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Estradiol is not protective against angiotensin II-induced
hypertension in middle-aged ovariectomized rats
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1 | INTRODUCTION cardiovascular complications (Zoccali et al., 2023). Chronic

kidney disease ranks among the top 10 leading causes of
Hypertension and aging are major risk factors for both ~ death in the United States and worldwide (Kochanek
cardiovascular and kidney disease, with renal dysfunc- et al., 2023). Premenopausal women are relatively pro-
tion often serving as both a cause and a consequence of  tected from cardiovascular and renal diseases compared to
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age-matched men, an advantage largely attributed to the
presence of ovarian hormones, particularly estradiol (Dines
& Garovic, 2024). However, this protection diminishes after
menopause, highlighting the critical role of sex hormones
in maintaining vascular and renal health.

Menopausal hormone therapy (MHT) has been ex-
plored for its potential to mitigate postmenopausal
cardiovascular risk, but clinical findings remain incon-
sistent. While some studies report beneficial effects of
menopausal hormone therapy on cardiovascular out-
comes, others fail to show significant protection (Dines &
Garovic, 2024; Manson et al., 2003; Rossouw et al., 2007).
These discrepancies have led to the development of the
“healthy cell bias” hypothesis, which suggests that MHT
is most effective in healthy cells and tissues, whereas
its benefits are diminished in the presence of chronic
disease such as hypertension (Brinton, 2008). Despite
increasing interest, the effects of menopausal hormone
therapy—particularly in the context of hypertension and
associated renal damage—remain poorly understood in
both clinical and preclinical models.

The kidney is one of the most estrogen-responsive
nonreproductive organs, with estradiol influencing glo-
merular and tubular function, as well as sodium and
water homeostasis (Gohar et al., 2020; Singh et al., 2022;
Thomas & Harvey, 2023). However, studies investigating
estradiol's impact on renal injury have yielded conflicting
results. Some suggest estradiol promotes tubular regen-
eration (Ren et al., 2022), while others report protective
effects in healthy kidneys but exacerbation of injury in
certain pathological states (Sharifi et al., 2019; Stehman-
Breen et al., 2003). In models of salt-sensitive hyperten-
sion, ovarian hormones are essential for the observed
female protection against blood pressure elevation and
renal injury (Chappell et al., 2006), yet this protection ap-
pears to be lost with aging (Chappell et al., 2008).

While considerable attention has been paid to the
protective role of estradiol postmenopause, the influ-
ence of pre-existing hypertension on the impact of MHT
remains unclear. In this study, we modeled menopause
in the presence or absence of preexisting hypertension
to determine whether estradiol retains its protective
effects. We hypothesized that hypertension established
before menopause would blunt or reverse the beneficial
actions of estradiol.

2 | MATERIALS AND METHODS
2.1 | Subjects and experimental design

Forty-eight female Long-Evans rats (n =48), aged 70 days
were obtained from Envigo and allowed to age until

approximately 9months old. The rats were housed in
pairs in a temperature-controlled vivarium, maintained
under a 12-h light/dark cycle, with unrestricted access to
food and water unless specified otherwise. After 1week
at the vivarium, all animals were placed on a soy-free diet
ad libitum (Bio-Serv, Frenchtown, NJ) (20.5% protein,
7.2% fat, 0% fiber, 3.5% ash, and 61.6% carbohydrate).

Rats were pair-housed, with treatments randomized
within each cage. Animals were either left normotensive
(NT) or infused with angiotensin II (ANG, 700ng/kg/
min, Bachem, #4006473) via osmotic minipump (Alzet
2ML4) 4weeks prior to ovariectomy (OVX). At 46 weeks,
rats underwent OVX and were treated for 4 weeks with
vehicle (VEH) or estradiol (E2). At the time of OVX, the
pump was replaced with a new four-week pump contain-
ing ANG. This design resulted in four groups: NT-OVX-
VEH, NT-OVX-E2, ANG-OVX-VEH, and ANG-OVX-E2,
n=10-12 per group (Figure 1).

2.2 | Surgical procedures

Aseptic techniques, postoperative monitoring, and
surgical analgesia were implemented. Meloxicam
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FIGURE 1 Experimental design. Ovariectomy (OVX) was
combined with vehicle (VEH) or estradiol (E2) treatment. Some animals
were left normotensive (NT) while some were treated with angiotensin
II (ANG), resulting in four groups: NT-OVX-VEH, NT-OVX-E2, ANG-
OVX-VEH, and ANG-OVX-E2. Created with BioRender.com.
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(1-2mg/kg SC/PO SID) was administered via subcuta-
neous injection as an analgesic before any surgery. For
2days after surgery, animals were monitored daily for
pain and distress, and additional Meloxicam was given
if necessary.

