2025
EVI SMART CONTRACT
EXPLOIT ANALYSIS

Olympi

CONTENTS

Executive Summary

2025 EVM Smart Contract Exploits

In-Scope Exploits
Distribution of Vulnerability Types

Top 3 Exploits by Economic Impact
Analysis & Risk Implications

lihat 2025's Data Reveals About Security
Maturity

2026 Recommendations for Enterprise
Teams

Beyond Audits: A Multilayered Security
Approach

Operationalizing Security Earlier in
the SDLC

Deterministic vs Probabilistic
Security: Why Proof Matters

About Olympix

02

03

03
07
09
13

17

18

18

20

21

22

This report presents a structured review of EVM smart contract exploits that
occurred throughout 2025, with the objective of assessing preventability, identifying
systemic risk patterns, and evaluating what the data reveals about the current
maturity of crypto security practices.

The analysis focuses on exploits arising from vulnerabilities in Solidity-based smart
contracts deployed within the EVM ecosystem. These incidents represent failures in
logic, accounting, access control, or invariant enforcement, rather than offchain
compromise, key theft, or social engineering.

A central theme of this report is preventability.

In this context, an exploit is considered preventable when the vulnerable logic existed
in contract code prior to deployment and could have been identified through
deterministic security testing during development.

Across the in-scope dataset, the findings are unambiguous.

Of the 50 EVM smart contract exploits reviewed, Olympix would have prevented 49,
representing approximately 98 percent of incidents and roughly $240 million in
preventable losses. Only a single exploit fell outside the scope of vulnerabilities
detectable prior to deployment.

These results underscore a broader conclusion. The majority of losses in 2025 were
hot the result of hovel attack techniques, but of vulnerabilities introduced earlier in
development and left undiscovered until exploitation.

This report documents those failures, examines their implications, and outlines how
enterprise teams can evolve their security posture heading into 2026.

In-Scope Exploits

This review focuses exclusively on exploits arising from vulnerabilities in EVM smart
contracts written in Solidity.

Only incidents in which loss resulted from flaws in onchain contract logic were included
in the analysis. The objective of this scoping was to isolate failures attributable to smart
contract correctness, rather than operational, human, or infrastructure compromise.

Specifically, an exploit was considered in scope if:

¢ the affected protocol operated within the EVM ecosystem

¢ the vulnerable component was a Solidity-based smart contract

¢ the exploit resulted from logic, accounting, access control, or invariant failures
¢ the vulnerable code existed prior to deployment

¢ the exploit was executed through valid onchain transactions

Incidents were considered out of scope if losses resulted from factors unrelated to
smart contract correctness, including:

e private key compromise or wallet leakage

¢ social engineering or phishing attacks

¢ infrastructure or backend system breaches

e exploits occurring on non-EVM chains

e exit scams or incidents where contract code was unavailable for review

This scoping ensures the analysis reflects only those failures that could reasonably be
detected and prevented through deterministic smart contract security testing during

development.

A complete list of the 2025 exploits analyzed can be found below.

Sorra Finance

Mosca

FortuneWheel

UniLend Finance

Idols NFT

AST Token

ODOS Protocol

BankX

Hegic Options

Venus

Zoth

SIR

KiloEx

Numa

Zora

Impermax

MBU

Nitron

LNDFi

Dexodus

Cork Protocol

Meta Pool

ResupplyFi

Future Protocol

Date

01/04/2025

01/08/2025

01/10/2025

01/13/2025

01/15/2025

01/21/2025

01/23/2025

02/08/2025

02/23/2025

02/27/2025

03/01/2025

03/30/2025

04/14/2025

04/18/2025

04/24/2025

04/26/2025

05/11/2025

05/16/2025

05/16/2025

05/26/2025

05/28/2025

06/17/2025

06/26/2025

07/02/2025

Technique

Logic Vulnerability

Logic Vulnerability

Access Control

Logic Vulnerability

Reward Calculation
Error

Logic Vulnerability

Insufficient Input

Validation

Reentrancy

Logic Vulnerability

Price Manipulation

Logic Vulnerability

Logic Vulnerability

Unauthorized Access

Price Manipulation

Access Control

Price Manipulation

Precision Loss

Price Manipulation

Unauthorized Access

Signature Replay

Missing Authorization
Checks

Missing Override

Price Manipulation

Price Manipulation

Amount Lost Could have been
prevented?

