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Section A: Pure Mathematics

1 You need not consider the convergence of the improper integrals in this question.

For p, q > 0, define

b(p, q) =
∫ 1

0
xp−1(1 − x)q−1 dx.

(i) Show that b(p, q) = b(q, p).

(ii) Show that b(p + 1, q) = b(p, q) − b(p, q + 1) and hence that b(p + 1, p) = 1
2 b(p, p).

(iii) Show that

b(p, q) = 2
∫ 1

2
π

0
(sin θ)2p−1(cos θ)2q−1 dθ.

Hence show that b(p, p) =
1

22p−1
b
(
p, 1

2

)
.

(iv) Show that

b(p, q) =
∫ ∞

0

tp−1

(1 + t)p+q
dt.

(v) Evaluate ∫ ∞

0

t
3
2

(1 + t)6
dt.
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2 Let f(x) = 7 − 2|x|.
A sequence u0, u1, u2, . . . is defined by u0 = a and un = f(un−1) for n > 0.

(i) (a) Sketch, on the same axes, the graphs with equations y = f(x) and y = f(f(x)).

(b) Find all solutions of the equation f(f(x)) = x.

(c) Find the values of a for which the sequence u0, u1, u2, . . . has period 2.

(d) Show that, if a = 28
5 , then the sequence u2, u3, u4, . . . has period 2, but neither

u0 or u1 is equal to either of u2 or u3.

(ii) (a) Sketch, on the same axes, the graphs with equations y = f(x) and y = f(f(f(x))).

(b) Consider the sequence u0, u1, u2, . . . in the cases a = 1 and a = −7
9 . Hence find

all the solutions of the equation f(f(f(x))) = x.

(c) Find a value of a such that the sequence u3, u4, u5, . . . has period 3, but where
none of u0, u1 or u2 is equal to any of u3, u4 or u5.
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3 Let f(x) be defined and positive for x > 0.

Let a and b be real numbers with 0 < a < b and define the points A = (a, f(a)) and
B = (b,−f(b)).

Let X = (m, 0) be the point of intersection of line AB with the x-axis.

(i) Find an expression for m in terms of a, b, f(a) and f(b).

(ii) Show that, if f(x) =
√

x, then m =
√

ab.

Find, in terms of n, a function f(x) such that m =
an+1 + bn+1

an + bn
.

(iii) Let g1(x) and g2(x) be defined and positive for x > 0. Let m = M1 when f(x) = g1(x)
and let m = M2 when f(x) = g2(x).

Show that if
g1(x)
g2(x)

is a decreasing function then M1 > M2.

Hence show that
a + b

2
>

√
ab >

2ab

a + b
.

(iv) Let p and c be chosen so that the curve y = p(c − x)3 passes through both A and B.
Show that

c − a

b − c
=

(
f(a)
f(b)

) 1
3

and hence determine c in terms of a, b, f(a) and f(b).

Show that if f is a decreasing function, then c < m.



6

4 (i) x2 and y2 are defined in terms of x1 and y1 by the equation
(

x2

y2

)
=

( 1√
2

− 1√
2

1√
2

1√
2

)(
x1

y1

)
.

G1 is the graph with equation
x2

9
+

y2

4
= 1

and G2 is the graph with equation
(

x√
2

+
y√
2

)2

9
+

(
− x√

2
+

y√
2

)2

4
= 1.

Show that, if (x1, y1) is a point on G1, then (x2, y2) is a point on G2.

Show that G2 is an anti-clockwise rotation of G1 through 45◦ about the origin.

(ii) (a) The matrix (
−0.6 0.8
0.8 0.6

)

represents a reflection. Find the line of invariant points of this matrix.

(b) Sketch, on the same axes, the graphs with equations

y = 2x and 0.8x + 0.6y = 2−0.6x+0.8y.

(iii) Sketch, on the same axes, for 0 � x � 2π, the graphs with equations

y = sinx and y = sin(x − 2y).

You should determine the exact co-ordinates of the points on the graph with equation
y = sin(x − 2y) where the tangent is horizontal and those where it is vertical.
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5 Three points, A, B and C, lie in a horizontal plane, but are not collinear. The point O lies
above the plane.

Let
−→
OA = a,

−−→
OB = b and

−−→
OC = c.

