiently - Optical Transparency: In materials including sapphire and silicon carbide making them suitable for use in optical devices and sensors - Uniform doping characteristics They serve as the foundation upon which electronic circuits are built, enabling the development of high-performance devices with enhanced capabilities. #### **Examples of applications are:** - Integrated circuits - Power electronics - Optical devices - Sensors and detectors - High-frequency devices #### PI-KEM offer a range of substrate and wafer storage options: - Individual wafer carriers (sizes available 2" 8") - Cassettes (sizes available 2" 8") - IC trays - Membrane boxes ## CRYSTAL SUBSTRATES Here are a selection of the materials our substrates can be produced from. | | Substrate | Formula | |----------------|--|---| | | Alexandrite | BeAl ₂ O ₄ :Cr³+ | | | Aluminium
Oxide
(Sapphire) | Al ₂ O ₃ | | | Aluminium
Oxide
Magnesium
Oxide (Spinell) | 1 Al ₂ O ₃ * 1
MgO or 3,5
Al ₂ O ₃ *1 MgO | | | Aluminium
Oxide
(Chromium
Doped) | Al ₂ O ₃ :Cr | | | Aluminium Oxide (Chromium vanadium Doped) | Al ₂ O ₃ :CrV | | | Aluminium
Oxide Iron
Chromium | Al ₂ O ₃ :FeCr | | Sand Soundille | Aluminium
Oxide Iron
Doped | Al ₂ O ₃ :Cr | | | Aluminium
Oxide Titanium
Doped | Al ₂ O ₃ :Ti | | Collectors | F | |---|-------------------------------------| | Substrate | Formula | | Aluminium
Oxy Hydroxide | AIO(OH) | | Anatase
crystals | TiO ₂ | | Barium
Fluoride | BaF ₂ | | Barium
Titanate | BaTiO ₃ | | Barium
Titanate Ce
Doped | BaTiO ₃ :Ce | | Barium
Titanate
Nb Dobed
1500ppm | BaTiO ₃ :Nb -
1500ppm | | Barium
Zirconate | BaZrO ₃ | | Bismuth
Vanadate | BiVaO ₄ | | Substrate | Formula | |--|---| | Bismuth
Ferrite | BiFeO ₃ | | Beryllium
Hexa-
Aluminate | BeAl ₆ O ₁₀ :Cr³+ | | Beryllium
Aluminate
(Chrysoberyll) | BeAl ₂ O ₄ | | Beta Barium
Borate | ß-BaB ₂ O ₄ or
BBO | | Bismuth
Silicate | BS0 | | Bismuth
Germanate | BGO | | Cadmium
Selenide | CdSe | | Cadmium
Sulfide | CdS | | Cadmium
Telluride | CdTe | | Cadmium
Tungstate | CdWO ₄ | | | Substrate | Formula | |-----|---|-------------------------------------| | | Calcium
Titanate | CaTiO ₃ | | | Calcium
Tungstate | CaWO ₄ | | | Calcium
Tungstate Er
Doped | CaWO ₄ : Er ₄ | | | Calcium
Tungstate Pr
Doped | CaWO ₄ : Pr | | | Calcium
Carbonate
Calcite Type | CaCO ₃ (Calcite) | | (A) | Calcium
Carbonate
Aragonite
type | CaCO ₃
(Aragonite) | | | Calcium
Fluoride | CaF ₂ | | | Calcium
Neodymium
Aluminate | CaNdAlO ₄ | | | Cassiterite | SnO ₂ | | | Cerium Oxide | CeO ₂ | | | Substrate | Formula | |--|---|---| | | Cerium Oxide
Calcium Doped | CeO ₂ :Ca | | AND THE STREET STREET, STREET STREET, STREET STREET, S | Cobalt
Aluminate | CoAl ₂ O ₄ | | | Cobalt
Carbonate
(Spherocobalite) | CoCO ₃ | | | Cobalt Oxide | CoO | | | Cobalt
Titanate | CoTiO ₃ / Co ₂ TiO ₄ | | | Copper
Sulphide | Cu ₂ S | | | Copper Oxide | Cu ₂ O | | | Chrome Oxide | Cr ₂ O ₃ | | | Dysprosium
