
Cameras On! – Build Your Own Apps for Body Position Training Analytics

The combination of new and old tools paired with AI is making what used to be body-position and
performance analytics reserved for elite levels accessible and straight forward to build and
customize for yourself. I wanted to capture some of the: tools, flow of development, and
considerations for how you might want to put together your own app to give you the data you need
or desire on your performance. As an example, I am using a computer- vision body-position app I
built for my daughter in a few days to help me better understand some of the details she is working
on as a youth competitive swimmer.

Concepts and Terms to Know:

Pose-estimation – You will need to identify a pose-estimation algorithm to use in your
development. This is the algorithm that will allow you to take a personal video from a mobile
phone or a GoPro and identify where there is a person – or persons – in the video and ascribe
Keypoints to specific parts of the body that can be tracked for changes in position throughout the
duration of your video. Keypoints are often a set of 30-40 points that the algorithm will identify on
the body and use to track movement. Keypoints should map to locations on the body that help
anchor the center of the person being analyzed as they move in space and about axes of rotation
and points at joints or areas of the body that have a lot of change in position as you move. At this

point you are building a “Markerless Motion Capture”
system. It is “markerless” because it is using computer
vision computation to identify the relevant body keypoints
rather than tracking stickers or sensors that are placed on
the body.

Here is the Keypoint location mapping used by Google
Gemini in their latest Pose-estimation algorithm that is part
of their Media Pipe Open-Source code and tools for
building computer vision computation into useful tools. I
highly recommend reading and using tools you can find at:
Google's Media Pipe Development Tools

This is the AI tool that was just used by Google in their
partnership with Steph Curry for the awesome AI Basketball
Coach – Check it out: Steph Curry / Google Partnership - AI
Basketball Coach

I have integrated this keypoint set by using the MediaPipe tools with some added code and
analytics into a swim-stroke analytics app I’ve built for my daughter. You can see the keypoints
and their movement as she swims. In this instance, I am starting with this code-base in Github.
Swim analysis – at least from outside the water – can be a tough problem for a pose-estimation
algorithm because some part of the body is often underwater and occluded during every moment
of the video.

https://ai.google.dev/edge/mediapipe/solutions/guide
https://blog.google/inside-google/company-announcements/google-stephen-curry-partnership/
https://blog.google/inside-google/company-announcements/google-stephen-curry-partnership/
https://github.com/0akkung/Swimming-Stroke-Detection/blob/main/README.md

You can see it is doing well given this comes with the territory, but there are limitations to what you
can compute accurately or considerations for which model you might want to choose. For
example, some pose-estimation models do better and optimize for handling occluded moving
objects whereas others out-perform for handling of multiple persons in the scene (eg a soccer
pitch). In my example, I am using Media Pipe which uses Google’s pose-estimation algorithm
Blazepose.

Once you have stable tracking of the keypoints you can run and process any analytics you wish.
For example, you can easily capture from the data above metrics of: stroke rate, body rotation,
arm acceleration, line consistency, angles of entry, and durations between different key
movement positions.

What to consider in choosing a tool:

Are you tracking a single person or many? Some algorithms are better than others for solving
this problem.

Will the entirety of the body be visible for the duration of the video and your intended tracking
or do you anticipate occlusions?

Do you have control over the angle of capture that you will measure? For example, the
swimming pose-estimation I show above would be easier if I could capture the video from over the
swimmer. However, that is not a practical use case. In contrast, if I were trying to capture yoga
poses or body-position during any sort of strength training there is much more flexibility and
stability in the position of the camera and video that I can capture during the duration of my pose
estimation.

Here are a few resources to help decide which algorithm and model to work with: Trade-Offs in
Pose-Estimation Models

https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/
https://www.sciencedirect.com/science/article/pii/S2405844024160082#:%7E:text=MoveNet%2C%20representing%20one%20of%20the,human%20pose%20estimation%20through%20ML.
https://www.sciencedirect.com/science/article/pii/S2405844024160082#:%7E:text=MoveNet%2C%20representing%20one%20of%20the,human%20pose%20estimation%20through%20ML.

Useful Tools and Resources:

Perplexity Labs

Perplexity Labs requires the paid “Pro Version” and is different than the base Perplexity in that it
produces assets and code you can use immediately. In the example I will walk through, I leverage
Perplexity Labs for quick development of a basic mobile application and user interface. It’s not
refined, but entirely usable. Note – Perplexity does not currently have its’ own computer vision
pose-estimation model. This means if you decide to use Perplexity for any app development, you
will need to use a computer-vision model and code outside of Perplexity for the basic pose-
estimation algorithm and data generation. The Media Pipe tool kit linked is a great alternative. You
can pull this data into perplexity for further processing in the application you have built. I will give
an example of how you might do this. There are a few open-source options. Here is an example of
the functional mobile application I could quickly mock-up through prompts (it isn’t elegant but is
functional for my needs) from Perplexity Labs to upload a video to my pose-estimation model and
run analytics on the keypoint output. There are some early metrics here, but they could be
customized to whatever you wish, and you can definitely improve the UI and UX with improved
prompts and direct code modifications.