P is a point with
−−→
OP = αa + βb + γc, where α, β and γ are all positive and α + β + γ < 1.

Let k = 1 − (α + β + γ).

(i) The point L is on OA, the point X is on BC and LX passes through P .

Determine
−−→
OX in terms of β, γ, b and c and show that

−→
OL =

α

k + α
a.

(ii) Let M and Y be the unique pair of points on OB and CA respectively such that
MY passes through P , and let N and Z be the unique pair of points on OC and AB
respectively such that NZ passes through P .

Show that the plane LMN is also horizontal if and only if OP intersects plane ABC

at the point G, where
−−→
OG ≡ 1

3(a + b + c). Where do points X, Y and Z lie in this
case?

(iii) State what the condition α + β + γ < 1 tells you about the position of P relative to
the tetrahedron OABC.

6 (i) Let a, b and c be three non-zero complex numbers with the properties a + b + c = 0
and a2 + b2 + c2 = 0.

Show that a, b and c cannot all be real.

Show further that a, b and c all have the same modulus.

(ii) Show that it is not possible to find three non-zero complex numbers a, b and c with
the properties a + b + c = 0 and a3 + b3 + c3 = 0.

(iii) Show that if any four non-zero complex numbers a, b, c and d have the properties
a + b + c + d = 0 and a3 + b3 + c3 + d3 = 0, then at least two of them must have the
same modulus.

(iv) Show, by taking c = 1, d = −2 and e = 3 that it is possible to find five real numbers
a, b, c, d and e with distinct magnitudes and with the properties a + b + c + d + e = 0
and a3 + b3 + c3 + d3 + e3 = 0.
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7 Let f(x) =
√

x2 + 1 − x.

(i) Using a binomial series, or otherwise, show that, for large |x|,
√

x2 + 1 ≈ |x| + 1
2|x|

.

Sketch the graph y = f(x).

(ii) Let g(x) = tan−1 f(x) and, for x �= 0, let k(x) = 1
2 tan−1 1

x
.

(a) Show that g(x) + g(−x) = 1
2π.

(b) Show that k(x) + k(−x) = 0.

(c) Show that tan k(x) = tan g(x) for x > 0.

(d) Sketch the graphs y = g(x) and y = k(x) on the same axes.

(e) Evaluate
∫ 1

0
k(x) dx and hence write down the value of

∫ 0

−1
g(x) dx.

8 (i) Show that

zm+1 − 1
zm+1

=
(

z − 1
z

) (
zm +

1
zm

)
+

(
zm−1 − 1

zm−1

)
.

Hence prove by induction that, for n � 1,

z2n − 1
z2n

=
(

z − 1
z

) n∑
r=1

(
z2r−1 +

1
z2r−1

)
.

Find similarly z2n − 1
z2n

as a product of
(

z +
1
z

)
and a sum.

(ii) (a) By choosing z = eiθ, show that

sin 2nθ = 2 sin θ
n∑

r=1

cos(2r − 1)θ .

(b) Use this result, with n = 2, to show that cos 2
5π = cos 1

5π − 1
2 .

(c) Use this result, with n = 7, to show that cos 2
15π+cos 4

15π+cos 8
15π+cos 16

15π = 1
2 .

(iii) Show that sin 1
14π − sin 3

14π + sin 5
14π = 1

2 .
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Section B: Mechanics

9 In this question, n � 2.

(i) A solid, of uniform density, is formed by rotating through 360◦ about the y-axis the
region bounded by the part of the curve rn−1y = rn − xn with 0 � x � r, and the x-
and y-axes.

Show that the y-coordinate of the centre of mass of this solid is
nr

2(n + 1)
.

(ii) Show that the normal to the curve rn−1y = rn −xn at the point
(
rp, r(1− pn)

)
, where

0 < p � 1, meets the y-axis at (0, Y ), where Y = r

(
1 − pn − 1

npn−2

)
.

In the case n = 4, show that the greatest value of Y is 1
4r.

(iii) A solid is formed by rotating through 360◦ about the y-axis the region bounded by the
curves r3y = r4 − x4 and ry = −(r2 − x2), both for 0 � x � r.

A and B are the points (0,−r) and (0, r), respectively, on the surface of the solid.