$41,000

$19,500

$21,000

$200,000

$340,000

$65,000

$50,000

$43,000

$80,000

$716,000

$285,000

$355,000

$7,400,000

$527,000

$128,000

$300,000

$2,200,000

$951,000

$1,300,000

$201,000

$12,000,000

$137,000

$9,600,000

$4,600,000

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Rant
GMX
H20 Token
WebKey
BBX
Alkimiya
WETC Token
SuperRare
Numa
Betterbank
Bunni
Kame Aggregator
New Gold Protocol
Griffin Al
dTrinity
Abracadabra
Typus Finance
Sharwa Finance
Balancer
Moonwell
DRLVaultV3
Port3
Yearn Finance
DM:i Token

Prism Protocol

1inch

Date

07/05/2025

07/09/2025

03/14/2025

03/14/2025

03/20/2025

03/28/2025

07/17/2025

07/28/2025

08/10/2025

08/27/2025

09/02/2025

09/12/2025

09/18/2025

09/25/2025

09/28/2025

10/04/2025

10/15/2025

10/20/2025

11/03/2025

11/04/2025

11/10/2025

11/23/2025

11/30/2025

12/8/2025

12/11/2025

03/05/2025

Technique

Price Manipulation

Price Manipulation

Logic Vulnerability

Arbitrage

Price Manipulation

Logic Vulnerability

Logic Vulnerability

Access Control

Logic Vulnerability

Logic Vulnerability

Rounding Error

Missing Validation
Check

Price Manipulation

Misconfigured
Deployment

Access Control

Logic Vulnerability

Missing Authorization
Checks

Missing Slippage
Protection

Precision Loss

Faulty Price Oracle

Slippage Exploit

Logic Vulnerability

Logic Vulnerability

Logic Vulnerability

Access Control & Price
Manipulation

Logic Vulnerability

A oDt ot Could have been
prevented?

$204,000 Yes
$42,000,000 Yes
$22,000 Yes
$737,000 Yes
$12,000 Yes
$96,000 Yes
$100,000 Yes
$680,000 Yes
$313,000 Yes
$5,000,000 Yes
$8,400,000 Yes
$1,300,000 Yes
$2,000,000 Yes
$3,000,000 Yes
$56,000 Yes
$1,700,000 Yes
$3,400,000 Yes
$147,000 Yes
$121,100,000 Yes
$1,000,000 Yes
$98,000 Yes
$166,000 Yes
$9,000,000 Yes
$124,000 Yes
$62,000 Yes
$5,000,000 Yes

Preventability Summary

Across the 50 in-scope EVM exploits reviewed:

e 49 exploits were preventable using Olympix prior to deployment
e 98 percent of incidents fell within detectable vulnerability classes
e Approximately $240 million in losses were preventable

These findings reflect a consistent pattern across the year. Vulnerable logic was
present in deployed contracts well before exploitation occurred, often long before
audits or monitoring tools could intervene.

Preventable vs. Non preventable exploits in 2025.

Not preventable
2%

Preventable by Olympix
98%

Distribution of Vulnerability Types

A small set of vulnerability categories accounted for the majority of exploit activity.
Most Commonly Exploited Vulnerability by Count

Logic vulnerabilities were the most frequently exploited category in 2025.
These failures typically involved:

e incorrect assumptions about state transitions
¢ unsafe ordering of operations

e multi-step execution paths that violated intended behavior

Attackers did not bypass permissions or exploit infrastructure weaknesses. They
used valid function calls.

The protocol behaved exactly as written.

Vulnerability Categories by Number of Exploits (2025)

Lagic vulnerability

Price Manipulation
Access Control

Private Key Compromise
Unauthorized Access
Precision Loss
Reentrancy

Reward Calculation Ermor
Missing Authorization Checks
Signature Replay
Rounding Error

Slippage Exploit

Vulnerability Category

Missing Slippage Protection
Misconfigured Deployment
Insufficient Input Validation
Faulty Price Oracle
Arbitrage

Missing Validation Check

4} 5 10 15 20 25
Number of Exploits

Accounting and precision errors were responsible for the highest total dollar losses.

Although fewer in number, these vulnerabilities had severe consequences due to
their presence in high liquidity systems. Small humerical errors scaled
catastrophically when applied repeatedly.

This imbalance between frequency and impact is one of the most important lessons
of 2025.

