

Migration and Modernization M&A Technical Case Study

EXECUTIVE SUMMARY

Following the acquisition of a successful ad tech startup, our customer, a Fortune 500 telecommunications company, enlisted CloudGeometry as the systems integrator and AWS consulting partner to design and execute an ambitious transformation.

The challenge lay in seamlessly integrating the startup's innovative yet nascent technology with the robust, expansive infrastructure of the acquiring company. The integration needed to address the startup's scalability limitations and modernize its platform to leverage cloud-native features, ensuring a seamless transition without disrupting ongoing operations.

The challenge lay in seamlessly integrating the startup's innovative yet nascent technology with the robust, expansive infrastructure of the acquiring company. The integration needed to address the startup's scalability limitations and modernize its platform to leverage cloud-native features, ensuring a seamless transition without disrupting ongoing operations. A particular challenge: the rapidly expanding backlog of desired feature changes. Informal decisions taken across multiple pivots in pursuit of product-market fit before the acquisition had unintentionally created a level of technical debt incompatible with accelerated innovation and deployment.

The roadmap for this technological overhaul emphasized a strategic migration to AWS, focusing on adopting a microservices architecture to enhance scalability and agility. The plan aimed to rectify existing bottlenecks and lay a foundation for future-proofing the platform, ensuring compliance with stringent data security standards, and fostering an environment conducive to rapid innovation.

The implementation orchestrated by CloudGeometry spanned multiple tracks, including the re-architecture of core business applications, enhancement of data management and analytics capabilities, and adoption of DevOps practices to streamline development and deployment processes. This comprehensive approach ensured that each platform aspect, from infrastructure to application logic, was systematically addressed.

The culmination of these efforts was a modernized platform on AWS that positioned the telecommunications giant to adapt swiftly to the ever-evolving digital advertising landscape. This agility enabled the introduction of compelling new features at an unprecedented pace, allowing the company to respond proactively to competitive pressures and capitalize on market opportunities. The successful execution of this technical and business strategy enhanced operational efficiencies and solidified the company's standing as a frontrunner in the intersection of telecommunications and digital advertising.

INTRODUCTION

Modernization is a balancing act. On the one hand, systems' business value can persist long after they are developed. They enable customer retention, amortize acquisition costs, accumulate valuable data and processes, and more. On the other hand, the challenge is to ensure those advantages do not decay with time.

However, simple lift-and-shift migrations (porting physical hosts to cloud hosting services) can risk locking in obsolete software assumptions. Unlocking new potential with existing applications means a targeted, phased approach to resolve three significant constraints:

- Reducing the costs and risks of what the systems do today
- Making it easier today to reliably add new features and efficiencies to meet tomorrow's business opportunities
- Lower barriers to integration between systems developed separately, enabling new synergies

Given its strategic importance, M&A shines a bright light on all three. Success depends on making the most of successes unique to the acquired business and reinforcing the enabling technologies that made them possible.

Given our experience helping both acquiring and acquired companies accelerate their success, CloudGeometry has deep expertise and experience across a broad portfolio of technologies, with a successful track record of solving these competing constraints.

Our client, a prominent publicly traded U.S. media conglomerate, acquired a VC-funded tech startup with a successful Ad Campaign Performance & Analytics Platform (AdCAP). This platform encompassed an array of AdTech services: an innovative DSP, a self-service ad campaign manager, an ad-ops order management console, a campaign planning toolset, and an ad performance analytics dashboard.

The acquired startup's platform proved its product-market fit with strong adoption. It achieved market success with its 'AdCAP' platform, serving tens of thousands of ad impressions per second. The platform also provided omnichannel support for web, mobile, social, and TV ads to large advertisers.

