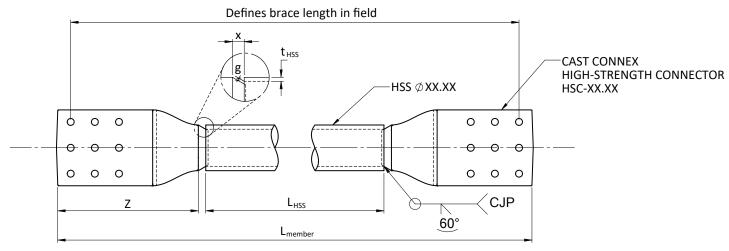


High Strength Connectors[™] (HSC)


Nominal Connector Dimensions

	Z [in]	D [in]	b [in]	w [in]	t [in]	t _g [in]	p _{min} [in]	p _{max} [in]	j [in]	Unit Weight* [lb]
HSC-4.000	14 ¹ / ₄	4	10	7	1/2	1/2	9/16	5/8	¹⁹ / ₃₂	37
HSC-5.563	19 ¹ / ₁₆	5 ⁹ / ₁₆	13	9	5/8	3/4	¹³ / ₁₆	7/8	¹⁹ / ₃₂	84
HSC-6.625	20 ³ / ₈	6 ⁵ / ₈	13	11	⁷ / ₈	1	1 1/16	1 ¹ / ₈	²⁵ / ₃₂	150
HSC-8.625	27 ¹ / ₈	8 ⁵ / ₈	18	14	1	1 ¹ / ₄	1 ⁵ / ₁₆	1 ³ / ₈	7/8	301
HSC-10.75	25 ⁵ / ₈	10 3/4	16	16	1 ¹ / ₄	1 ¹ / ₂	1 ⁹ / ₁₆	1 ⁵ / ₈	7/8	423
HSC-12.75	27 3/4	12 3/4	17	19	1 ¹ / ₄	1 ³ / ₄	1 13/16	1 ⁷ / ₈	7/8	608
HSC-14.00	29 ³ / ₄	14	17	19	1 ¹ / ₂	1 ³ / ₄	1 ¹³ / ₁₆	1 ⁷ / ₈	7/8	788

^{*}Unit weight does not include fasteners

Typical Assembly

Estimating required length of HSS:

 $L_{HSS} = L_{member} - 2(Z + X)$ $X = 2g + \sqrt{3}(t_{HSS})$

When using these equations to estimate the length of the HSS or Pipe required (L_{HSS}) for a given element, note that the actual HSS or Pipe thickness (t_{HSS}) can be significantly thinner than the nominal value. Refer to the relevant HSS or Pipe specification.

Available Strength of Connectors

Load and Resistance Factor Design (LRFD)

The connector shown offers a factored strength equal to the lesser of:

- a) LRFD values in the table below,
- b) factored strength of the bolted joint between the connector and the gusset plate (see Cast Connex HSC Design Manual for pre-designed bolt patterns), and
- c) the factored strength of gusset plate and its associated welded joints.

Allowable Stress Design (ASD)

The connector shown offers an allowable capacity equal to the lesser of:

- a) ASD values in the table below,
- b) allowable capacity of the bolted joint between the connector and the gusset plate (see Cast Connex HSC Design Manual for pre-designed bolt patterns), and
- c) the allowable capacity of gusset plate and its associated welded joints.

	LR	FD	AS		
	φΤ _n * [kips]	φM _{n,op} ** [k.ft]	T _n /Ω* [kips]	$M_{n,op}/\Omega^{**}$ [k.ft]	I _{op} + [in ⁴]
HSC-4.000	315	167.3	210	111.3	2.12
HSC-5.563	506	364	337	242	6.18
HSC-6.625	866	839	576	558	19.29
HSC-8.625	1260	1457	838	969	39.8
HSC-10.75	1800	2530	1198	1684	84.3
HSC-12.75	2140	3270	1422	2180	117.6
HSC-14.00	2560	4250	1710	2830	167.0

Specified minimum yield strength $F_v = 50 \text{ ksi}$

Specified minimum tensile strength F_u = 80 ksi

Nominal strengths have been determined using AISC 360-22.

- * T_n: Nominal tensile yielding strength:
 Equal to value determined from Chapter J4.
 The governing gross-section of the connector is A_g = 2w·t
- ** $M_{n,op}$: Nominal out-of-plane flexural strength: Equal to value determined from Chapter F2. The governing plastic section modulus is $Z = w \cdot t (t + p_{min})$
- + I_{op}: Out-of-plane moment of inertia