Wulnerability Category

Precision Loss

Price Manipulation
Unauthorized Access
Private Key Compromise
Missing Authorization Checks
Logic Vulnerability

Access Control

Rounding Error
Miscanfigured Deployment
Missing Validation Check
Faulty Price Oracle
Arbitrage

Reward Calculation Error
Signature Replay

Missing Slippage Protection
Slippage Explait
Reentrancy

Insufficient Input Validation

Vulnerability Categories by Total Dollar Impact (2025)

5126

$40M $60M $80M $100M $120M
Total Funds Lost (USD)

Top 3 Exploits by Economic Impact

A small subset of incidents accounted for a disproportionate share of annual losses.
Each of these exploits stemmed from deterministic logic failures that existed prior to
audit and deployment.

Top 3 Exploits by Funds Lost (2025)

$120M -

$100M

$80M -

SB0M -

Funds Lost {USD)

$40M -

520M -

512M

Balancer GMX Cork Protocol
Protocol

& Balancer A ¢ CORK

Exploit postmortems below.

& Balancer

Loss: S121.1M
Date: November 3, 2025

Balancer V2 suffered one of the largest exploits of 2025 after attackers abused a
precision and rounding flaw in Composable Stable Pools. Through carefully calibrated
micro-swaps, attackers were able to erode pool invariants and extract value across
multiple networks.

The exploit was not caused by oracle failure, governance compromise, or privileged
access. It originated entirely from deterministic accounting logic.

Root Cause: Asymmetric rounding in rate-augmented scaling logic.
Scaling functions applied consistent downward rounding while embedding dynamic
token rates. Under specific pool conditions, this introduced a persistent rounding

bias that allowed attackers to underpay during EXACT_OUT swaps.

Repeated over many operations, this bias degraded the pool invariant and deflated
BPT value.

ion _upscale(uint256 amount, uint256 scalingFactor) int

eturn FixedPoint.mulDown(amount, scalingFactor);

10

How Olympix Would Have Prevented This

Olympix’s precision analysis identified biased rounding in rate-augmented scaling
factors as a High-severity vulnerability.

The system flagged:
e inconsistent rounding direction across scaling operations
o amplification risk when dynamic rates are embedded

e invariant degradation under adversarial pool states

This class of vulnerability is extremely difficult to surface through manual review, but
well-suited to automated, deterministic analysis.

11

GMX

Loss: ~S40M
Date: July 9, 2025

In July 2025, GMX V1 suffered a ~S40M exploit caused by a design flaw in its position
execution flow. A user-controlled receiver address enabled a cross-contract
reentrancy attack that bypassed routing safeguards and corrupted price calculations
used to value GLP.

Root Cause: Unconstrained user-controlled receiver execution.
The decreasePosition flow allowed users to specify an arbitrary receiver address.
When this receiver was a contract, execution control was transferred externally

betore all internal state transitions and invariants were finalized.

This enabled cross-contract reentrancy into sensitive vault functions, bypassing
expected routing through GMX's PositionRouter and PositionManager.

How Olympix Would Have Prevented This

Olympix’s source-level analysis would have flagged the dynamic receiver execution
path as exploitable.

The system identifies:

e user-controlled external call sites prior to invariant finalization

e cross-contract reentrancy exposure beyond local guards

e sequencing violations where funds or execution control are transferred
prematurely

Through mutation testing and invariant validation, Olympix simulates mid-transaction
reentry and validates that price and exposure assumptions cannot be violated under
adversarial execution.

Loss: ~S11M
Date: May 28, 2025

In May 2025, Cork Protocol suffered an ~S11M exploit due to critical weaknesses in its
Uniswap V4 hook implementation. Missing access control allowed attackers to
invoke hook logic directly, mint derivative tokens without depositing collateral, and
redeem them for valuable assets.

Root Cause: Missing access control and insufficient validation in Uniswap V4 hooks.

Critical hook callbacks, including beforeSwap, lacked restrictions ensuring they could
only be invoked by the Uniswap V4 PoolManager. This allowed arbitrary contracts to

call hook logic directly with attacker-controlled parameters.

Additional weaknesses in token-type validation and market configuration

compounded the exploit.

beforeSwap(

s calldata params,

54, BeforeSwapDelta delta, uint24)

How Olympix Would Have Prevented This

Olympix’s source-level analysis would have flagged the hook callbacks as unsafe due
to missing PoolManager-only access enforcement.

