

Research paper

Conspiratorial thinking in a 50-state survey of American adults

Roy H. Perlis ^{a,b,*}, Ata Uslu ^{c,d}, Sergio A. Barroilhet ^e, Paul A. Vohringer ^e, Anudeepa K. Ramachandiran ^{a,b}, Mauricio Santillana ^{c,d}, Matthew A. Baum ^f, James N. Druckman ^g, Katherine Ognyanova ^h, David Lazer ^{c,d}

^a Center for Quantitative Health, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States

^b Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States

^c Network Science Institute, Northeastern University, 177 Huntington Ave, Boston, MA 02115, United States

^d Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, Cambridge, MA 02138, United States

^e Hospital Clínico, Facultad de Medicina, Universidad Chile, 8380494 Independencia, Santiago, Chile

^f John F. Kennedy School of Government and Department of Government, 79 John F. Kennedy Street, Cambridge, MA 02138, United States

^g Department of Political Science, University of Rochester, 333 Hutchinson Road, Rochester, NY 14627, United States

^h Department of Communication, School of Communication and Information, Rutgers University, 4 Huntington Street, New Brunswick, NJ 08901, United States of America

ARTICLE INFO

Keywords:

Conspiratorial thoughts

COVID-19

Trust

Depression

Vaccination

ABSTRACT

Conspiratorial thoughts as a cognitive aspect are understudied outside small clinical cohorts. We conducted a 50-state non-probability internet survey of respondents age 18 and older, who completed the American Conspiratorial Thinking Scale (ACTS) and the 9-item Patient Health Questionnaire (PHQ-9). Across the 6 survey waves, there were 123,781 unique individuals. After reweighting, a total of 78.6 % somewhat or strongly agreed with at least one conspiratorial idea; 19.0 % agreed with all four of them. More conspiratorial thoughts were reported among those age 25–54, males, individuals who finished high school but did not start or complete college, and those with greater levels of depressive symptoms. Endorsing more conspiratorial thoughts was associated with a significantly lower likelihood of being vaccinated against COVID-19. The extent of correlation with non-vaccination suggests the importance of considering such thinking in designing public health strategies.

1. Introduction

Paranoid experiences are a complex phenomenon that lie on a continuum between normality and psychopathology, an illustration of the continuity emphasized by the NIMH Research Domain Criteria framework (Cuthbert, 2014; Cuthbert and Insel, 2013). These experiences can manifest as varying degrees of distrust and suspicion towards others, ranging from subtle concerns about others' intentions to absolute certainty in false beliefs of harm. This spectrum includes phenomena such as feeling watched, spied upon, plotted against, oppressed, or controlled. Conspiratorial thinking falls within this continuum and refers to beliefs that are out of the mainstream or do not align with reality (Pilch et al., 2023). Such thoughts may represent a response to uncertainty, addressing feelings of insecurity and vulnerability (van Prooijen van et al., 2020).

A 2021 U.S. survey found that between 9 and 12 % of adults endorsed conspiratorial beliefs (e.g., that moon landings were faked, or

vaccination implants microchips); another 10 % were unsure about these ideas ("Conspiracy vs. Science," 2022). While such thoughts have received more attention in the context of the pandemic, a prior report suggested that belief in conspiracies has remained relatively stable over time (Uscinski et al., 2022b). While not inherently pathological (Bebbington et al., 2013), at the extreme conspiracy beliefs can profoundly impact functioning (Hajdúk et al., 2019; Saarinen et al., 2022).

Dimensions of functioning have nearly always been investigated in clinically defined subsets, as they are challenging to characterize at population scale. Traditional epidemiologic studies are extremely costly to conduct and have most often focused on standard diagnostic categories. However, we have previously shown that an alternative approach, using large-scale nonprobability internet sampling with quotas and rigorous design, can yield valid estimates of population characteristics (Perlis et al., 2022c, 2021).

Here, we drew on a 50-state U.S. survey of adults to examine variation in conspiracy-mindedness, using a measure focused on beliefs

* Corresponding author at: Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States.
E-mail address: rperlis@mgh.harvard.edu (R.H. Perlis).

about the U.S. We examined the extent to which conspiracy-minded beliefs vary across adults, and in particular whether they correlate with depressive symptoms. We then sought to understand their association with public health behaviors as exemplified by vaccination, hypothesizing that conspiratorial thought would predispose to avoiding government-advocated health measures.

2. Methods

2.1. Study design

We conducted a nonprobability web-based survey via a commercial survey panel aggregator, Pure Spectrum, as part of an academic consortium called the COVID States Project; the 6 survey waves reported here (Waves #25–30) were conducted between October 6, 2022 and January 29, 2024. Nonprobability sampling has been validated in comparable contexts as a significantly more cost-effective alternative to traditional survey methods (Coppock and McClellan, 2019; Kennedy and Caumont, 2016). The survey used state-by-state quotas for age, gender, and race and ethnicity to yield representative samples. Eligible participants were 18 and older and resided in the United States; they could opt in to a general survey of opinions (rather than a survey of beliefs on a particular topic, for example) in return for compensation that varied by the panel. Each panel provided an incentive for respondents that could vary depending on survey length and panelist profile; these incentives could include cash payments, airline miles, gift cards, redeemable points (for example, for mobile games), entrance into a sweepstakes, and vouchers. Incentive structures were determined by the commercial survey panel aggregator and varied minimally within panels. Although differential incentives may introduce minimal bias, this is a common feature of large-scale panel-based studies. All participants consented online to participation before answering survey questions. The survey protocol was evaluated and considered to be exempt by the Harvard University Institutional Review Board. The study was granted exempt status because it involved de-identified, minimal-risk survey data collected from consenting adults. We present survey results in accordance with AAPOR guidelines (“[Survey Disclosure Checklist - AAPOR, 2021](#)”).

2.2. Measures

Conspiratorial thinking was assessed by the American Conspiratorial Thinking Scale (ACTS) ([Uscinski and Parent, 2014](#)). This measure asks, “How much do you agree or disagree with the following statements?” followed by 4 questions: “Even though we live in a democracy, a few people will always run things anyway,” “The people who really ‘run’ the country are not known to the voters,” “Big events like wars, the current recession, and the outcomes of elections are controlled by small groups of people who are working in secret against the rest of us,” and “Much of our lives are being controlled by plots hatched in secret places.” Each question is answered on a 1–5 scale: “strongly disagree” (1), “somewhat disagree” (2), “neither agree nor disagree” (3), “somewhat agree” (4), and “strongly agree” (5). To simplify analysis of this ordinal scale, we dichotomized responses to identify those who agree (4 or 5) or do not agree (1–3) with each statement.