2.3 | Induction of hypertension
Angiotensin I (ANG, Bachem, 700 ng/kg/min, #4006473)
infusion was administered via osmotic minipumps im-
planted under isoflurane anesthesia. Osmotic minipumps
(Model 2004, Alzet, Cupertino, CA, US) were filled with
ANG (Sigma) dissolved in saline and incubated at 37°C
overnight before implanting intraperitoneally. Pumps
were replaced after 4weeks at the time of OVX, totaling
8 weeks of hypertension.

2.4 | Ovariectomy and hormone
treatment

At 46weeks of age, considered middle-aged for this
model, animals underwent OVX to reduce circulating
endogenous ovarian hormones. They received silastic
capsules containing either 25% 17f-estradiol (Sigma-
Aldrich, St. Louis, MO, #E1024) diluted with cholesterol
or 100% cholesterol vehicle. Anesthesia was induced
using isoflurane for the procedure, which involved bilat-
eral flank incisions through the skin and muscle wall to
remove the ovaries as previously described (Zimmerman
et al., 2017). Immediately following OVX, a subcutane-
ous 5 mm silastic capsule (0.058-inch inner diameter and
0.077-inch outer diameter; Dow Corning, Midland, MI,
US, #508-006) was implanted on the dorsal side of the
neck. The efficacy of the implants was assessed by meas-
uring uterine weight. Capsules of this size and estradiol
concentration sustain circulating estradiol levels at ap-
proximately 36 pg/mL, which corresponds to physiologi-
cal levels typically observed during proestrus (Bohacek
& Daniel, 2010).

2.5 | Tail-cuff plethysmography

Tail-cuff plethysmography was used to measure blood
pressure in awake rodents using an automated tail-cuff
volume-pressure recording system (Kent Scientific CODA
system). Animals were acclimated to the clear plastic
tube restraints for 2days, and measurements were ob-
tained over three consecutive days to reduce the impact of
restraint-induced stress. Ten to fifteen consecutive meas-
urements were taken for each animal while they were
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warmed to 35°C, and the systolic blood pressures were
averaged over the 3days.

2.6 | Metabolic cages

Animals were individually housed in metabolic cages for
48h, with the first 24h allocated for adaptation and the
following 24h for water intake and urine collection. Urine
samples were centrifuged to remove particulate matter and
stored at —80°C until assayed. Urinary protein concentra-
tion was determined via Bradford assay (Bio-Rad, Hercules,
CA, #500-0006) with bovine serum albumin as the standard
and is expressed as milligrams of protein per day. Serum and
urine creatinine were measured using the Creatinine Assay
Kit (QuantiChrom, Swedesboro, NJ, #DICT-500) following
the company's instructions. The creatinine clearance or es-
timated glomerular filtration rate (eGFR) in milliliters per
minute was calculated using the formula (Urine Volume
[mL/min]x Urine Creatinine [mg/dL])/Serum Creatinine
[mg/dL] as previously described (Zimmerman et al., 2020).

2.7 | Euthanasia and tissue collection

Rats were euthanized under light isoflurane anesthe-
sia and sacrificed by decapitation. The uterus, kidneys,
aorta, and heart were collected and weighed. Tissues for
molecular analysis were preserved in RNAlater (Thermo
Fisher Scientific, Plaquemine, LA, US, #AM7021) at 4°C
for 24 h, then moved to —20°C for long-term storage. The
aorta, kidneys, and heart were formalin-fixed (10% neu-
tral buffered formalin) overnight and paraffin-embedded,
and 4-pm sections were mounted onto slides. Samples
for histology were kept in 10% neutral buffered formalin
(NBF) for 24 h, then stored in 70% ethanol until processed.