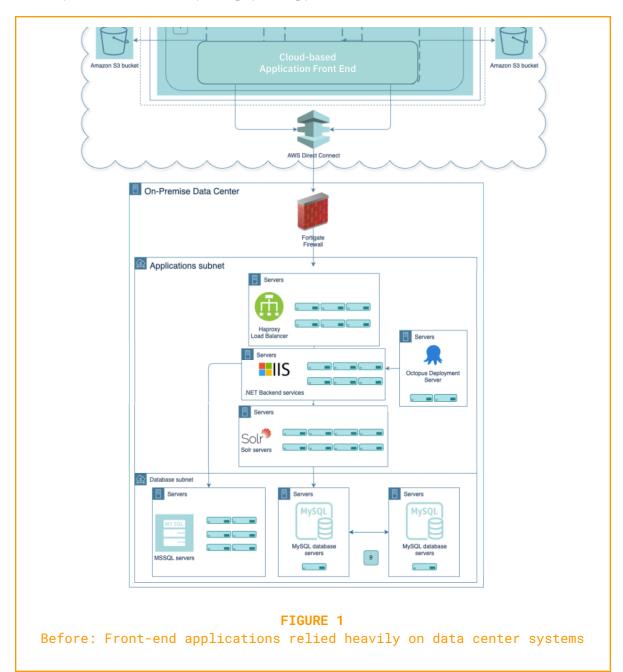
To design and implement a cloud-based data warehouse that consolidates patient records, prescriptions, billing data, and insurance information. The goal is to enable efficient data management, support compliance, and facilitate advanced analytics for three classes of roles: Enterprise and Business Process Architects, BI & Data Analytics, and Data Engineers.

THE CHALLENGE

The acquiring management team had ambitious expansion plans and a sales pipeline of top US enterprises eager to move their advertising to the AdCAP Platform. The technology had been bootstrapped over several years of cumulative innovation, and as is typical of technology startups, agility and quick pivots to meet market demands had been prioritized. These often came at the expense of long-term planning, minimization of dependencies, and dynamically scalable architecture. As a result:

- The onboarding of each new customer was still a manual process requiring new development, integration, and testing
- There was no secure separation of customer data or the way to limit access control for application admins.
- New feature requests were backlogged for months, undermining upsell opportunities to existing customers and a competitive differentiator.s
- Hard limits to scalability too often cause downtime rooted in single points of failure.
- Self-serve applications were outdated compared to market standards set by competing offerings from market leaders Meta (Facebook) and Google AdSolutions.

These business limitations were due to numerous technical constraints. Many components were unsuitable for scaling out the new development of cloud applications. Among many examples:


- The AdCAP platform had a monolithic architecture with components developed in mix-and-match programming languages, including Python, NodeJS, C++/.NET, and Go.
- A non-scalable storage layer based on MS-SQL servers had become a bottleneck, as it was initially designed for transactional row and column patterns.
- A growing amount of non-SQL data compounds scalability and reliability problems.
- The original design lacked the flexibility to manipulate data for an increasing variety of data consumers and science research initiatives.
- Conflicting infrastructure constraints created needless fragility, stemming from different approaches to solving the same problem in different way.s

As is not unusual in M&A, despite the positive top-line ROI of the acquisition, the AdCAP platform software development life cycle (SLDC) had become unpredictable opaque, and infrastructure issues turned into business problems. Competitive opportunity languished behind release milestones. And at the foundation, cloud engineering was a work in progress. Only a small subset of system components ran on the **AWS EC2** and **S3** cloud services. The balance of database servers and other crucial legacy systems was still located in a colo facility, running on server-based VMs.

Recognizing the strategic risk that the underlying technology posed to the business opportunities, the executive team set two primary goals

CloudGeometry

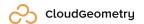
- Migrate all system components to AWS and upgrade to a cloud-native tech stack while keeping an eye on future AWS costs.
- Platform upgrades, as measured by improved application performance, security, reliability, cost-effectiveness, and software delivery efficiency – consolidating platforms, eliminating points of failure, and updating operating processes

Future-proofing a robust digital business model in the highly competitive digital media market required an approach that captured the benefits of existing business operations. It meant taking a systematic approach to exposing risks, identifying remediations, and building out new strategies that could evolve with changes in the digital landscape. A critical success factor: expertise spanning application development, Cloud operations and Cloud native software delivery. CloudGeometry took on the challenge of migrating and upgrading to meet a demanding growth agenda.

Technical roadmap for business results

In consultation with the acquiring company's executive leadership, the CloudGeometry team's solution architects and cloud engineers proposed the following workstreams to modernize the AdCAP platform and deliver disruptive profitability, reliability, and agility.