Although there is some ongoing debate around how best to define conspiratorial thinking ([Kay and Slovic, 2025a; Snagovsky and Stockemer, 2025; Uscinski and Parent, 2014](#)), the ACTS was intentionally developed to capture generalized conspiratorial worldviews and has demonstrated strong psychometric performance across diverse populations ([Enders et al., 2023; Han et al., 2022; Kay and Slovic, 2025b; Uscinski et al., 2022a](#)). It remains a widely used measure of conspiratorial thoughts in public opinion research.

As in numerous previous population-based studies focusing on depressive symptoms, depressive symptoms severity was assessed with the 9-item Patient Health Questionnaire (PHQ-9) ([Kroenke et al., 2001](#);

[Levis et al., 2019](#)), reflecting diagnostic criteria for major depressive disorder in the DSM-5. Participants were asked to describe their social network in terms of number of individuals who provide social support in each of 4 domains (“Now please think of your complete social circle of family, friends, neighbors, and other acquaintances. Approximately how many of them could you count on for the following things? – To...”) followed by medical care, financial support, emotional support, and help with employment ([Lubbers et al., 2019](#)). They were also asked to identify the number of individuals other than them who reside in their home.

According to our prior population-based work, we also collected sociodemographic features to confirm representativeness of the US population and facilitate survey weighting and subgroup analyses ([Perlis et al., 2024](#))[\(\(Perlis et al., 2022b\)\)](#). They were asked to identify race and ethnicity from a list including African American or Black, Asian American, Hispanic, Native American, Pacific Islander, white, or Other, and could provide a free text self-description. To facilitate inclusion of smaller groups, we collapsed Native American, Pacific Islander, and Other into a single category for analysis, and dichotomized employment status to “working full-time” (yes vs. all others).

2.3. Statistical analysis

We first examined associations between individual sociodemographic features and number of conspiracy items endorsed, using linear regression. As sensitivity analysis, repeating analyses using ordinal logistic regression as implemented in the *polr* package in R did not yield meaningfully different estimates of effect. In these and all subsequent regression models, additional covariates included age category (to allow for nonlinear effects), gender, education (categorized as graduate, undergraduate, some college, high school graduate, some high school or less), annual household income (categorized as <\$25 k, \$25–< \$50 k, \$50 k–< \$100 k, >\$100 k), race and ethnicity, and rural, suburban, or urban setting. We then examined the additional association with social supports in 4 categories, and number of individuals at home. These analyses considered numbers to be categories, to allow for non-linear associations, and a priori truncated count of supports in each category at 5.

Survey weights were applied to estimate national distributions, using the R survey package (version 4.2–1) ([Lumley, 2004](#)). We applied interlocking national weights for age at survey completion, gender, and race and ethnicity, as well as education and region, using 2019 US Census American Community Survey data, a standard approach for nonprobability samples ([Valliant, 2020](#)). (For generation of choropleths reflecting state-level prevalence, we used corresponding state values from the 2019 Census.)

As individuals could respond to more than one survey wave, we selected the initial (index) response for cross-sectional analyses. In prior analyses, sensitivity analysis such as random selection of a response, or considering multiple responses as clustered within an individual, did not yield meaningfully different results ([Perlis et al., 2023](#)). To examine change over time, we secondarily analyzed the subset of individuals who completed more than one survey, identifying as baseline the initial survey and follow-up the next survey completed. These analyses used R 4.3.2 ([R Core Team, 2019](#)), and considered $p < .05$ to represent statistical significance.

3. Results

Across the 6 survey waves, there were 123,781 unique individuals. Mean age was 46.8 (SD 17.2) years; 74,570 (60.2 %) identified as women, 47,791 (38.6 %) as men, and 1420 (1.1 %) as nonbinary. A total of 4235 (3.4 %) identified as Asian American, 16,306 (13.2 %) as Black or African American, 13,501 (10.9 %) as Hispanic, 1589 (1.3 %) as Native American, 1364 (1.1 %) as Pacific Islander, 1968 (1.6 %) as another race or ethnicity, and 84,818 (68.5 %) as white. Additional

characteristics of the cohort are summarized in **Table 1**.

In all, after reweighting, 78.6 % individuals somewhat or strongly agreed with at least one conspiratorial thought; 19.0 % agreed with all four of them; Supplementary Table 1 lists proportion agreeing with each item. **Fig. 1** illustrates reweighted proportion of individuals endorsing conspiratorial thoughts by state. Among individuals with no evidence of depression by PHQ-9 (i.e., PHQ-9 < 5), 75.1 % endorsed at least one conspiratorial thought, and 17.3 % endorsed all four.

In linear regression models, we first examined associations between sociodemographic features and number of conspiracy items endorsed, estimating effects in univariate (Supplementary Table 2) and fully adjusted models (**Fig. 2**). Subgroups endorsing greater numbers of conspiratorial thoughts included those aged 25–54, males, individuals who finished high school but did not start or complete college, those with household income between \$25,000 and \$50,000 per year, and those residing in rural areas. While many associations were statistically significant, effect sizes were modest. For example, individuals aged 25–34 endorsed 0.20 more conspiracy items than those aged 18–24, and men endorsed 0.20 more items than women. The largest difference was observed for political affiliation, with Republicans endorsing 0.61 more items than Democrats (Supplementary Fig. 1). A greater number of depressive symptoms was also modestly but significantly associated with greater number of conspiratorial thoughts endorsed (coefficient adjusted for sociodemographic features = 0.02, 95 % CI 0.02–0.02). This pattern persisted with a categorical threshold for PHQ-9, as the presence of moderate-or-greater depressive symptoms (PHQ-9 score ≥ 10) was also associated with greater endorsement (adjusted coefficient = 0.28, 95 % CI 0.26–0.30). Incorporating political affiliation did not meaningfully change these associations (Supplementary Fig. 1).

For 8493 individuals who returned for a subsequent survey, we examined whether depression and conspiracy-mindedness changed in parallel – i.e., whether the changes were correlated. Change in PHQ-9 was significantly associated with change in count of conspiratorial ideas, although these effects were extremely modest (unadjusted coefficient 0.01, 95 % CI 0.00–0.01; adjusted coefficient 0.01, 95 % CI 0.00–0.02).

We also examined the association between conspiratorial thoughts and measures of social network size. **Fig. 3** illustrates these associations for each of the social support measures (supports for health care, financial support, emotional support, and employment support) in survey-weighted regression models adjusted for sociodemographic features. A qualitatively similar pattern emerged across all 4 domains, with endorsement of all 4 conspiratorial thoughts associated with diminished network size. On the other hand, endorsing 1 or 2 such thoughts was significantly associated with a larger network.