2.8 | Histology

Renal tissue was stained using Masson Trichrome Blue
(Newcomer Supply, Middleton, WI, US, #9176A) to an-
alyze collagen deposition and morphology. The aorta
was stained with Verhoeff-Van Gieson stain to quantify
elastin, aorta area, and diameter (Newcomer Supply,
Middleton, WI, US, #9116B). The analysis was performed
using Adobe® Photoshop® software. For each tissue sec-
tion, the entire cross-section was imaged, and the num-
ber of pixels stained with the selected color was counted
and expressed as an area fraction (percent of pixels with
positive staining within the tissue area). Data analysis
was performed by an independent investigator who was
blinded to the treatment groups.
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2.9 | Droplet digital polymerase chain
reaction

Droplet digital polymerase chain reaction (ddPCR) was
accomplished using a previously described method
(Hindson et al., 2011; Hutson et al., 2019). Total RNA
samples were extracted with Trizol using Qiagen
MinElute Columns (QIAGEN, Aarhus, Denmark,
#28115). RNA quantity was assessed using a Nanodrop,
and samples were stored at —80°C until process-
ing. The ddPCR was conducted using the following
validated rat primers obtained from Bio-Rad: GPER
(dRnoCPE5151056), Esrl (ER-a, dRnoCPE5176827),
Esr2 (ER-B, dRnoCPE5175914), Sirtuin 1 (Sirtl,
dRnoCPE5169220), NOX4 (dRnoCPE5170423), and
NOS3 (eNOS, dRnoCPE5171641). The reaction mixture
was divided into over 10,000 individual 1-nL droplets
using oil emulsion microfluidics. These droplets were
then analyzed with the Bio-Rad QX200 droplet reader
and QuantaSoft software, and the results were con-
verted to copies per nanogram of RNA based on the
RNA concentration and the total volume added to the
reaction. Samples were either rerun or excluded if they
exhibited an excessive number of positive or negative
droplets (violating Poisson statistics), had QuantaSoft
Quality Scores (Bio-Rad Laboratories, BioRad, Hercules,
CA, US) below 0.85, or contained fewer than 10,000
droplets.

2.10 | Statistical analysis

Statistical analysis was performed using two-way ANOVA
to evaluate the main effects of ANG and E2 treatment,
as well as their interaction. Fisher's Least Significant
Difference (LSD) post hoc test was applied to examine the
impact of E2 within each condition (normotensive or hy-
pertensive). Because our a priori interest lay with the effect
of E2 in the ANG groups, we examined the simple effects of
E2. Data that were more than two standard deviations from
the mean were excluded from analysis. Data are presented
as mean +SD, and statistical significance was set at p <0.05.
Means and standard errors appear in the corresponding
figures. Analyses were performed using Prism Version 10.3
software (GraphPad Software, La Jolla, CA).

3 | RESULTS
3.1 | Baseline physiological data

Baseline physiological data, including tail-cuff plethys-
mography for blood pressure and metabolic cage

measurements, were collected before the experiment
began, revealing no significant differences between the
groups (Table 1).

3.2 | Blood pressure and tissue weights
Systolic blood pressure (SBP) was significantly increased
by ANG (pang=0.02; Figure 2a) but was not impacted by
E2 (pp,=0.78; pin=0.95). Body weight was significantly
reduced by E2 (pg,=0.01; Figure 2b), with no significant
effect of ANG (pang=0.21) or interaction between factors
(Pint=0.68). Post tests suggest that the main effect of E2
on body weight was largely attributable to the NT-OVX
group (p =0.04), with no significant decrease in the ANG-
OVX group (p=0.16). Bone mineral content was signifi-
cantly increased by E2 (pg,=0.01; Figure 2c), largely
attributable to the effect in NT-OVX (p=0.008) but not
ANG-OVX (p=0.30). As expected, uterine weight nor-
malized to tibia length was significantly increased by E2
(pp2<0.001; Figure 2d), confirming effective hormone
replacement in both groups, with no significant effects
of ANG or an interaction. Kidney weight normalized to
tibia length did not differ significantly between groups
(Figure 2e). In contrast, heart weight/tibia ratio was sig-
nificantly increased by both ANG and E2 (pa,;=0.007;
Pr>=0.004), with no significant interaction (p;,;=0.59).
These findings indicate that ANG elevated blood pres-
sure and increased cardiac hypertrophy, E2 reduced body
and cardiac weight and enhanced bone mineral content.
Complementary physiological data from normotensive
and hypertensive ovariectomized rats treated with either
vehicle or estradiol are presented in Table 2.