SaaS Readiness


SaaS is a business strategy, not a technical implementation. While there are many ways to deliver business value that customers can consume "as a Service", there's no one-size-fits-all SaaS architecture. However, many technical strategies can be combined to continuously evolve a SaaS architecture to work more effectively. By applying the relevant guidelines enumerated in the SaaS Lens of the AWS Well-Architected Framework, we designed and implemented a new architecture that could better:

- Develop and operate each service based on its multi-tenant load and isolation profiles.
- Instrument, capture, and analyze customer-specific application metrics
- Onboard customers through a single, automated, repeatable process
- Plan to support multiple tiers of customer experiences
- Integrate one-off requirements systematically through validated global customization
- Align infrastructure consumption with customer activity, and measure customer-specific consumption and resource utilization
- Bind a secure user identity to secure platform identity services

Finalize Cloud Migration and Cloud Microservices Upgrade

Next, we moved to plan the migration of all system components to run on AWS, focusing on upgrades to AWS service configurations and leveraging open-source cloud-native technologies. A microservices strategy leveraging containers orchestrated by Kubernetes lets us:

- *Eliminate Duplication:* Streamline operations by removing manual data entry and configuration management, enhancing efficiency and accuracy.
- *Minimize Development Risks:* Adopt a unified microservices architecture to reduce programmatic risks associated with development.

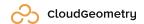
- *Unified Data View:* Create a consolidated, comprehensive view of data across systems, facilitating better decision-making and insights.
- Enhanced Control and Synchronization: Improve system integration for superior control and synchronization, ensuring a seamless and consistent operational flow.

Compliance with industry standards, Security, and Data Privacy Requirements:

A critical requirement was aligning to enterprise standards for publicly traded acquiring company compliance. The system had to incorporate advanced security protocols and strict data privacy measures to ensure compliance with industry regulations. This step was vital to build trust with enterprise end-user customers by protecting their data and maintaining a secure platform infrastructure.

Performance, Scalability, and Stability

A core aspect of the modernization was the system's ability to handle fluctuating loads and maintain high performance. A top priority was ensuring a consistent 100ms response time for AdExchanges and Real-Time Bidding (RTB), regardless of load. Additionally, enhancing system stability was crucial to avoid costly downtimes and to fulfill the stringent Service Level Agreements (SLAs) set with clients.


Rapid Onboarding and Customization for New Enterprise Customers:

Streamlining the process for quickly integrating new paying enterprise Customers was essential. This involved developing self-service options for faster onboarding and creating a flexible platform capable of catering to diverse customizations as per different end-user needs. The system had to be adaptable, allowing seamless integration with various client systems and efficiently managing customer-specific requirements.

New Features and Software Development Agility

To keep pace with the ambitious growth trajectory, AdCAP's systems architecture had to be revamped for faster and more efficient feature development – crucial to competitive advantage. A key benefit of the microservices strategy: enabling multiple teams to work simultaneously on different features, avoiding inherited dependencies from older assumptions. Standardizing on NodeJS, where feasible, streamlined the development process.

Updating the SDLC process with cloud-native CI/CD practices and a unified development platform was essential to maintain high development velocity, facilitating the swift onboarding and offboarding of development talent. Development teams benefited from improved focus and autonomy without compromising business-wide alignment.

DevOps Upgrade with Open Source Toolchain

Traditional DevOps cultural practices are necessary but insufficient to meet the demands of rapid software development iterations needed to reach new levels of efficiency. Based on proven open-source technologies, CloudGeometry's platform engineering reference implementation (CGDevX) is designed to provide a more systematic software delivery life cycle.

Refined over a broad portfolio of consulting engagements, CGDeVX ensures alignment between application code and foundational systems services like compute and storage. Designed for agility and security, its automation best practices simplify the adoption of cloud-native microservices. For example, applying the infrastructure-as-code strategies known collectively as GitOps gives both developers and operations teams alike more consistent ways to build, release, and monitor the software, pre-engineered for end-to-end release, automation, and observability

Data Consistency and MLOps Tools for AI and GenAI Adoption:

A significant focus was also placed on enhancing data pipeline processes to ensure data consistency and quality. This initiative was part of preparing to adopt AI-based solutions for programmatic ad buying, audience targeting and segmentation, fraud detection, and prevention. Additionally, the company could embark on several GenAI projects that generate text and visual ad creatives instantly, utilizing user behavior and intent data. A primary objective of this modernization project was to prime the data and system by introducing MLOps tools and infrastructure, enabling advanced AI integrations.