Finally, we investigated the association between conspiratorial thoughts and health behavior, focusing on receipt of COVID-19 vaccination and influenza vaccination. In adjusted logistic regression models, a greater number of conspiratorial thoughts endorsed was associated with a lesser likelihood of being vaccinated against COVID-19 (**Fig. 4**); adjusted ORs were 0.83 (95 % CI 0.79–0.88), 0.57 (95 % CI 0.54–0.60), and 0.43 (95 % CI 0.41–0.46) among those endorsing 2, 3, or 4 conspiratorial ideas, respectively, compared to 0. Influenza vaccination followed a similar pattern, with adjusted ORs of 0.81 (95 % CI 0.77–0.85), 0.66 (95 % CI 0.63–0.70), and 0.58 (95 % CI 0.55–0.61) (Supplementary Fig. 2). Among individuals who returned for a subsequent survey, endorsing a greater number of conspiratorial thoughts was associated with less likelihood of receiving an additional vaccine or booster in the intervening period (Supplementary Fig. 3; adjusted OR 0.72 (95 % CI 0.54–0.96) for endorsing 4 versus 0 ideas).

4. Discussion

Among a cohort of >123,000 US adults, we found that around 3 in 4 respondents endorsed at least one conspiratorial idea, and nearly 1 in 5 endorsed all 4. These ideas were more common among younger

Table 1

Characteristics of survey respondents included in analyses of conspiratorial thinking, October 2022–January 2024.

	<4 ideas endorsed (N = 100,951)	All 4 ideas endorsed (N = 22,830)	Total (N = 123,781)
Age in years (SD)	46.8 (17.2)	45.9 (16.5)	46.6 (17.1)
Gender			
Female	62,552 (62.0 %)	12,018 (52.6 %)	74,570 (60.2 %)
Male	37,170 (36.8 %)	10,621 (46.5 %)	47,791 (38.6 %)
Nonbinary	1229 (1.2 %)	191 (0.8 %)	1420 (1.1 %)
Race and Ethnicity			
African American	13,240 (13.1 %)	3066 (13.4 %)	16,306 (13.2 %)
Asian American	3576 (3.5 %)	659 (2.9 %)	4235 (3.4 %)
Hispanic	10,833 (10.7 %)	2668 (11.7 %)	13,501 (10.9 %)
Native American	1255 (1.2 %)	334 (1.5 %)	1589 (1.3 %)
Other (a)	1573 (1.6 %)	395 (1.7 %)	1968 (1.6 %)
Pacific Islander	1069 (1.1 %)	295 (1.3 %)	1364 (1.1 %)
White	69,405 (68.8 %)	15,413 (67.5 %)	84,818 (68.5 %)
Education			
Some High School or Less	3546 (3.5 %)	781 (3.4 %)	4327 (3.5 %)
High School Graduate	22,694 (22.5 %)	5768 (25.3 %)	28,462 (23.0 %)
Some College	25,561 (25.3 %)	6071 (26.6 %)	31,632 (25.6 %)
College Degree	35,873 (35.5 %)	7752 (34.0 %)	43,625 (35.2 %)
Graduate Degree	13,277 (13.2 %)	2458 (10.8 %)	15,735 (12.7 %)
Employment (full-time)	39,236 (38.9 %)	9714 (42.5 %)	48,950 (39.5 %)
Income			
Under 25 K	22,143 (21.9 %)	5263 (23.1 %)	27,406 (22.1 %)
25 k to under 50 k	26,467 (26.2 %)	6391 (28.0 %)	32,858 (26.5 %)
50 K to under 100 K	32,713 (32.4 %)	7057 (30.9 %)	39,770 (32.1 %)
100 K and over	19,628 (19.4 %)	4119 (18.0 %)	23,747 (19.2 %)
Urbanicity			
Rural	16,983 (16.8 %)	4438 (19.4 %)	21,421 (17.3 %)
Suburban	58,006 (57.5 %)	12,406 (54.3 %)	70,412 (56.9 %)
Urban	25,962 (25.7 %)	5986 (26.2 %)	31,948 (25.8 %)
Conspiracy items	1.4 (1.0)	4.0 (0.0)	1.9 (1.4)
PHQ9 Total (b)			
PHQ9 Total (b)	6.1 (6.4)	7.3 (7.3)	6.4 (6.6)
PHQ9 10 or greater (b)	24,335 (24.7 %)	6957 (31.2 %)	31,292 (25.9 %)
Social support (health care) (c)	2.5 (1.4)	2.3 (1.4)	2.5 (1.4)
Social support (financial) (d)	2.1 (1.4)	2.0 (1.4)	2.1 (1.4)
Social support (emotional) (e)	2.7 (1.4)	2.5 (1.4)	2.6 (1.4)
Social support (employment) (f)	2.1 (1.6)	2.0 (1.6)	2.1 (1.6)
SARS-CoV-2 vaccine	77,293 (76.6 %)	13,909 (60.9 %)	91,202 (73.7 %)
Influenza vaccine	45,222 (54.5 %)	8026 (41.9 %)	53,248 (52.2 %)
More than one survey	7513 (7.4 %)	1553 (6.8 %)	9066 (7.3 %)

(a) Other refers to individuals who checked the 'Other race or ethnicity' box from a list of choices.

(b) PHQ-9 was not completed for $n = 2765$ (2260 and 505, respectively)

(c) Social support item 1 was not completed for $n = 416$ (330 and 86, respectively)

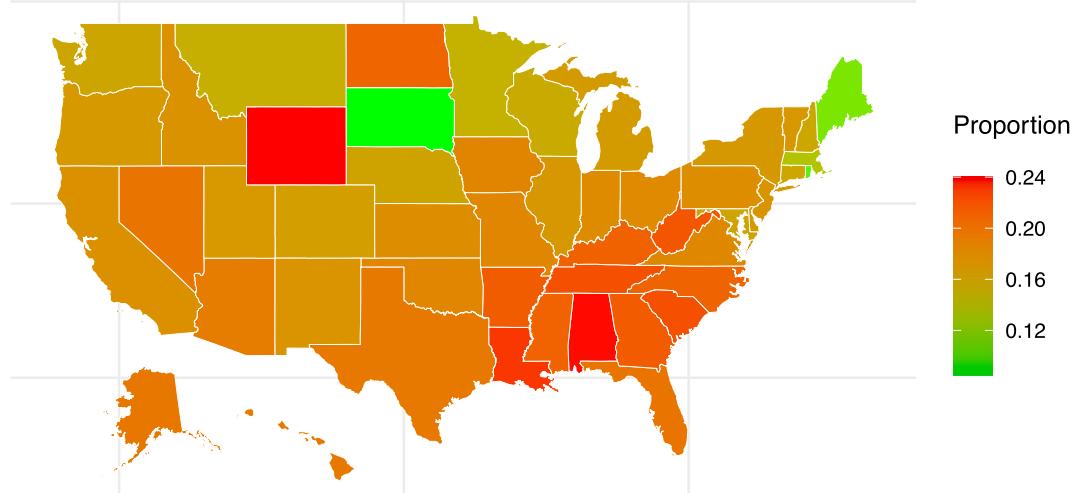
- (d) Social support item 2 was not completed for $n = 570$ (453 and 117, respectively)
- (e) Social support item 3 was not completed for $n = 740$ (585 and 155, respectively)
- (f) Social support item 4 was not completed for $n = 844$ (694 and 150, respectively)
- (g) Influenza vaccination was not asked for $n = 21,709$ (18,016 and 3693, respectively).