3.3 | Urinary parameters

Water intake and urine volume were significantly in-
creased in ANG-treated animals compared with controls
(Pang <0.001 and p,,,=0.002; Figure 3a,b, respectively),
while E2 had no significant effect on either parameter
(pp2=0.20 and pg,=0.36, respectively). There were no
significant interactions between ANG and estrogen treat-
ment for water intake or urine volume (p;,(=0.54 and
0.56, respectively). As described in the statistical analy-
ses, we examined the simple effects of E2 regardless of
the interactions. Proteinuria was significantly increased
by both ANG (pane=0.02; Figure 3c) and E2 (pg,=0.02),
the latter of which was largely attributable to an increase
with E2 in the ANG-OVX group (p=0.04). Urinary cre-
atinine increased with ANG (p,,;=0.01; Figure 3d), and
while E2 did not show a main effect, post hoc analysis
showed a decrease in this parameter in the ANG-OVX-E2
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TABLE 1 Baseline physiological data. NT-OVX ANG-OVX

VEH E2 VEH E2
Systolic BP (mmHg) 132+8.3 134+8.7 136 +4.2 135+8.9
Diastolic BP (mmHg) 89+9.2 89+8.4 92+6.1 93+2.3
Mean arterial pressure 103 +8.5 104 +8.3 106 +4.9 107 +£8.5
(mmHg)
Pulse pressure (mmHg) 43.4+5.5 44.7+4.1 43.9+54 41.5+4.1
Heart rate (bpm) 322+24 311+39 328+33 341+33
Body weight (g) 302 +44 298 +49 295+26 281+25
Water intake (mL/24h) 12.5+5.6 14+3.5 14+6 11+6.8
Urine volume (mL/24h) 3.8+24 49+34 5+4.6 42+4.5
Urine creatinine (mg/day) 5+2 6.7+1.9 48+1.8 3.8+2.6
Urine osmolality (mmmol/kg) 2034+1400 2083+1264  2563+1411 1596 + 2022
Proteinuria (mg/day) 2.7+2 32+1.7 3221 22+1.4

Note: Data collected prior to any intervention in middle-aged female rats labeled according to future
treatment group: Normotensive (NT) and ANG-infused hypertensive (HT) rats treated with vehicle
(VEH) or estradiol (E2), n=10-12 per group. There were no differences between groups (all p >0.05).
Mean + SD, analyzed by two-way ANOVA, n=10-12 per group, all p>0.05.

Abbreviations: ANG, angiotensin II; BP, blood pressure; E2, estradiol; NT, normotensive; OVX,
ovariectomy; VEH, vehicle.
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FIGURE 2 Impact of hypertension and E2 on blood pressure, body composition, and organ weights. (a) Systolic blood pressure
(SBP), (b) body weight, (c) bone mineral content percentage, (d) uterus weight/tibia, (e) kidney weight/tibia, and (f) heart weight/tibia in
ovariectomized (OVX) rats treated with vehicle (VEH) or estradiol (E2) in either normotensive (NT-OVX) or hypertensive (ANG-OVX)
conditions, n=10-12 per group. Data presented as mean + SD. Statistical analysis was performed using two-way ANOVA.
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TABLE 2 Summary of other

NT-OVX ANG-OVX measured parameters in middle-aged
VEH E2 VEH E2 ovariectomized female rats.

Systolic BP (mmHg)* 127+3 128 +3 1387 139.5+5

Diastolic BP (mmHg)* 82+7 84+9 98 +25 95+13

Mean arterial pressure 97+8 98+9.2 114 +27 110+14

(mmHg)*

Pulse pressure (mmHg) 45+6 42+5.8 46+10 44+8.9

Heart rate (bpm) 328 +20 329+45 325+35 309 +57

Water balance (water intake/ 31+1.2 29+1.3 2.5+0.9 2.0+0.7

urine output)*

Urine osmolality (mmmol/kg)*  1576+986 1838+560 1098 +369 1038 +612

Serum osmolality (mmmol/kg) 317+16 308 +12 312+41 303 +30

Adrenal weight/tibia (mg/mm)  0.70+0.2  0.86+0.2  0.87+0.2 0.83+0.3

Note: Groups include normotensive (NT) and ANG-infused hypertensive (HT) rats treated with vehicle
(VEH) or estradiol (E2), n=10-12 per group. Mean + SD analyzed by two-way ANOVA.

