Aerial Monitoring with Drones for Methane Emissions Detection

A Fortune 500 oilfield services provider partnered with Zemoso Labs to tackle a critical challenge: how to track methane emissions quickly and at

Introduction

scale during oil and gas production. Traditional inspections were slow, manual, and couldn't deliver real-time visibility. With net-zero targets looming, delays were costly. Together, we built an aerial monitoring solution powered by drones and a cloud-native analytics platform. Today, the system detects leaks in real time, pinpoints their location, and generates alerts and reports that operators can act on immediately.

and gas production is responsible for about 40% of global emissions. The industry has long relied on ground patrols, handheld devices, and periodic

Industry challenge

surveys—methods that are labor-intensive and prone to delays. Every extra hour before a leak is detected increases safety risks, regulatory exposure, and reputational damage. Companies are under pressure to move fast, and aerial monitoring with drones has become a critical part of that shift. Zemoso's partnership challenge

Our client's CCUS teams were working with disconnected systems — raw

Methane is over 80 times more potent than CO₂ in the short term, and oil

processing. Existing tools couldn't bring those signals together into a single dashboard, and alerting was inconsistent at best.

CSV files from well, field, and plant sensors sat in silos with little

The ask was straightforward but far from simple: Create one system that links subsurface, surface, and plant data. Build proactive risk and alert management tied to compliance needs. Design an architecture that won't buckle as CCUS projects expand.

Impact created The new platform changed how methane detection works on the ground: • Faster detection: Computer vision models analyze drone footage in real time.

• Stronger compliance: Dashboards and reporting apps meet both

On top of the technical hurdles, there was the human side—aligning

storage, capture, and transport teams under a shared system, while

keeping regulators confident and data secure.

regulator and internal audit requirements. Reduced operational risk: Manual inspections are scaled back, cutting

measurable reductions in emissions.

delays and safety risks.

The company is now moving toward its 2030 and 2050 net-zero goals with

How did we do this?

We co-created a platform that brings together drone-based sensing,

meet emissions targets while staying ahead of regulatory pressure.

At its core, the platform combines edge detection, cloud-native

processing, and geospatial rendering into one seamless workflow

deep learning-powered computer vision, and geospatial rendering into a

single, resilient microservices platform. By replacing manual inspections with this real-time system, the client now has the scale and accuracy to

• **Drone-to-Cloud Pipeline:** Drones equipped with methane sensors

Al-Powered Detection: Designed an alert system where every anomaly

was tied to a risk category, giving teams traceability for compliance.

captured imagery and streamed it to the cloud, where the system ingested and organized terabytes of visual and sensor data.

- Composable Services: A distributed services layer ensured ingestion, analysis, and reporting ran independently, keeping the system reliable even under heavy load. Intelligent Data Fabric: The architecture balanced structured (asset hierarchies, alerts) and unstructured (drone imagery, video) data, enabling smooth analysis without bottlenecks.
- role-based dashboards delivered the right data at the right fidelity whether it was live alerts or regulatory reports. **Complex Engineering Highlights**

Behind the scenes, several engineering breakthroughs made this possible:

Computer Vision at Scale: Deep learning models processed vast

Operator Experience: From field engineers to compliance managers,

Geospatial Precision: A digital map layer turned raw detections into

actionable insights—pinpointing leak locations directly on field assets.

inspections. Hybrid Data Orchestration: Coordinating relational, unstructured, and

cached data stores ensured smooth performance across workloads.

amounts of unstructured drone data in real time, replacing traditional

• Geospatial Rendering: Cesium GIS delivered near-digital twin

accuracy, helping teams pinpoint leaks down to the asset level.

Conclusion

• Fault-Tolerant Services: With a microservices architecture, failures in one module never brought down the system—critical functions like alerting stayed live. • Edge-to-Cloud Speed: Near real-time processing meant methane releases were identified within minutes, reducing emissions and regulatory risk.

Zemoso Labs worked with the client to reimagine methane monitoring,

manual surveys is now a live, automated system that helps one of the

world's largest energy providers cut emissions, improve safety, and take

turning drone imagery into fast, actionable data. What once required slow

sales@zemosolabs.com today!

concrete steps toward its net-zero future.