individuals, particularly men, as well as those who did not complete college and reside in rural areas. While such ideas were slightly more common among individuals with depressive symptoms, the observed sociodemographic associations were all modest in magnitude.

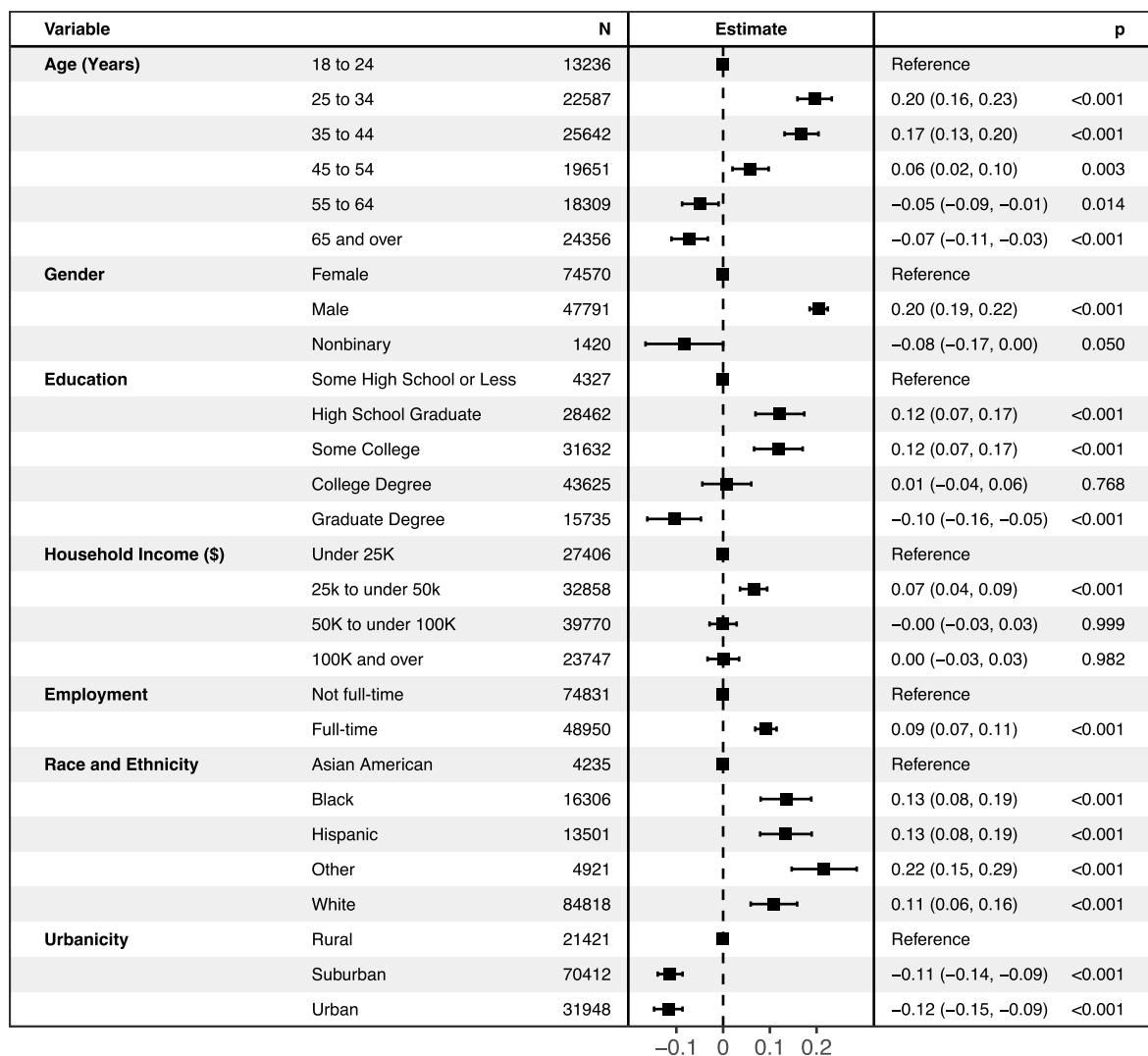
Our results align with a prior investigation suggesting high levels of conspiratorial thinking during the COVID-19 pandemic (Ellett et al., 2023). In that study of 2500 adults across 5 countries, 29 % reported conspiratorial ideas related to the pandemic; in the US subsample, male gender and younger age associated with these ideas. An international poll early in the pandemic likewise found a large proportion of individuals endorsing such ideas ("The Coronavirus," 2020).

Prior to the pandemic, a UK study (Bebbington et al., 2013) of paranoia found that around 15–20 % of individuals endorsed mistrust of others, and up to 10 % ideas of reference or persecution. Another pre-pandemic epidemiologic study examined a single item from the National Comorbidity Survey-Replication study, estimating that 27 % of U.S. adults endorsed a belief in conspiracy 'behind many things in the world' (Freeman and Bentall, 2017). Notably, that study also found such beliefs to be more common among men and individuals with less education.

The individuals we identified with greatest prevalence of conspiratorial thinking may be those at elevated risk for other factors including early adversity, social isolation and exclusion, lack of social support, lower education, and substance use (Alston and Kent, 2009), some of which have also been associated with paranoid symptoms (Raihani and Bell, 2019). We cannot directly address other risk factors (e.g., genetic predisposition and temperament), but all of these risks likely interact to contribute to paranoid experiences and conspiratorial thinking. Further underscoring the complexity of these relationships, we identified a nonlinear association between endorsing conspiratorial thoughts and social supports: while endorsing all 4 such thoughts was associated with lower levels of support, endorsing 1 or 2 thoughts was associated with higher levels of support. Causation, if any, cannot be inferred from our cross-sectional analyses, but broadly speaking our results suggest that presence of conspiratorial thinking in and of itself does not correlate with poorer social functioning. One possible explanation for this


nonlinear relationship is that moderate levels of conspiratorial belief may promote a sense of group identity or shared worldview that facilitates social bonding, whereas stronger endorsement may lead to social withdrawal or exclusion. This result is consistent with the buffering effect, in which social support in like-minded communities mitigates distress, and the selection effect, wherein individuals with stronger views may disengage from or be excluded by social networks (Cohen and Wills, 1985).