Show that the solid can rest in equilibrium on a horizontal surface with the vector
−−→
AB

at three different, non-zero, angles to the upward vertical. You should not attempt to
find these angles.
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10 A plank AB of length L initially lies horizontally at rest along the x-axis on a flat surface,
with A at the origin.

Point C on the plank is such that AC has length sL, where 0 < s < 1.

End A is then raised vertically along the y-axis so that its height above the horizontal surface
at time t is h(t), while end B remains in contact with the flat surface and on the x-axis.

The function h(t) satisfies the differential equation

d2h
dt2

= −ω2h, with h(0) = 0 and
dh
dt

= ωL at t = 0,

where ω is a positive constant.

A particle P of mass m remains in contact with the plank at point C.

(i) Show that the x-coordinate of P is sL cos ωt, and find a similar expression for its
y-coordinate.

(ii) Find expressions for the x- and y-components of the acceleration of the particle.

(iii) N and F are the upward normal and frictional components, respectively, of the force
of the plank on the particle. Show that

N = mg(1 − k sinωt) cos ωt,

and that
F = mgsk + N tanωt

where k =
Lω2

g
.

(iv) The coefficient of friction between the particle and the plank is tanα, where α is an
acute angle.

Show that the particle will not slip initially, provided sk < tanα.

Show further that, in this case, the particle will slip

• while N is still positive,

• when the plank makes an angle less than α to the horizontal.
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Section C: Probability and Statistics

11 (i) Let λ > 0. The independent random variables X1, X2, . . . , Xn all have probability
density function

f(t) =
{

λe−λt t � 0
0 t < 0

and cumulative distribution function F(x).

The value of random variable Y is the largest of the values X1, X2, . . . , Xn.
Show that the cumulative distribution function of Y is given, for y � 0, by

G(y) =
(
1 − e−λy

)n
.

(ii) The values L(α) and U(α), where 0 < α � 1
2 , are such that

P(Y < L(α)) = α and P(Y > U(α)) = α.

Show that
L(α) = − 1

λ
ln

(
1 − α

1
n

)

and write down a similar expression for U(α).

(iii) Use the approximation et ≈ 1 + t, for |t| small, to show that, for sufficiently large n,

λL(α) ≈ ln(n) − ln
(

ln
(

1
α

))
.

(iv) Hence show that the median of Y tends to infinity as n increases, but that the width
of the interval U(α) − L(α) tends to a value which is independent of n.

(v) You are given that, for |t| small, ln(1 + t) ≈ t and that e3 ≈ 20.

Show that, for sufficiently large n, there is an interval of width approximately 4λ−1 in
which Y lies with probability 0.9 .
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12 (i) Show that, for any functions f and g, and for any m � 0,

m+1∑
r=1

(
f(r)

m∑
s=r−1

g(s)

)
=

m∑
s=0

(
g(s)

s+1∑
r=1

f(r)

)
.

(ii) The random variables X0, X1, X2, . . . are defined as follows

• X0 takes the value 0 with probability 1;
• Xn+1 takes the values 0, 1, . . . , Xn + 1 with equal probability, for n = 0, 1, . . . .

(a) Write down E(X1).

Find P(X2 = 0) and P(X2 = 1) and show that P(X2 = 2) = 1
6 .

Hence calculate E(X2).

(b) For n � 1, show that

P(Xn = 0) =
n−1∑
s=0

P(Xn−1 = s)
s + 2

and find a similar expression for P(Xn = r), for r = 1, 2, . . . , n.

(c) Hence show that E(Xn) = 1
2 (1 + E(Xn−1)).

Find an expression for E(Xn) in terms of n, for n = 1, 2, . . . .



 
 
 
 
 
 
 
 

 
 

BLANK PAGE 



 
 
 
 
 
 
 
 

 
 

BLANK PAGE 



 
 
 
 
 
 
 
 

 
 

BLANK PAGE 



Cambridge University Press & Assessment  
The Triangle Building 
Shaftesbury Road 
Cambridge 
CB2 8EA 
United Kingdom

Cambridge University Press & Assessment unlocks the potential
of millions of people worldwide. Our qualifications, assessments, 
academic publications and original research spread knowledge, 
spark enquiry and aid understanding.