Summary: Key Migration Drivers and Outcomes (illustration)

TRACK	BIZ DRIVER	TECH DRIVER	OUTCOME
Move from legacy backend relational data to versatile & robust microservic es and data services	Higher customer satisfaction, lower maintenance costs, and faster time-to-market of new features	Ensuring higher reliability and better latency Modernized architecture and transparent DB schema	Dashboard backend data service components migrated from server-based .Net to cloud-based NodeJS
	Rolling out the killer product to secure new big customers	Streamline software development by eliminating risky dependencies on legacy features	Ad Campaign planning workflow and automation tools
	Streamlining the login experience for users with a single catalog of product subscriptions in one place to facilitate cross-selling	Improved maintainability Granular service consumption and deployment	Admin SingleSignOn - secure, compliant identity management for ad agency users
	Reliability of data source and ML/AI readiness	Simplify and unify data flows re rebuilding a data services layer on DataBricks with well-scoped artifacts vs. a set of custom scripts	Versatile data manipulation via streaming Pipelines via DataBricks, DeltaLake
Enable continuous integration using Github actions deployed via CGDevX	Improve the time-to-market of market-driven feature needs	Simplify the release of new features Simplify, standardize and automate deployment	CI/CD: CgDevX End-to-end cloud-native automated DevOps built for and with cloud-native code pipelines
	Ensure resilience and maximize uptime for user-facing products	Eliminate dependency on unstable physical data centers subject to frequent long outages	MySQL on Amazon RDS: 3 instances, high availability implementation backed by redundancy in 2 AWS Data Centers and BC/DR resilience services
	Improve observability for more effective system monitoring and continuous improvement	.Introduce proactive issue resolution, improve root cause analysis and ensure	Real time monitoring of all APIs, Zabbix, and Grafana visualization for SRE.
	Cost optimization through reduced server and data spend efficiency	Ensure resilience as measured by on-demand scalability and high availability	Natively developed and deployed in an integrated dev environment via Kubernetes orchestration

TABLE A: Technical Strategy

AppMod Project Assessment and Planning

Delivering on the technical roadmap's potential meant keeping AdCAP's existing components and subsystems healthy and functional as they were systematically reconceived and reimplemented.

- CloudGeometry teams analyzed the broad range of application functions, refining them so they could be replaced by updated code and automated customer onboarding.
- In mapping the significant systems of each business function of the AdCAP platform, the first step was moving them out of the data center to AWS EC2 Instances and EKS Clusters, and then ensuring system services like networking and load balancing were updated to their more effective cloud service equivalents.
- AWS Relational Database Migration technology (DMS) streamlined the journey with the tooling to set up these services as cloud services.
- Other components were re-hosted using the AWS Migration Service.

But this was just the beginning. The heavy lifting was in planning new platform subsystems, designing and executing the necessary code changes, and re-integrating with dependent systems.

With a budget and roadmap approved, implementation got under way.