We also identified a modest association between endorsement of conspiratorial ideas and depressive symptoms. The experience of frank psychosis in more severe mood disorders is well-described, but the phenomenon we characterize is likely substantially more subtle given that the prevalence of psychotic depression has been estimated to be <1 % (Ohayon and Schatzberg, 2002). Individuals with depression may exhibit a range of cognitive deficits (Colwell et al., 2022) that may correlate with acceptance of conspiratorial ideas (Freeman and Loe, 2023). In prior work, we showed that depressive symptoms associated with endorsement of misinformation about the COVID-19 pandemic, for example (Perlis et al., 2022a).


Finally, we found that those individuals endorsing greater levels of conspiratorial ideas were less likely to be vaccinated against COVID-19 as well as influenza. Similarly, in the subset of respondents who returned for a second survey, those endorsing conspiratorial ideas initially were also less likely to have received additional COVID-19 vaccination. This result aligns with an array of findings that conspiratorial thinking during the pandemic has been associated with a range of adverse public health outcomes, including decreased likelihood for getting tested for Covid-19 and increased likelihood of job loss during the pandemic (Kroke and Ruthig, 2022; Leonard and Philippe, 2021; van Prooijen et al., 2023). A particular strength of the present study is that it focused on non-health-related conspiratorial thinking, indicating that these thoughts in general relate to health behavior, even when they have nothing to do with health per se.

4.1. Limitations

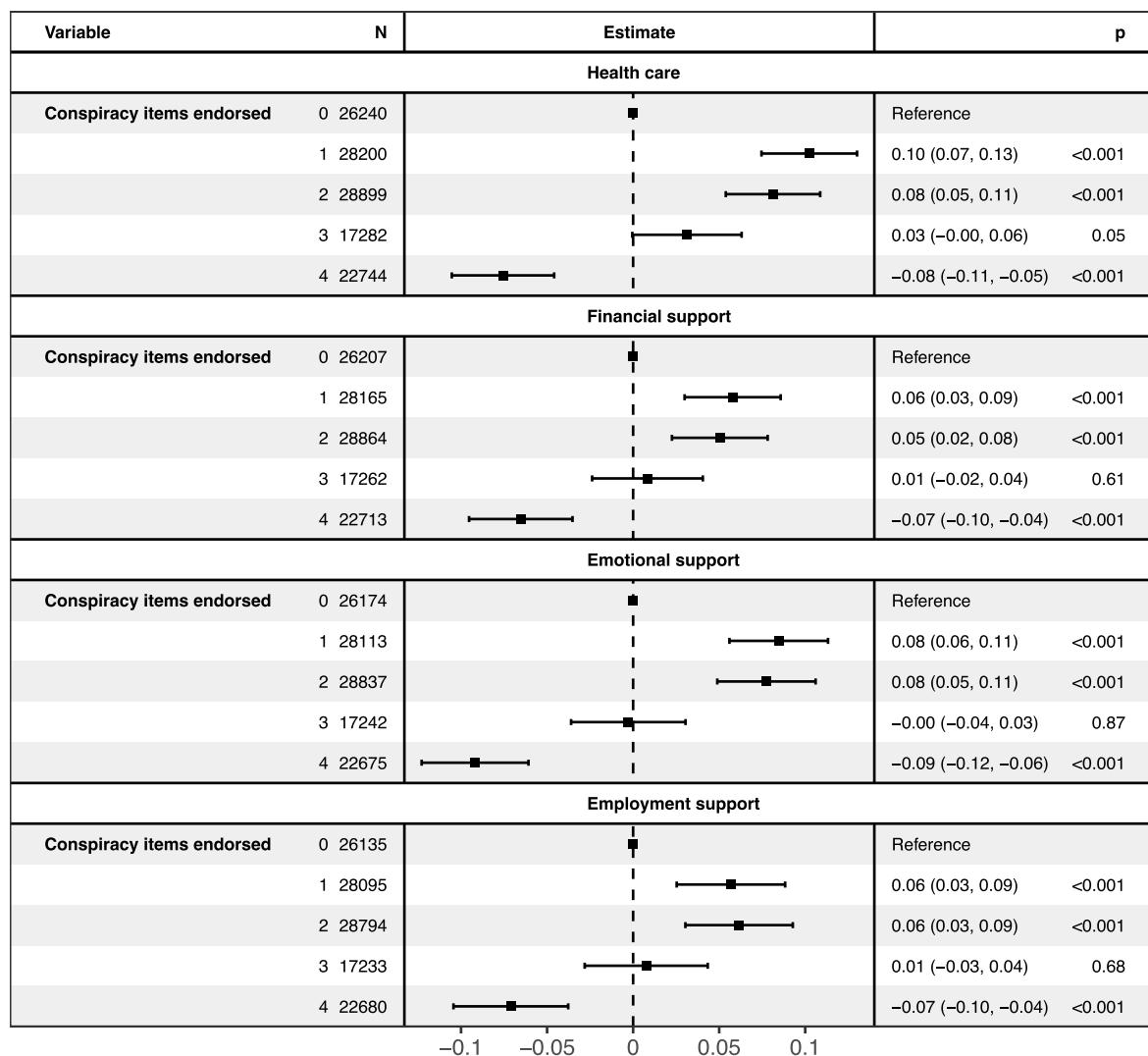
This study has some limitations. To begin with, we cannot draw conclusions about causation from the associations between conspiratorial thinking and vaccination behaviors. While those behaviors are unlikely to cause individuals to embrace ideas about conspiracies (i.e., reverse causation), some confounding variable could readily contribute to both. Our analysis of panel data at least suggests that the conspiratorial thoughts precede receipt of additional vaccination, and consideration of political affiliation in addition to other sociodemographic

Fig. 1. Proportion of US adults endorsing 4 conspiracy items, by state, October 2022–January 2024.