*Pang <0.05.
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E2 0.16 B2 032 E2 0.04
FIGURE 3 Impactof hypertension and E2 on urinary parameters. (a) water intake; (b) urine volume; (c) proteinuria; (d) urinary

creatinine; (e) serum creatinine; (f) eGFR in ovariectomized (OVX) rats treated with vehicle (VEH) or estradiol (E2) in either normotensive
(NT-OVX) or hypertensive (ANG-OVX) conditions, n=10-12 per group. Data presented as mean + SD. Statistical analysis by two-way ANOVA.

group (p=0.03). Serum creatinine was not different across
groups (Figure 3e). The creatinine clearance or eGFR was
increased by ANG (pang=0.02; Figure 3f) and decreased
by E2 (pg,=0.04). Overall, these data suggest that ANG
promoted fluid imbalance and renal dysfunction, and
E2 enhanced the negative impact of ANG on proteinuria
without any effect on the eGFR.

Distinct from the analyses above, we also recorded
data before and after OVX for control group animals.
Consequently, we performed an additional analysis using
paired t-tests of final versus baseline values in the NT-OVX-
VEH group to assess the effects of OVX alone. OVX sig-
nificantly increased urine output (3.8 +2.4 vs. 6.1+5mL/
day, p=0.02), water intake (13+6.3 vs. 17+5.2mL/day,
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FIGURE 4 Impactof hypertension and E2 on renal collagen deposition. Collagen deposition in the renal cortex and medulla of
ovariectomized (OVX) rats treated with vehicle (VEH) or estradiol (E2) in either normotensive (NT-OVX) or hypertensive (ANG-OVX)
conditions, n=10-12 per group. Quantification of collagen content in (a) the renal cortex and (f) the renal medulla. Representative
trichrome-stained kidney sections from each group are shown in panels: (b, g) NT-OVX-VEH; (c, h) NT-OVX-E2; (d, i) ANG-OVX-VEH;
(e, j) ANG-OVX-E2. Data presented as mean + SD. Statistical analysis was performed using two-way ANOVA.

p=0.02), and urinary creatinine excretion (5+1.9 vs.
6.7 +1.9mg/day, p=0.05). No significant changes were ob-
served in proteinuria (2.7 +2 vs. 2.8 + 2mg/day, p=0.19) or
blood pressure (132 +6 vs. 129+ 11 mmHg, p=0.36).

3.4 | Renal histology

Trichrome staining of renal sections found no difference
in cortical and tubular collagen deposition between the
groups (Figure 4). In fact, there was a trend for reduced
collagen with E2, particularly in the ANG-OVX-E2
group.

3.5 | RNA quantification in
aorta and kidney

Next, we quantified mRNA concentration for estrogen re-
ceptors GPER, ERa, and ERp along with NADPH oxidase
isoform 4 (NOX4) in aortic and renal lysates (Figure 5).

Overall, estrogen receptor expression was not signifi-
cantly altered by ANG-induced hypertension in the aorta,
renal cortex, or medulla (pa,, >0.1 for all comparisons).
However, post hoc analysis revealed that estradiol replace-
ment in the context of hypertension significantly increased
GPER mRNA expression in the aorta (pg,=0.08; p=0.05;
Figure 5a), cortex (pg,=0.002; p=0.01; Figure 5b), and
medulla (pg,=0.04; p=0.04; Figure 5c). In contrast, ERx
expression was significantly downregulated by E2 in the
cortex (pg,=0.004; Figure 5e) and medulla (pg,<0.001;
Figure 5f), regardless of hypertensive status. Specifically,
in normotensive animals, E2 reduced ERa expression in
both the cortex (p=0.04) and medulla (p=0.03). Similarly,
in hypertensive rats, E2 also suppressed ERa expression
in the cortex (p=0.002) and medulla (p=0.001). No sig-
nificant changes were observed in the aorta (pg,=0.94;
Figure 5d). ERp expression was not affected by E2 in
any tissue examined: aorta (pg,=0.90; Figure 5g), cortex
(pp,=0.75; Figure 5h), or medulla (pg,=0.25; Figure 5i).
Regarding oxidative stress, NOX4 expression was signifi-
cantly upregulated by ANG 1II in the aorta (pan,=0.006;
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FIGURE 5 Impactof hypertension and E2 on estrogen receptors and NOX4 expression. Expression of GPER, ERa, ERf, and NOX4
mRNA in the aorta, renal cortex, and medulla of ovariectomized (OVX) rats treated with vehicle (VEH) or estradiol (E2) in either

normotensive (NT-OVX) or hypertensive (ANG-OVX) conditions. Columns are labeled with gene names and rows are labeled with tissue.