The system identifies:
o externally callable hook functions lacking trusted caller validation
e execution paths where hook logic assumes correct invocation context
e missing invariants around asset deposits and derivative issuance
Through mutation testing and invariant validation, Olympix simulates adversarial

hook invocations and verifies that minting logic cannot be triggered without actual
collateral movement.

12

13

Analysis & Risk Implications

Smart contract exploits in 2025 followed two clear and contrasting trends.

Exploit activity was distributed relatively evenly across the year, while total financial
losses were heavily concentrated in a small number of high-impact incidents.

This divergence between frequency and severity defines the 2025 risk landscape.

Hacks by Volume vs Hacks by Revenue

Biggest month by exploit volume: January

January recorded the highest number of independent exploit events in 2025, with
hine separate incidents.

The majority of these exploits stemmed from logic vulnerabilities and access-control
failures. While individual losses were relatively small compared to later incidents,
their frequency illustrates how often preventable vulnerabilities continue to ship into
production.

This month reflects the most common failure mode of 2025, frequent, low-to-mid
impact exploits caused by unsafe assumptions in contract logic.

Biggest Month by Exploit Volume (2025)

Highest volume: jan (9 exploits]
9 g

Number of Exploits

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nawv Dec
Maonth (2025)

Biggest month by exploit revenue: November

November accounted for the largest share of total funds lost in 2025, despite having
far fewer incidents than January.

This spike was driven primarily by a single catastrophic exploit, which outweighed
the cumulative losses of multiple earlier months combined.

The data shows that exploit severity does not correlate with exploit frequency. One

accounting or precision failure in a high-liquidity system can eclipse dozens of
smaller incidents.

2025 Total Funds Lost by Month

5122M
5120M

S100M o

SB0M

S60M

$40M

Total Funds Lost (USD)

$20M -

;a'n Felh M;:r .&,EJI Mé.y]1.;I't p.h Aug Sép cht Now Déc
Month (2025)

Risk Implications

Analytical Finding Why This Matters

The majority of high-impact exploits did not stem
from unknown vulnerability classes, but from implicit
Most Losses Were Caused by Unmeasured assumptions about how contracts would be used,
Assumptions composed, or interacted with. When assumptions are
not explicitly modeled or tested, risk remains invisible
until exploitation occurs.

Risk implications continued on next page.

14

Analytical Finding

Why This Matters

Most Losses Were Caused by Unmeasured
Assumptions

Audits Cannot Serve as First Discovery

High Test Coverage Does Not Equal Adversarial
Coverage

Security Confidence Is Often Assumed — Not
Measured

Manual Review Does Not Scale With
Deployment Velocity

Security Signals Arrive Too Late in the
Development Lifecycle

15

The majority of high-impact exploits did not stem
from unknown vulnerability classes, but from implicit
assumptions about how contracts would be used,
composed, or interacted with. When assumptions are
not explicitly modeled or tested, risk remains invisible
until exploitation occurs.

Audits evaluate code that has already been
architecturally finalized. When vulnerabilities are
identified at this stage, remediation often requires
redesign rather than correction, significantly
increasing cost, delay, and residual risk.

Many exploited execution paths were technically
covered by tests but never meaningfully exercised
under adversarial conditions. Coverage metrics alone
fail to measure whether critical invariants actually
hold under hostile inputs.

Many teams rely on qualitative confidence
derived from audits or test completion rather
than measurable, reproducible guarantees.
Without provable assurance, residual risk
cannot be meaningfully evaluated or compared.

As deployment frequency and composability
increase, reliance on human review introduces
coverage gaps that grow with scale. Manual
processes cannot match the pace of modern
smart contract development.

Most vulnerabilities originated during design or
early implementation, yet detection occurred
only after integration or deployment. This timing
mismatch creates structural blind spots that
cannot be closed through downstream controls.

Analytical Finding

Security Failures Compound Upstream

Risk Is Highly Concentrated — Not Evenly Distributed

Exploit Frequency and Economic Severity Are
Decoupled

Economic Impact Is Decoupled From Code Complexity

Business Logic Failures Dominate High-Impact
Exploits

Post-Deployment Monitoring Is Inherently Reactive

Why This Matters

Vulnerabilities discovered later in the lifecycle are
harder to remediate safely. Late discovery increases the
likelihood of rushed fixes, partial mitigations, or
acceptance of known risk in production systems.

Losses followed a fat-tailed distribution, with a small
number of incidents accounting for a disproportionate
share of total economic impact. This makes average
exploit size or incident count unreliable indicators of
true exposure.