Fig. 2. Survey-weighted linear regression model of association between sociodemographic features and number of conspiracy items endorsed.

features addresses potential confounding. Still, additional longitudinal investigation, and perhaps randomized intervention studies, would be required to better understand causation. Finally, because we employed a nonprobability design as the only feasible way to sample at this scale at low cost, we cannot report response rates. While these designs may not be as robust as probability designs, this survey has been shown to yield valid results in comparison with both administrative data (e.g., firearms) and probability sampling (Perlis et al., 2022c; Radford et al., 2022). Although nonprobability online surveys may raise concerns about sampling bias, recent Pew data indicate that an overwhelming majority of older adults, those from lower income backgrounds, and those without college degrees use the internet, suggesting that the risk of underrepresentation is limited (“Internet, Broadband Fact Sheet,”, 2024; Perrin, 2017). Likewise, studies of individuals with serious mental illness also indicate high rates of internet usage (Zaja et al., 2022). Furthermore, while probability surveys may yield greater precision than non-probability samples, prior work with this survey demonstrated results that closely approximate estimates obtained using other methods, including probability polls and administrative data (Radford et al., 2022).

Additionally, while we accounted for a range of sociodemographic factors including education, income, and employment status in our adjusted models, it is possible that these variables still contribute to the observed associations between conspiratorial thinking and vaccination


behavior. Further investigation of these relationships will likely require longitudinal designs and formal mediation approaches, beyond the scope of the present study.

5. Conclusion

We found that conspiratorial thinking was common, but differed substantially across the population, exhibiting greatest prevalence among younger individuals, males, those with lower levels of education, those with household income between \$25,000 and \$50,000, and those residing in more rural areas. While it was significantly associated with depressive symptoms, the magnitude of this association was modest. Respondents who endorsed greater levels of such thinking were less likely to pursue vaccination, underscoring the importance of better understanding these thoughts and how they vary in both health and disease. While these analyses cannot establish causation, strategies to address conspiratorial thoughts may represent an opportunity to improve adherence to some public health initiatives, at least in the United States.

CRediT authorship contribution statement

Roy H. Perlis: Writing – review & editing, Writing – original draft, Formal analysis. **Ata Uslu:** Writing – review & editing, Data curation.

Fig. 3. Survey-weighted linear regression models of association between conspiratorial thoughts and individual measures of social network size.

Sergio A. Barroilhet: Writing – review & editing. **Paul A. Vohringer:** Writing – review & editing. **Anudeepa K. Ramachandiran:** Writing – review & editing. **Mauricio Santillana:** Writing – review & editing, Data curation. **Matthew A. Baum:** Writing – review & editing, Data curation. **James N. Druckman:** Writing – review & editing, Data curation. **Katherine Ognyanova:** Writing – review & editing, Data curation. **David Lazer:** Writing – review & editing, Data curation.

Funding statement

This study was supported by the National Institute of Mental Health (Drs. Perlis and Lazer, R01MH132335), the National Science Foundation grants (Drs. Ognyanova, Lazer, Druckman, and Baum SES-2029292, SES-2029792, SES2116465, SES-2116189), the John S. and James L. Knight Foundation, the Peter G. Peterson Foundation, and by Harvard University, Northeastern University, and Rutgers University. The authors had the final responsibility for the decision to submit for publication. All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs. Perlis and Lazer directly accessed and verified the underlying data reported in the manuscript. The sponsors did not have any role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Roy H. Perlis reports financial support was provided by National Institute of Mental Health. David Lazer reports financial support was provided by National Institute of Mental Health. Katherine Ognyanova reports financial support was provided by National Science Foundation. David Lazer reports financial support was provided by National Science Foundation. James N. Druckman reports financial support was provided by National Science Foundation. Matthew A. Baum reports financial support was provided by National Science Foundation. David Lazer reports financial support was provided by John S and James L Knight Foundation. David Lazer reports financial support was provided by Peter G Peterson Foundation. Roy H. Perlis reports a relationship with Genomind Inc. that includes: consulting or advisory. Roy H. Perlis reports a relationship with Circular Genomics that includes: consulting or advisory and equity or stocks. Roy H. Perlis reports a relationship with Psy Therapeutics that includes: consulting or advisory and equity or stocks. Roy H. Perlis reports a relationship with Alkermes Inc. that includes: consulting or advisory. Roy H. Perlis reports a relationship with Vault Health that includes: equity or stocks. Dr. Perlis is the Editor-in-Chief of *JAMA + AI* and a paid Associate Editor for *JAMA Network*. The other authors report no disclosures. If there are other authors, they