Data presented as mean + SD. Statistical analysis was performed using two-way ANOVA.
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Figure 5j), but not in the cortex (p,,,=0.77; Figure 5k) or
medulla (p,,,=0.70; Figure 5I). E2 treatment had no ef-
fect on NOX4 expression in the aorta (pg,=0.97), cortex
(pp2=0.41), or medulla (pg,=0.19), as shown in Figure 5j-1.

4 | DISCUSSION

This study demonstrates that E2 does not confer protection
against ANG-induced hypertension or renal dysfunction
in a middle-aged menopausal rat model. E2 effectively re-
duced body weight, increased bone mineral content, and
restored uterine weight—confirming the efficacy of hor-
mone replacement—and also conferred cardioprotective
effects by reducing heart size. However, E2 did not lower
blood pressure, increased proteinuria, and reduced GFR.
Despite a trend toward reduced cortical collagen, E2 did
not protect against renal damage in response to ANG, sug-
gesting that in the context of preexisting hypertension hor-
mone therapy may aggravate renal injury. Additionally,
E2 did not attenuate the ANG-induced increase in aortic
NOX4 expression, suggesting that in this middle-aged
model of menopause E2 is unable to counteract the in-
crease in vascular oxidative stress during hypertension.
These findings highlight that the benefits of menopausal
hormone therapy are highly context-dependent and may
be detrimental in the presence of established vascular or
kidney disease.

In our current model of premenopausal hypertension
using middle-aged, ovariectomized rats, E2 impacted
neither blood pressure nor vascular Nox4 mRNA, ei-
ther in normotensive or hypertensive conditions. In our
previous study using normotensive middle-aged Long
Evans rats that were OVX at the same age, blood pres-
sure was elevated 8 weeks after OVX and attenuated by
E2 (Zimmerman et al., 2017). Data from Long-Evans
rats who underwent OVX at a similar age of 10 months
display increased blood pressure 4 months later (Clark
et al., 2004). Since the current study followed OVX for
only 4 weeks, the impact of estrogen loss on blood pres-
sure most likely takes longer to develop in this model.
More surprising than the lack of E2 effects in the nor-
motensive animals was the inability of E2 to lower
blood pressure in the presence of ANG, contrasting
multiple studies showing E2-induced protection from
this method of induced hypertension. Despite the lack
of an effect on blood pressure, E2 reduced cardiac
size, which likely reflects its direct antihypertrophic
effects in cardiomyocytes (Calle et al., 2025; Pedram
et al., 2005; Wu et al., 2020). Estrogen receptor signal-
ing via GPER and ERp has been implicated (Di Mattia
et al., 2020; Skavdahl et al., 2005; Wang et al., 2017).
One of the most striking models of ANG-dependent

sssss

and estrogen-sensitive hypertension is the mRen2.Lewis
congenic rat model (Chappell et al., 2003, 2006). In this
model, OVX at a young age (4weeks) significantly in-
creases blood pressure, while OVX at 15weeks followed
by 45weeks of aging does not impact blood pressure
and is renoprotective (Chappell et al., 2008; Yamaleyeva
et al., 2007). This latter study shows many similarities
to the renal damage in the presence of estrogen in the
current study, including increased proteinuria and re-
duced GFR, which is associated with increases in cir-
culating renin, ACE, and ANG. Although not assessed
in this study, OVX upregulates while estrogen replace-
ment suppresses AT1la receptor expression in the kid-
ney and aorta (Harrison-Bernard et al., 2003; Macova
et al., 2008; Nickenig et al., 1998; Owonikoko et al., 2004;
Rogers et al., 2007). We also probed for Nox4 in the vas-
culature since our previous work shows that selective
GPER activation reduces hypertension-associated oxi-
dative stress in the aorta and kidney and that genetic
deletion of GPER removes female protection against
ANG-induced oxidative stress and vascular stiffening
primarily through downregulation of Nox4 (Lindsey
et al., 2011; Liu et al., 2016; Ogola et al., 2019). In the
current study, administration of E2 to simulate clinical
treatments for menopause did not lower vascular Nox4,
which may be attributed to the different treatment regi-
men or the age difference between these studies. Taken
together, the inability of E2 to modulate blood pressure
in the current study is most likely related to the timing
of OVX at middle age to mimic human menopause, the
short time course (4 weeks) after OVX, or the use of E2
rather than a receptor-selective approach.
ANG-induced hypertension increased GFR while E2
lowered this value, indicating that ANG and/or a mild
increase in blood pressure enhanced GFR in this model.
While hypertensive models such as the spontaneously
hypertensive rat display a decrease in GFR, fawn hooded
hypertensive rats have greater GFR compared with nor-
motensive controls (de Keijzer et al., 1988), which may
result from a mutation in y-adducin that impairs autoreg-
ulation (Fan, Gao, et al., 2020b; Fan, Geurts, et al., 2020a).
Increased GFR in response to 6-week ANG infusion is ob-
served in male Wistar rats and is attributed to impaired
autoregulation, decreased renal vascular resistance, and
increased renal blood flow (Casare et al., 2016). Acute
ANG influences the constriction of both afferent and ef-
ferent arterioles, and the sensitivity of each ultimately de-
termines renal perfusion (Gupta, 2018). With prolonged
exposure, however, ANG contributes to glomerular dam-
age and eventual GFR decline (Maranduca et al., 2023).
The increase in GFR could also result from the dipsogenic
impact of ANG in the brain (Harland et al., 1988), noted
by increased water intake in the current study. Urine
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output exceeded the increased water intake while urine
osmolality significantly decreased, a pattern also noted in
ANG-infused OVX mice (Dutta et al., 2023).