Scandate | DyScO ₃ | | | Forsterite | Mg ₂ SiO ₄ | | Substrate | Formula | |---|---------------------------------------| | Forsterite
Chromium
Doped | Mg ₂ SiO ₄ : Cr | | Gadolinium
Scandate | GdScO ₃ | | Gallium
Antimonide | GaSb | | Gallium
Arsenide
(Semi-conducting
HB/VB) | GaAs | | Gallium
Arsenide
(Semi-insulating
VB) | GaAs (VB) | | Gallium
Gadolinium
Garnet | GGG | | Gallium
Gadolinium
Garnet
substituted | SGGG | | Gallium Oxide | Ga ₂ O ₃ | | Gallium
Phosphide | GaP | | Gallium
Scandium
Gadolinium
Garnet | GSGG | | | Substrate | Formula | |----|--------------------------------|--------------------------------| | | Germanium | Ge | | | Germanium
Antimony
Doped | Ge:Sb | | | Germanium
Gallium Doped | Ge:Ga | | | Indium
Arsenide | InAs | | | Indium
Phosphide | InP | | 87 | Iron Carbonate | FeCO ₃ | | | Iron Oxide
(Hematite) | Fe ₂ O ₃ | | | Iron Oxide
(Magnetite) | Fe ₃ O ₄ | | | Iron Hydroxy
Oxide | FeOOH | | | Iron Sulphide
Pyrite type | FeS ₂ (Pyrite) | | Substrate | Formula | |--|--| | Iron Titanate | FeTiO ₃ | | Iron Tungstate | FeWO ₄ | | Indium
Antimonide | InSb | | Langasite | La ₃ Ga ₅ SiO ₁₄
(LGS) | | Langatate | La ₃ Ga _{5.5} Ta _{0.5} O ₁₄
(LGT) | | Lanthanum
Aluminate | LaAlO ₃ | | Lanthanum
Strontium
Aluminium
Tantalate | LSAT | | Lead
Molybdate | PbMoO ₄ | | Lead Sulphate | Pb ₂ SO ₄ | | Lithium
Aluminium
Oxide | LiAIO ₂ | | | Substrate | Formula | |-------------------------|---|--| | | Lithium Ferrite | LiFe ₅ O ₈ | | | Lithium
Fluoride | LiF | | IMAGE
COMING
SOON | Lithium
Gallate | LiGaO ₂ | | | Lithium Iodate | LilO ₃ | | | Lithium
Niobate | LiNbO ₃ | | | Lithium
Tantalate | LiTaO ₃ | | IMAGE
COMING
SOON | Lithium
Triborate | LiB ₃ O ₅
LBO | | | Magnesium
Fluoride | MgO | | | Magnesium
Oxide Bor
Doped
200ppm | MgO:B
200ppm | | | Magnesium
Oxide
Chromium
Doped
150-15100ppm | MgO:Cr
150-15100ppm | | Substrate | Formula | |---|-------------------------| | Magnesium
Oxide
Chromium
Doped
150-15100ppm | MgO:Co
1200-9900ppm | | Magnesium
Oxide
Gadolinium
Doped
200ppm | MgO:Gd
200ppm | | Magnesium
Oxide Iron
Doped
300-12900ppm | MgO:Fe
300-12900ppm | | Magnesium
Oxide Iron /
Chromium
Doped
500-3500ppm | MgO:Fe/Cr
500-300ppm | | Magnesium
Oxide Iron /
Vanadium
Doped
150-300ppm | MgO:Fe/V
150-300ppm | | Magnesium
Oxide
Manganese
Doped
840-3100ppm | MgO:Mn
840-3100ppm | | Magnesium
Oxide Nickel
Doped
370-5000ppm | MgO:Ni
370-5000ppm | | Magnesium
Oxide
Scandium
Doped 800ppm | MgO:Sc
800ppm | | Magnesium
Oxide
Titanium
Doped
3000ppm | MgO:Ti
3000ppm | | Magnesium
Oxide
Vanadium
Doped
450-15000ppm | MgO:V
450-15000ppm | | | Substrate | Formula | |-------------------------|---|----------------------------------| | | Manganese
Aluminate | MnAl ₂ O ₄ | | | Manganese
Carbonate
(Rhdochrosite) | MnCO ₃ | | | Manganese
Oxide | MnO | | | Neodymium
Doped Yttrium
Aluminium