IMPLEMENTATION: SEQUENCING MIGRATION AND MODERNIZATION WORKSTREAMS

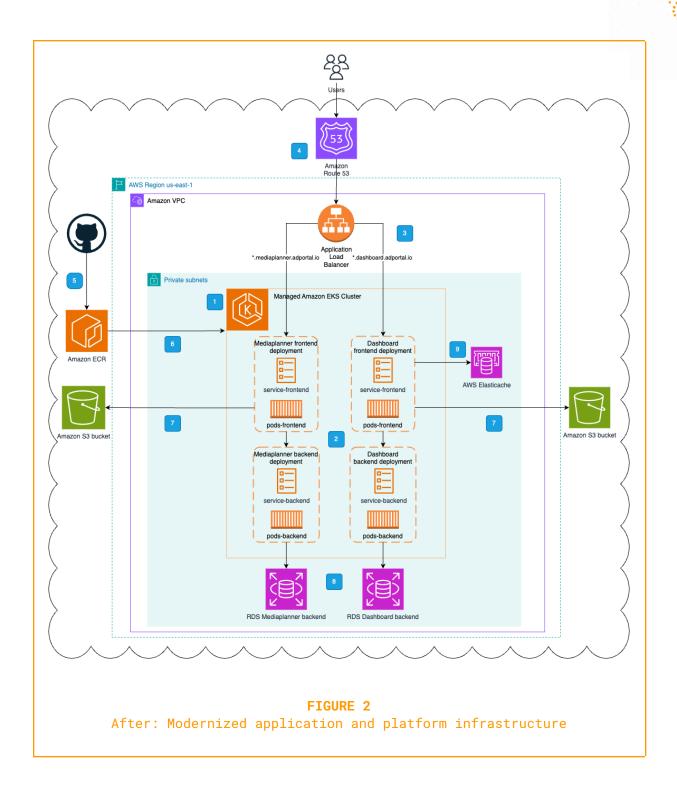

At CloudGeometry, we organized four teams to work on multiple business applications, application integration, and rigorous validation dependencies. These groups each took on multiple new business and platform components. The migration procedure proceeded in parallel across four separate tracks:

- Restructuring existing business applications
- Creating a suite of extensible integrated services
- Continuous functional validation testing to meet new goals and prevent regression
- Upgrading platform infrastructure to maximize the benefits of cloud flexibility and economics

The business application stack was reconstructed to unbundle different data services in a way that could handle customer needs more flexibly. As a whole, this enabled innovative problem-solving and analytics, greater feature development flexibility, and eliminated risks of downtime and data availability by leveraging AWS services with their superior management and control capabilities.

Business applications

In order to upgrade the competitive effectiveness of critical business processes, technical subject matter experts from within the Ad Tech business provided a broad outline of requirements for a more


modern data services strategy to replace an approach that relied almost exclusively on scripting and relational databases on individual servers. Key improvements included:

- Migrating from the legacy physical data center infrastructure to AWS: Shifting off of Data
 Center servers eliminated the significant administrative burden of database management and single points of failure tied to data movement and machine reliability.
 - AWS-hosted SQLServer instances were chosen to replace manually operated SQL installations in the legacy data center and streamline database management.
 - Refactoring of data services with High-Availability best practices enabled seamless day-to-day operations, boosting business uptime to 99.9%. In the past, outages led to hours of downtime and weeks to resolve the root cause.
- Replatforming the back-end data servers supplying dashboard analytics: As part of this
 process, we moved from separate Microsoft SQL Server DBs controlled by cron jobs to a
 consolidated data lake model. The business data team defined data processing rules using
 the DataBricks Spark libraries. As pipelines were developed and introduced, they were
 baselined and validated for data integrity and performance against previous scripting
 methods.
- New performance data analytics services: The lion's share of legacy business logic
 previously relied on a loosely organized, server-based set of .NET applications and multiple
 programming languages written over nearly 20 years. CloudGeometry extracted the
 requirements into a cloud-ready development platform.
 - With a new AWS RDS MySQL RDBMS backend, the new analytics database publishes modern GraphQL APIs for consumption or frontend services.
 - Using **NodeJS running on AWS Lambda** cut costs and load by only executing as needed.
 - Using <u>Prisma ORM</u> simplified the consistent separation of data storage from application versatility. This fit well with the decomposition of services, which could simultaneously maintain business focus, simplify development, and ensure maintainability. It also created a future-proof platform for rapidly introducing new features.

Integrated Services

By taking a holistic approach to full-stack development and technology strategy, the modernized application and cloud platform more easily support both internal and external systems. Services that had been bundled inconsistently within the AdCAP platform were difficult to orchestrate in a consolidated stream. This, in turn, undermined the economies of scale that the new operating model needed to sustain its competitive edge.

 New integration-ready services offering: With a more robust and flexible back-end set of API-addressable data services, the platform was now ready for new services and new features. For example, the client was now able to offer an innovative, subscription-based digital advertising management system to both small advertisers and large agencies from a single set of systems.