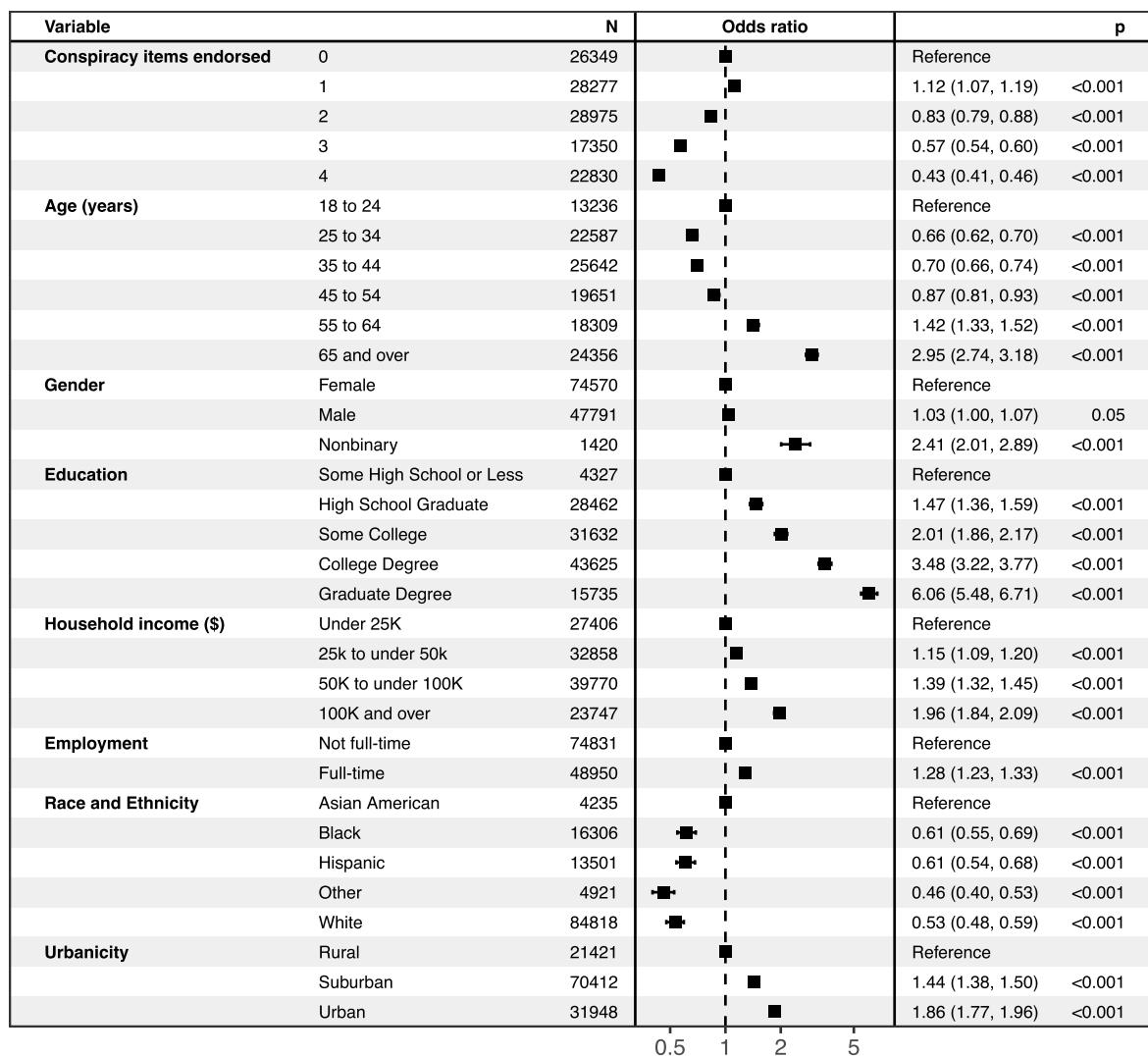


Fig. 4. Survey-weighted logistic regression models of association between conspiratorial thoughts and likelihood of being vaccinated against COVID-19.

declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors have no acknowledgements to report.

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.jad.2025.119915>.

Data availability

The survey used for this study is available from the corresponding author for non-commercial use.

References

Alston, M., Kent, J., 2009. Generation X-pendable: the social exclusion of rural and remote young people. *J. Sociol.* 45, 89–107. <https://doi.org/10.1177/1440783308099988>.

Bebbington, P.E., McBride, O., Steel, C., Kuipers, E., Radovanović, M., Brugha, T., Jenkins, R., Meltzer, H.I., Freeman, D., 2013. The structure of paranoia in the general population. *Br. J. Psychiatry* 202, 419–427. <https://doi.org/10.1192/bjp.bp.112.119032>.

Cohen, S., Wills, T.A., 1985. Stress, social support, and the buffering hypothesis. *Psychol. Bull.* 98, 310–357. <https://doi.org/10.1037/0033-2909.98.2.310>.

Colwell, M.J., Tagomori, H., Chapman, S., Gillespie, A.L., Cowen, P.J., Harmer, C.J., Murphy, S.E., 2022. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. *Transl. Psychiatry* 12, 1–16. <https://doi.org/10.1038/s41398-022-02249-6>.

Conspiracy vs. Science: A Survey of U.S. Public Beliefs [WWW Document], 2022. Carsey School of Public Policy|UNH. URL <https://carsey.unh.edu/publication/conspiracy-vs-science-a-survey-of-us-public-beliefs> (accessed 4.10.24).

Coppock, A., McClellan, O.A., 2019. Validating the demographic, political, psychological, and experimental results obtained from a new source of online survey respondents. *Res. Polit.* 6, 2053168018822174. <https://doi.org/10.1177/2053168018822174>.

Cuthbert, B.N., 2014. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. *World Psychiatry* 13, 28–35. <https://doi.org/10.1002/wps.20087>.

Cuthbert, B.N., Insel, T.R., 2013. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. *BMC Med.* 11, 126. <https://doi.org/10.1186/1741-7015-11-126>.

Ellett, L., Schlier, B., Kingston, J.L., Zhu, C., So, S.H., Lincoln, T.M., Morris, E.M.J., Gaudiano, B.A., 2023. Pandemic paranoia in the general population: international prevalence and sociodemographic profile. *Psychol. Med.* 53, 5748–5755. <https://doi.org/10.1017/S0033291722002975>.

Enders, A.M., Diekman, A., Klofstad, C., Murthi, M., Verdear, D., Wuchty, S., Uscinski, J., 2023. On modeling the correlates of conspiracy thinking. *Sci. Rep.* 13, 8325. <https://doi.org/10.1038/s41598-023-34391-6>.

Freeman, D., Bentall, R.P., 2017. The concomitants of conspiracy concerns. *Soc. Psychiatry Psychiatr. Epidemiol.* 52, 595–604. <https://doi.org/10.1007/s00127-017-1354-4>.

general population. *Br. J. Psychiatry* 202, 419–427. <https://doi.org/10.1192/bjp.bp.112.119032>.

Cohen, S., Wills, T.A., 1985. Stress, social support, and the buffering hypothesis. *Psychol. Bull.* 98, 310–357. <https://doi.org/10.1037/0033-2909.98.2.310>.

Colwell, M.J., Tagomori, H., Chapman, S., Gillespie, A.L., Cowen, P.J., Harmer, C.J., Murphy, S.E., 2022. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. *Transl. Psychiatry* 12, 1–16. <https://doi.org/10.1038/s41398-022-02249-6>.

Conspiracy vs. Science: A Survey of U.S. Public Beliefs [WWW Document], 2022. Carsey School of Public Policy|UNH. URL <https://carsey.unh.edu/publication/conspiracy-vs-science-a-survey-of-us-public-beliefs> (accessed 4.10.24).

Coppock, A., McClellan, O.A., 2019. Validating the demographic, political, psychological, and experimental results obtained from a new source of online survey respondents. *Res. Polit.* 6, 2053168018822174. <https://doi.org/10.1177/2053168018822174>.

Cuthbert, B.N., 2014. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. *World Psychiatry* 13, 28–35. <https://doi.org/10.1002/wps.20087>.

Cuthbert, B.N., Insel, T.R., 2013. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. *BMC Med.* 11, 126. <https://doi.org/10.1186/1741-7015-11-126>.

Ellett, L., Schlier, B., Kingston, J.L., Zhu, C., So, S.H., Lincoln, T.M., Morris, E.M.J., Gaudiano, B.A., 2023. Pandemic paranoia in the general population: international prevalence and sociodemographic profile. *Psychol. Med.* 53, 5748–5755. <https://doi.org/10.1017/S0033291722002975>.

Enders, A.M., Diekman, A., Klofstad, C., Murthi, M., Verdear, D., Wuchty, S., Uscinski, J., 2023. On modeling the correlates of conspiracy thinking. *Sci. Rep.* 13, 8325. <https://doi.org/10.1038/s41598-023-34391-6>.