Garnet | Nd:YAG | | | Neodymium
Doped Yttrium
Orthovanadate | Nd:YVO ₄ | | | Neodymium
Aluminate | NdAlO ₃ | | | Neodymium
Calcium
Aluminate | NdCaAlO ₄ | | | Neodymium
Gallate | NdGaO ₃ | | IMAGE
COMING
SOON | Neodymium
Gadolinium
Garnet | NGG | | | Neodymium
Scandate | NdScO ₃ | | Substrate | Formula | |--------------------------------------|----------------------------------| | Nickel
Aluminate | NiAl ₂ O ₄ | | Nickel Oxide | NiO | | PMN-PT | | | Potassium
Bromide | KBr | | Potassium
Chloride | KCI | | Potassium
Dihydrogen
Phosphate | KDP, DKDP or
KD*P | | Potassium
Niobate | KNbO ₃ | | Potassium
Tantalate | KTaO ₃ | | Quartz | SiO ₂ | | Potassium
Titanyl
Phosphate | KTiOPO ₄
KTP | | Substrate | Formula | |---------------------------------------|---------------------| | Samarium
Scandate | SmScO ₃ | | Scandium
Gallium Garnet | SCGG | | Scandium
Yttrium
Gallium Garnet | SYGG | | Silicon | Si | | Silicon Carbide | SiC 4 H | | Silicon Carbide | SiC 6 H | | Silicon Dioxide | SiO ₂ | | Silver Gallium
Selenite | AgGaSe ₂ | | Silver Gallium
Sulphide | AgGaS ₂ | | Sodium
Chloride | NaCl | | Substrate | Formula | |-------------------------------------|---| | Sodium
Fluoride | NaF | | Spinell
(Co Doped) | 1MgO ₃ Al ₂ O ₃ :Co
MgAl ₂ O ₄ :Co ₂ + | | Strontium
Lanthanum
Aluminate | SrLaAlO ₄ | | Strontium
Lanthanum
Gallate | SrLaGaO ₄ | | Strontium
Titanate | SrTiO ₃ | | Strontium
Calcium
Titanate | Sr _x Ca _y TiO ₃ | | Tellurium
Oxide | TeO ₂ | | Terbium
Manganate | TbMnO ₃ | | Terbium
Gallium Garnet | TGG | | Terbium
Scandate | TbScO ₃ | | | Substrate | Formula | |-------------------------|---|---| | | Titanium
Dioxide Rutile
type | TiO ₂ (Rutile) | | | Titanium
Dioxide
Anatase type | TiO ₂ (Anatase) | | | Titanium
Dioxide
Brookite type | TiO ₂ (Brookite) | | | Titanium
Doped
Sapphire | Ti:Sapphire | | | Yttrium
Aluminium
Garnet
Chromium
Doped | Cr ₄ +:YAG | | | Ytterbium
Doped Yttrium
Aluminium
Garnet | Yd:YAG | | IMAGE
COMING
SOON | Ytterbium
Gallium Garnet | YGG | | | Yttrium
Aluminium
Garnet | Y ₃ Al ₅ O ₁₂
YAG | | | Yttrium
Aluminium
Perovskitet | YAIO ₃ | | | Yttrium
Gallium
Gadolinium
Garnet | YGGG | | | Substrate | Formula | |---|--|---| | | Yttrium Iron
Garnet | YIG | | | Yttrium
Orthosilicate | Y ₂ SiO ₅ | | M | Yttrium
Vanadate | YVO ₄ | | | Zinc Aluminate
Gahnite | ZnAl ₂ O ₄ | | | Zinc Oxide | ZnO | | | Zinc Selenide | ZnSe | | | Zinc Sulphide
Spahlerite
type | ZnS
(Spahlerite) | | | Zinc Sulphide
Wurzit type | ZnS (Wurzit) | | | Zinc Telluride | ZnTe | | | Yttria
Stabilised
Zirconia (YSZ) | Zr0 : 9,5 mol%
Y ₂ 0 ₃ | ## NOTES | . , | | | |-----|--|--| PI-KEM - Helping you achieve your objectives | |--| **W** pi-kem.co.uk **T** + 44 (0) 1827 259250 E info@pi-kem.co.uk PI-KEM Limited, Unit 18-20 Tame Valley Business Centre, Magnus, Tamworth, B77 5BY, UK Registered in England with company number: 04215228 VAT: GB 572885985