Below I’ve tried to provide a sequential walkthrough of one approach you can take to create a
custom performance tracking app. Follow the bullets and links. In this case, I have built an html
application and used cloud services to run the pose-estimation processing. Alternatively, you can
use Blazepose or some of the Google tools that will run code directly on a mobile device. There are
trade-offs in development tools. In my case, I was already running in the cloud. I will walk through
how to get this up and running:

https://www.perplexity.ai/hub/blog/introducing-perplexity-labs
https://www.perplexity.ai/help-center/en/articles/10352901-what-is-perplexity-pro
https://ai.google.dev/edge/mediapipe/solutions/vision/pose_landmarker
https://research.google/blog/on-device-real-time-body-pose-tracking-with-mediapipe-blazepose/

1. Identify an appropriate pose-
estimation algorithm. Let’s
assume you are using Google’s
Media Pipe and Blazepose.
Modify the pose estimation
video processing code to
calculate the desired pose
metrics. This is really where your
opportunity for customization
comes into play. You are taking
the keypoint values that your
pose-estimation algorithm
provides and computing some
metric of change or performance
on this data. For example, in the
swim videos above and the one
right here, stroke count can be
computed in multiple ways from
the keypoints by triggering a
count every time the arms
keypoints (14,13, 16, and 15)

move in and out of identified value ranges. I’ve indicated these on the images above.
Similarly, we can track torso rotation by looking at the values of keypoints: 11, 12, 23, and
24 and establishing a metric between the values of the four points that is computed
continuously. You can clearly see how keypoints 23 and 24, and 11 and 12, are closer
together in Image B in comparison to Image A, which is an indication that the swimmer has
rotated to the right (looking down) on their longitudinal axis (head-to-toe side-to-side
rotation). Accelerations, velocities of specific keypoint speed and movements, can offer
immense insight.
Once you are happy with the metrics you are computing on the keypoints you will need to:

2. Create a Docker image of the pose processing code. A Docker image is a way of
containerizing and assuring all the code, supporting packages, and libraries are contained
and located in a common place that will allow your algorithm to run. To know what this list
is you can use Perplexity Labs to generate the “Requirements” list and create a first-pass
Docker image.

3. Upload your Docker image to Amazon AWS. Again – For this instance, I am running the
code in the cloud and built an HTML App to be system agnostic. If you run the processing
directly on the mobile device you can bypass using AWS, however the there are limits to
some of the pose estimation algorithms, differential support per pose-estimation algorithm

23

24

11

12

13

14

15

16

23

24

11

12

13

14

15

16

B

A

https://docs.docker.com/get-started/introduction/build-and-push-first-image/

for different operating systems, and differential outcomes if you want to make use of an AI
asset generation tool.

4. Create AWS S3 buckets for raw (input) and processed (output) video and results

5. Create AWS Lamdas to trigger the Docker image to run on the input video uploaded to
AWS S3 and place the processed video and results into the associated AWS S3 bucket. This
is likely straight forward for anyone who works in algorithm/software development, but if
not, you can make use of AWS Code Whisperer, Perplexity Labs or an alternative such as
Replit to generate the code needed to make these calls to AWS from your app as well as
identify where and what is needed in your specific scripts.

6. Setup an Gateway HTTP APIs to interface the S3 buckets

7. Now you can build an application to run the processing and report the analytics, or you
can use an AI asset creator like Perplexity Labs to build a first-pass app and interface to
your algorithm and metrics. In Perplexity Labs, generate prompts that specify you want to
build a real-time analytics app that targets some sort of human performance. Be specific
and iterate with the output to further specify the details of your UI and user behaviors. In
the example above, I wanted to build a swim-stroke analytics app that would work on both
my mobile device and laptop. In your prompts you can specify metric support, behavior,
layout, color design, etc. . . .

8. Use Perplexity or whichever AI tool you are using to identify the proper position in the
code and calls in your code to upload your video and push from the App into the S3 bucket.
Do the same for the pull of the processed video with the pose-estimation keypoint
processing back into the App for viewing in the App from the processed S3 bucket. Include
the initial metrics and data from the algorithm that you want to plot and represent in the
application.

9. If you chose to build an HTML app like I show above, you can quickly run a functioning
app on your laptop. To run the same code on your mobile device you can make use of an
app like Textastic or another service to quickly run the index.html file of the app from your
mobile device.

Ok! You should now be set up to start using your app! Be creative and dive into the data and
insights you can gain when you have AI computer-vision algorithms paired with your personal
knowledge plus the knowledge of your favorite coaches and experts working for YOU and
only you.

Cheers,

Poppy

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/codewhisperer/latest/userguide/whisper-legacy.html
https://replit.com/
https://www.textasticapp.com/