In our previous study in normotensive rats, E2 treat-
ment for 80days after midlife OVX maintains lower
blood pressure and plasma glucose but induces renal
hypertrophy, elevates proteinuria, and reduces GFR
(Zimmerman et al., 2017). We replicated that data in the
current study, finding that E2 for 28 days after midlife
OVX similarly elevated proteinuria and reduced GFR.
Baseline GFR is not changed 5months after OVX at
8 months of age (Nielsen et al., 2003), while estrogen-
intact conditions are associated with better renal
function 9months after OVX at 10 or 24 weeks of age
(Pijacka et al., 2015; Yousefzadeh et al., 2023). These
differing outcomes based on the timing of OVX may in-
dicate that ovarian hormones during development are
necessary to protect the kidney but acquire a neutral or
detrimental role during aging. Hyperfiltration is also
noted in diabetic female mice and mediated by estrogen
receptor ERa66 (Irsik et al., 2018). In healthy postmeno-
pausal women, hormone therapy significantly increases
GFR while other renal markers remain stable, suggest-
ing a protective effect on kidney function (Kaygusuz
et al., 2012). In contrast, a large cohort study in women
over 66years of age found that hormone therapy, par-
ticularly oral estrogen, was independently associated
with a dose-dependent decline in kidney function, high-
lighting potential risks of estrogen use in older women
(Ahmed et al., 2008). These findings underscore the
complex interplay between hormonal status and ANG-
induced hypertension in regulating renal function.

Proteinuria is not only a marker of kidney damage
but also a direct contributor to disease progression by ac-
tivating proinflammatory and profibrotic pathways that
drive chronic tubulointerstitial injury (Gorriz & Martinez-
Castelao, 2012; Stevens et al., 2024). In our model, al-
though no significant differences in cortical or medullary
collagen deposition were observed, the combination of
hypertension and E2 markedly increased proteinuria.
The rise in proteinuria may reflect E2's catabolic or hy-
perfiltration effects rather than direct renal injury, since
E2 reduces body weight and enhances energy expendi-
ture (Mauvais-Jarvis et al., 2013) and increases filtration
without structural damage (Guldan et al., 2024). Similar
findings are reported in female Wistar rats treated with L-
NAME and ANG, where both ovary-intact and OVX+E2
groups develop renal injury and proteinuria while
OVX rats without estrogen replacement are protected
(Oestreicher et al., 2006). Similarly, in Dahl salt-sensitive
rats with heart failure E2 exacerbates renal damage
after OVX by promoting microvascular and glomerular
damage, even though it suppresses components of the