- Because this new application was built on Node.js and supported a GraphQL interface, it had enterprise readiness built in. Secure multi-tenancy combined SSO for compliance with a well-specified entity management system.
- Third-party agencies could function as resellers of the same media and ad services as the parent media company.
- It also eliminated the "snowflake one-offs" risk because all systems were managed, monitored, and provisioned with the same cloud infrastructure and application code.
- **Transactional reports and notifications**: A significant chunk of the modernization effort was devoted to replacing code written for proprietary business processes tied to the unique large-scale demands of the client's revenue and operations model.
 - Auxiliary tools such as scheduled reporting, the email notification system, and internal business functions reporting were rewritten in Node.js, leveraging AWS platform services from AWS SMS Email to Amazon CloudWatch.
 - The legacy .NET code was deprecated, and a new solution in NestJS was implemented and deployed to AWS infrastructure using **AWS Lambda**. The execution was according to business operational cadences like contract renewal, weekly reporting, quarterly close, and rollup for the public for earnings announcements, etc.
- **Third-party DSPs:** Since AdCAP was conceived, the emergence of automated demand-side platforms from major commercial advertising distributors had progressed greatly. This meant a deep overhaul of what had originally been proprietary connectors and scripts customized to external DSP platforms.
 - Writing new, modularized, and maintainable connectors to external DSP platforms like Google AdWords, Facebook and Groundtruth centralized management of this crucial part of the overall pipeline. The NestJS framework helped ensure the versatility needed to keep up with these third-party DSPs.
- White-label Dashboards for Agency Resellers: To expand offerings to ad agency customers
 more easily, we built a new white-label custom dashboard system so reseller agencies could
 customize and syndicate services from AdCAP and the parent media company.
 - Modularizing and refactoring legacy monolithic systems relieved the burden of opaque source code and hidden database-level and service-level dependencies.
 - An additional advantage of the multi-tenant microservices architecture was to reference and apply tenant context within each service without requiring developers to wire any tenant awareness into their code.

QA and Validation Testing

New features must be assessed, implemented, and validated rapidly in a fast-changing market. Increased release frequency risked grinding to a halt due to many overlapping dependencies that had evolved over the years. Validation testing had to proceed along two tracks in parallel: (a) Maintaining current systems to deliver consistently until cutover; and (b) assessing new implementations to ensure that they did not introduce regressions in functionality as new systems came online.

- A detailed list of dependencies was created to guarantee a seamless and error-free switch to the new infrastructure.
- As testing and monitoring revealed new dependencies, these were added to the list
- Modules were transitioned gradually to ensure the manageability of the cutover
- The Fallback data stream for the key database was kept for 2 weeks to make sure we could rollback in case of issues with the cutover
- An extensive regression suite was prepared to ensure relevant QA coverage and to test the key use-cases of the systems being migrated diligently
- A rollback plan was created for every migration step

Well-Architected Cloud Pillars to ensure global platform resilience

Taking full advantage of the AWS Cloud platform required a fundamental rethink of "non-functional" system attributes. These supporting system characteristics focus on enabling business benefits and features from a business perspective by eliminating barriers to business value.

These platform infrastructure best practices, anchored by design decisions focused on elasticity, serve as a robust foundation for all business-specific software and applications. Without these best practices, a seemingly straightforward 'lift and shift' of legacy data center operating assumptions multiplies risks rather than mitigating them. The goal is not to reach some static, black-and-white "well-architected" threshold. Instead, it focuses on ways to ensure cloud platform services deliver a better workload that eliminates barriers to business value. A well-architected workload is better at delivering business value than its predecessors.

Designs were vetted against the best practices of the **AWS Well-Architected framework (WAFR)**, ensuring new systems are designed top-to-bottom with proven, up-to-date technical platform infrastructure strategies. WAFR groups the non-functional requirements of cloud platform services into six categories called "Pillars." Key goals included:

- **Security:** Consistently finding ways to tip the balance of cloud technologies to deliver better end-to-end protection of data, systems, and assets. Key focus areas
 - Integration of security checks in CI/CD
 - Least privilege IAM configuration applying zero trust to internal cloud services
 - SAST and DAST scans automate gates for container screening
- **Cost Optimization:** Reaching beyond engineering to enable cross-functional competence in the economics of cloud services backed by data-driven decision-making.
 - Guardrails for upstream environments (Dev, QA, Stage) to flag idle paid services
 - Streamline access to lower-cost "golden configs" outside production; improve leverage of spot instances for burst scaling
- **Reliability:** Continuous testing of operations and alerts to ensure every workload can perform its intended function correctly and consistently as and when expected
 - Infrastructure as Code ensures better governance of changes, as well as avoidance of "snowflake" configs