The month with the highest number of exploits was not
the month with the highest total losses. Incident volume
alone fails to capture systemic risk, as fewer but more
severe exploits can dominate outcomes.

Contract size or architectural complexity did not reliably
correlate with exploit severity. Exposure was more
strongly driven by value concentration than by lines of
code or perceived technical sophistication.

The most damaging incidents resulted from violations of
intended economic behavior rather than syntactic
errors. This reinforces that correctness cannot be
inferred from compilation success or pattern-based
detection alone.

On-chain monitoring detects exploitation after
vulnerable logic has already been deployed and funds
are at risk. While essential for response and visibility,
monitoring alone cannot prevent first-order losses.

Several conclusions emerge clearly from the 2025 exploit data.

1. Most losses did not stem from unknown vulnerabilities.

They resulted from assumptions that were never explicitly tested, measured, or
enforced. In many cases, protocol logic behaved exactly as written, but not as
intended. When assumptions remain implicit, they become invisible sources of risk.

2. Audits remain essential, but they cannot serve as the first line of discovery.

Audits evaluate systems that are already architecturally defined. By the time code
reaches review, foundational design decisions have been made and embedded.
Audits can identify flaws, but they cannot substitute for validation during
development.

3. High test coverage does not equate to adversarial coverage.

Many exploited execution paths were technically covered by tests, yet never
exercised under adversarial conditions. Coverage metrics measure whether code is
executed, not whether it behaves safely when inputs are hostile or states are
extreme.

4. Security failures compound as they move downstream.

The later a vulnerability is discovered in the lifecycle, the more costly and risky it
becomes to remediate. Issues identified after deployment often require mitigations,
compensating controls, or emergency response, rather than clean correction.
Prevention upstream consistently delivers the highest risk reduction.

The 2025 data indicates that the industry remains in an early stage of security
maturity.

Security practices are largely focused on detection and response, rather than
prevention and correctness. Assurance is derived from process completion (audits,

test coverage, reviews) rather than from deterministic validation of intended behavior.

Until security outcomes become measurable and reproducible, risk will continue
to scale faster than protection.

17

18

Beyond Audits: A Multilayered Security Approach

The 2025 exploit data makes one conclusion unavoidable: no single security control
is sufficient to protect complex smart contract systems operating at scale.

Proactive tooling, audits, monitoring, and incident response each play an important
role, but they address different phases of risk. Effective security posture emerges
not from relying on one mechanism, but from combining complementary controls
across the full lifecycle.

¢ Anchor security in development. The highest leverage security decisions occur
during development, before code is deployed or reviewed. Deterministic security
tools applied at this stage provide the strongest form of assurance because they
evaluate correctness while assumptions are still malleable.

¢ Use audits as independent validation, not primary discovery. Audits remain an
essential component of any serious security program, particularly for
independent review and external assurance. Enterprise teams should treat audits
as a confirmation layer rather than a discovery mechanism, ensuring that the
most critical logic has already been validated prior to review. This approach
improves audit outcomes, reduces friction, and shifts audit conversations from
reactive remediation to risk confirmation.

¢ Rely on monitoring for detection, not prevention. On-chain monitoring systems
provide visibility once contracts are live. They are indispensable for detecting
abnormal behavior, alerting teams, and reducing blast radius during active
incidents. However, monitoring is inherently reactive. It observes consequences,
not causes. Enterprise teams should view monitoring as a response acceleration
mechanism, not a substitute for upstream correctness.

¢ Integrate Risk and Intelligence for Contextual Awareness. These systems
enhance situational awareness, support investigations, and assist with
compliance and reporting obligations. They complement technical security
controls but do not replace them. Their value increases significantly when paired
with strong preventive controls upstream.

¢ Prepare explicitly for incident response and recovery. Even mature security
programs must assume that incidents can occur. Defined response playbooks,
trusted recovery partners, and clear internal ownership are essential for
Mminimizing damage when failures happen. However, response capabilities should
be treated as a last line of defense, not a risk strategy. Recovery does not negate
loss, reputational damage, or operational disruption. The objective remains
reducing the likelihood of incidents reaching this stage at all.

See recommended providers for each stage of the security lifecycle below.

: ! On-Chain Monitorin

(@) lym pl 3¢ @ CHAINSECURITY i @Hexogc‘re ; B 5 zeroShadow
__ PER—— : HYPERNATIVE :
7 - : '
724‘;1 certora | MERKLE SCIENCE | Bl
i @ Cyfrin i & Chainalysis i
Al Ag ents m GUARDIAN ; B4 ChainPatrol :
] : P Guardrail :
i ! p o .