renin-angiotensin system (Hoshi-Fukushima et al., 2008).
Our previous work also showed that long-term E2 treat-
ment increased proteinuria in OVX Long-Evans rats, and
that co-administration of medroxyprogesterone protected
against the E2-induced renal dysfunction (Zimmerman
et al., 2017, 2020). However, opposite results are found
in other animal models such as salt-loaded mRen2.Lewis
rats, where OVX worsens and E2 protects both hyper-
tension and proteinuria (Chappell et al., 2006; Cohen
et al., 2010). These conflicting results may be attributed
to differences in disease models, age at intervention, tim-
ing of OVX, and variations in hormone type, dose, and
delivery. The inconsistency across studies highlights the
incomplete understanding of E2's actions on the kidney
and underscores the need for further research to clarify
its role in renal outcomes under pathological conditions.
Our group previously established absolute estrogen
receptor levels using ddPCR in tissues from both rat and
mouse (Gurrala et al., 2021; Hutson et al., 2019). Similar to
previous findings, we found in the current study that ER«x
was the highest expresser, GPER second, while ERP was
expressed at very low levels. Tissue-specific expression
was similar for GPER and ERp while ERa expression was
significantly higher in kidney versus aorta. Interestingly,
the only negative feedback noted was renal ERa, signifi-
cantly decreasing with E2 treatment in both the cortex and
medulla but not the aorta. In contrast, GPER was upregu-
lated by E2 in all tissues, especially during ANG-induced
hypertension. Negative feedback regulation is commonly
found in endocrine systems and demonstrated by a de-
crease in ERa in response to E2 treatment in MCF-7 breast
cancer cells (Saceda et al., 1988) as well as in human in-
ternal mammary arteries, where ERa is downregulated
along with ERf} and GPER (Haas et al., 2007). In contrast,
E2-induced stimulation of ERa, ERfB, and GPER is found
in other types of cancer (Pena-Gutierrez et al., 2022;
Vladusic et al., 2000). Tissue-specific regulation is best
demonstrated in the brain, where E2 decreases hypotha-
lamic ERa mRNA in ventromedial and arcuate but not
dorsomedial nuclei and is dependent on the dosage of
E2 (Lauber et al., 1990, 1991). Taken together, transcrip-
tional regulation of estrogen receptors in response to the
primary ligand E2 varies widely depending on tissue type
and should not be assumed to occur in only one direction.
This study utilizes a clinically relevant midlife meno-
pausal model to test the impact of E2 on preexisting hy-
pertension. Since the current treatment regimen restores
physiological E2 concentrations to levels seen during
proestrus (Bohacek & Daniel, 2007, 2010), we do not think
that the negative renal effects in the current study are
due to supraphysiological levels of E2. Clark et al. (2004)
also used silastic capsules for administration and found
E2 levels of ~75pg/mL, and Chappell et al. (2003) used
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subcutaneous pellets to reach serum levels of 194 +79 pg/
mL, yet neither of these papers reports negative impacts
on the kidney. However, the short treatment duration may
limit our understanding of renal damage, and the ani-
mal model, while controlled, may not fully reflect human
physiology. Future studies should extend treatment pe-
riods and examine specific estrogen receptor pathways
that protect vascular health without harming the kidneys.
Although ovariectomy is a common model for meno-
pause research in rodent models, it induces abrupt hor-
mone loss which does not mimic the gradual transition of
human menopause. The VCD model, which induces fol-
licle depletion while preserving the ovaries, offers a more
physiologically relevant alternative (Brooks et al., 2016).
Although telemetry is the most accurate method for mea-
suring blood pressure, our data align well with our prior
findings and those from similar studies (Clark et al., 2004;
Zimmerman et al., 2017, 2020). Future studies should
incorporate telemetry into rat models to investigate how
OVX and E2 impact 24h blood pressure, including circa-
dian blood pressure rhythms.

Taken together, our findings underscore that meno-
pause, cardiovascular disease, and aging may diminish
or impair the cardiovascular benefits typically associated
with E2. These data may reflect findings from the Women's
Health Initiative, where extrapolation by age reveals that
conjugated equine estrogens were protective against coro-
nary heart disease in women aged 50-59, neutral in those
aged 60-69, and detrimental in women over 70 (Manson
et al., 2013). Moreover, the impact of E2 in midlife OVX
rats was organ-specific and therefore findings should not
be extrapolated from one tissue to another, especially in
the presence of cardiovascular or other diseases. While E2
may provide cardiovascular benefits under certain condi-
tions, its impact on renal health is highly dependent on
the presence of comorbidities such as hypertension. These
findings provide support for both the “timing hypothesis”
and “healthy cell bias” hypotheses, which suggest that tim-
ing and underlying disease status critically influence the
efficacy of menopausal hormone therapy (Brinton, 2005;
Clarkson et al., 2013). In addition, these results highlight
the need for a more personalized approach to menopausal
hormone therapy and support further investigation into
targeted strategies that preserve vascular function without
exacerbating renal injury.
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