- Consistent logging standards for faster, more transparent root-cause analysis
- 10x improvement in RTO within 90 days; RPO attains 99.95 uptime
- **Performance efficiency:** Feedback loop for optimizing utilization as demand fluctuates through efficient use of compute, storage, and network resources
 - Integration of security checks in CI/CD
 - SAST and DAST scans automate gates for container screening
 - AWS managed Prometheus service optimized for monitoring containerized systems
- Operational excellence: Continuous pursuit of fast, reliable feedback throughout the software development lifecycle, enabling rapid recovery and assimilation of lessons learned across teams and processes
 - GitOps with ArgoCD, backed by seamless provisioning using Atlantis open source PRs automation
 - "Everything as a Code" provisioning with Integration of security checks in CI/CD
 - Traceability and Auditability allows us to track changes and configurations with precision, making it easier to pinpoint and resolve issues

GROWTH UNDER FULL STEAM

From acquisition to to completion, the effort to modernize the AdCAP platform from standalone startup to the core of an integrated media business spanned just over 20 months. The CloudGeometry software development and infrastructure operations team evolved into a mainstay of software development and feature innovation for ongoing software product development and integration.

The CloudGeometry team played a pivotal role in modernizing the media conglomerate's digital advertising operations, setting the stage for its emergence as a powerhouse in the digital advertising arena. The team ensured agility, scalability, and enhanced performance by leveraging cutting-edge cloud technologies and adopting a microservices architecture. The successful migration to a cloud-native environment and the implementation of DevOps practices and MLOps tools has significantly expanded the conglomerate's media business. These strategic moves have streamlined operations and positioned the conglomerate to capitalize on emerging opportunities in digital advertising, making it a formidable competitor in the marketplace.

ABOUT CLOUDGEOMETRY

CloudGeometry delivers expert technical services, helping our clients unlock the full potential of cloud-native open-source tooling and commercial platform technologies. As an AWS Advanced Consulting partner, our certified solution architects and platform engineers help address the range of challenges facing enterprise innovators and venture-funded startups alike. The Cloud Native Computing Foundation has accredited us as a *Kubernetes Certified Service Provider*.

- <u>Foundation Services</u> solidify, simplify, and modernize your tech foundations: healthier systems, streamlined migrations, and robust uptime for future-ready growth.
- Advanced Services provides <u>software development teams</u> with proven strategies and tactics for better technical & commercial outcomes for a clear path to cloud-native velocity
- AI/ML & Data Services help you apply the latest in <u>AI and data analytics technology to your crucial business processes</u>: MLOps, Generative AI, AI/ML Development. As a <u>Databricks Systems Integrator</u>, our data engineering experts ensure your data is accurate, accessible, and ready to fuel decision-making.

For the last decade, we've built and deployed hundreds of big, fast apps backed by scale-out infrastructure across various industries. Working across <u>a wide variety of applications</u>—financial Services, Industrial Automation, HIPAA-compliant Healthcare, AdTech, Consumer-grade Mobile, IoT, and smart devices, among others—has given us valuable insights into essential full-stack application patterns.

Learning from these similarities lets us develop adaptive, flexible, technology-driven solutions even faster. It's why we created CGDevX, our free, open-source hybrid-cloud application delivery platform. By automating many of the routine tasks associated with software development, CGDevX gives you a shorter, more effective path for engineering teams to focus on creating value-added features and innovations.

Count on us to accelerate application modernization, Kubernetes adoption, developer enablement, secure multi-tenancy, DevOps automation and more. With roots in Silicon Valley, we've seen firsthand what works (and what doesn't). We've completed hundreds of migrations and application modernization projects, so we're well-versed in solving for rising costs and evolving technology and helping clients choose solutions that prevent needless vendor lock-in.

We'll help you find the right technology for your business goals and budget, and we'll integrate the right tools with your Software Development and IT processes, all backed by a complete portfolio of ongoing application development and full-stack support services. From enterprise upgrades to cloud-native scale-out to practical applications of AI, CloudGeometry helps plot the shortest path across all dimensions of modern cloud software and data engineering.