A Areta evaluates proactive tooling and audit firms to provide whitelists of
providers in key ecosystems such as Uniswap, Polygon, etc.

19

Operationalizing Security Earlier in the SDLC

As software systems mature and economic risk increases, security consistently
shifts earlier in the development lifecycle. Traditional software engineering adopted
shift-left practices decades ago, embedding automated validation directly into
development workflows. High-assurance industries such as aerospace followed a
similar trajectory, prioritizing early verification to prevent costly downstream failures.

The 2025 exploit data indicates blockchain systems have reached a comparable
inflection point. As value concentration grows, security controls applied only after
development are no longer sufficient. Correctness must be evaluated where logic is
written, not after it has been deployed.

Operationalizing shift-left security requires layered validation throughout the SDLC,
including:

e Static analysis to identify logical flaws and unsafe patterns at development time

e Unit testing to validate expected behavior under known conditions

e Mutation testing to assess whether tests meaningfully enforce intended
invariants

e Fuzzing to explore unexpected execution paths and adversarial inputs

e Formal verification to mathematically validate critical properties where required

Large language models can play a valuable role in surfacing certain classes of issues
and accelerating developer workflows. However, due to their probabilistic nature,
LLM-based tools cannot serve as a sole source of security assurance. In high-risk
systems, security outcomes must be reproducible, measurable, and verifiable, not
inferred from non-deterministic analysis alone.

As markets mature, security spend shifts left.

20

Deterministic vs Probabilistic Security:
lihy Proof Matters

As smart contract systems continue to secure increasing amounts of economic
value, the standard for security assurance must evolve. Not all security approaches
offer the same level of confidence.

Probabilistic security relies on likelihood. These approaches — including pattern
detection, heuristics, and many Al-driven tools — surface issues based on probability
rather than certainty. While effective for triage and signal generation, their outputs
are inherently non-deterministic and difficult to reproduce.

Deterministic security, by contrast, seeks provable correctness. It evaluates
whether defined properties, invariants, and constraints hold across all possible
execution paths. Outcomes are reproducible, measurable, and verifiable — qualities
required when systems carry material financial and reputational risk.

This distinction has become increasingly important as artificial intelligence is applied
to security workflows. In a recent open letter, JPMorgan Chase’s CISO cautioned
against relying on probabilistic Al systems as a primary security control, emphasizing
that non-deterministic outputs cannot provide the level of assurance required for
high-risk environments.

The implication is not that Al lacks value, but that its role must be appropriately
scoped. Al can accelerate discovery, expand surface coverage, and improve
developer efficiency. However, it cannot substitute mathematical proof where
correctness is required.

As blockchain systems mature, security assurance must shift from confidence
inferred to correctness demonstrated. In environments where failure carries
irreversible financial consequences, proof is not a preference; it is a prerequisite.

https://www.jpmorganchase.com/about/technology/blog/open-letter-to-our-suppliers

The findings in this report highlight a consistent pattern: the majority of 2025 smart
contract exploits were not caused by unknown vulnerabilities, but by logic flaws
and untested assumptions introduced earlier in development.

Based on analysis of in-scope incidents, approximately 98% of exploits —
representing roughly $240 million in losses — could have been prevented had
vulnerabilities been identified prior to deployment.

Olympix was built to address this structural gap through a proactive, automated,
and verifiable security model. Rather than relying on retrospective detection, the
platform applies shift-left security principles to evaluate correctness as code is
written — when risk can still be removed, not merely monitored.

This approach reflects practices long established in mature industries such as
traditional software and aerospace, where early, deterministic validation is used to
prevent high-impact failures downstream. By introducing reproducible and
measurable security assurance earlier in the SDLC, Olympix supports a security
posture centered on prevention, proof, and operational scalability.

Additional information is available at www.olympix.security

Trusted by:
W catalysis €0 CORIK AF SkyMavis e STAKEDAO Hourglass

L. Covenant @ Strata @ SYNDICATE é LIFI M AGORA

3¢ crossmint @) CIRCLE <FLUMIA Fire Dev &) EIGENPIE

o UNISWAP
3 UNISWAP FOUNDATION v IPOR il LUCID

R Yieldxyz CLANKER

Olympi

22

https://olympix.security/