Freeman, D., Bentall, R.P., 2017. The concomitants of conspiracy concerns. *Soc. Psychiatry Psychiatr. Epidemiol.* 52, 595–604. <https://doi.org/10.1007/s00127-017-1354-4>.

Freeman, D., Loe, B.S., 2023. Explaining paranoia: cognitive and social processes in the occurrence of extreme mistrust. *BMJ Ment Health* 26, e300880. <https://doi.org/10.1136/bmjment-2023-300880>.

Hajdúk, M., Klein, H.S., Harvey, P.D., Penn, D.L., Pinkham, A.E., 2019. Paranoia and interpersonal functioning across the continuum from healthy to pathological - network analysis. *Br. J. Clin. Psychol.* 58, 19–34. <https://doi.org/10.1111/bjcp.12199>.

Han, H., Blackburn, A.M., Jeftić, A., Tran, T.P., Stöckli, S., Reifler, J., Vestergren, S., 2022. Validity testing of the conspiratorial thinking and anti-expert sentiment scales during the COVID-19 pandemic across 24 languages from a large-scale global dataset. *Epidemiol. Infect.* 150, e167. <https://doi.org/10.1017/S0950268822001443>.

Internet, Broadband Fact Sheet, 2024. Pew Research Center. <https://www.pewresearch.org/internet/fact-sheet/internet-broadband/> (accessed 7.12.24).

Kay, C.S., Slovic, P., 2025a. Assessing conspiracist ideation reliably, validly, and efficiently: a psychometric comparison of five short-form measures. *Assessment*, 10731911251319933. <https://doi.org/10.1177/10731911251319933>.

Kay, C.S., Slovic, P., 2025b. Assessing conspiracist ideation reliably, validly, and efficiently: a psychometric comparison of five short-form measures. *Assessment*, 10731911251319933. <https://doi.org/10.1177/10731911251319933>.

Kennedy, C., Caumont, R., 2016. What we learned about online nonprobability polls. Pew Research Center. <https://www.pewresearch.org/fact-tank/2016/05/02/q-a-online-nonprobability-polls/> (accessed 11.27.21).

Kroenke, K., Spitzer, R.L., Williams, J.B.W., 2001. The PHQ-9: validity of a brief depression severity measure. *J. Gen. Intern. Med.* 16, 606–613. <https://doi.org/10.1046/j.1525-1497.2001.016009606.x>.

Kroke, A.M., Ruthig, J.C., 2022. Conspiracy beliefs and the impact on health behaviors. *Appl. Psychol. Health Well Being* 14, 311–328. <https://doi.org/10.1111/aphw.12304>.

Leonard, M.-J., Philippe, F.L., 2021. Conspiracy theories: a public health concern and how to address it. *Front. Psychol.* 12. <https://doi.org/10.3389/fpsyg.2021.682931>.

Levis, B., Benedetti, A., Thombs, B.D., 2019. Accuracy of patient health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis. *BMJ*, i1476. <https://doi.org/10.1136/bmj.i1476>.

Lubbers, M.J., Molina, J.L., Valenzuela-García, H., 2019. When networks speak volumes: variation in the size of broader acquaintanceship networks: variation in the size of broader acquaintanceship networks. *Soc. Networks* 56, 55–69. <https://doi.org/10.1016/j.socnet.2018.08.004>.

Lumley, T., 2004. Analysis of complex survey samples. *J. Stat. Softw.* 009.

Ohayon, M.M., Schatzberg, A.F., 2002. Prevalence of depressive episodes with psychotic features in the general population. *Am. J. Psychiatry* 159, 1855–1861. <https://doi.org/10.1176/appiajp.159.11.1855>.

Perlis, R.H., Green, J., Simonson, M., Ognyanova, K., Santillana, M., Lin, J., Quintana, A., Chwe, H., Druckman, J., Lazer, D., Baum, M.A., Della Volpe, J., 2021. Association between social media use and self-reported symptoms of depression in US adults. *JAMA Netw. Open* 4, e2136113. <https://doi.org/10.1011/jamanetworkopen.2021.36113>.

Perlis, R.H., Ognyanova, K., Santillana, M., Lin, J., Druckman, J., Lazer, D., Green, J., Simonson, M., Baum, M.A., Della Volpe, J., 2022a. Association of Major Depressive Symptoms with Endorsement of COVID-19 vaccine misinformation among US adults. *JAMA Netw. Open* 5, e2145697. <https://doi.org/10.1011/jamanetworkopen.2021.45697>.

Perlis, R.H., Santillana, M., Ognyanova, K., Safarpour, A., Lunz Trujillo, K., Simonson, M., D., Green, J., Quintana, A., Druckman, J., Baum, M.A., Lazer, D., 2022b. Prevalence and correlates of long COVID symptoms among US adults. *JAMA Netw. Open* 5, e2238804. <https://doi.org/10.1011/jamanetworkopen.2022.38804>.

Perlis, R.H., Simonson, M.D., Green, J., Lin, J., Safarpour, A., Lunz Trujillo, K., Quintana, A., Chwe, H., Della Volpe, J., Ognyanova, K., Santillana, M., Druckman, J., Lazer, D., Baum, M.A., 2022c. Prevalence of firearm ownership among individuals with major depressive symptoms. *JAMA Netw. Open* 5, e223245. <https://doi.org/10.1011/jamanetworkopen.2022.3245>.

Perlis, R.H., Lunz Trujillo, K., Safarpour, A., Quintana, A., Simonson, M.D., Perlis, J., Santillana, M., Ognyanova, K., Baum, M.A., Druckman, J.N., Lazer, D., 2023. Community mobility and depressive symptoms during the COVID-19 pandemic in the United States. *JAMA Netw. Open* 6, e2334945. <https://doi.org/10.1001/jamanetworkopen.2023.34945>.

Perlis, R.H., Ognyanova, K., Uslu, A., Lunz Trujillo, K., Santillana, M., Druckman, J.N., Baum, M.A., Lazer, D., 2024. Trust in Physicians and Hospitals during the COVID-19 pandemic in a 50-state survey of US adults. *JAMA Netw. Open* 7, e2424984. <https://doi.org/10.1001/jamanetworkopen.2024.24984>.

Perrin, M.A., A., 2017. 1. Technology use among seniors. Pew Research Center. URL <https://www.pewresearch.org/internet/2017/05/17/technology-use-among-seniors/> (accessed 6.24.25).

Pilch, I., Turska-Kawa, A., Wardawy, P., Olszanecka-Marmola, A., Smolikowska-Jędo, W., 2023. Contemporary trends in psychological research on conspiracy beliefs. A systematic review. *Front. Psychol.* 14. <https://doi.org/10.3389/fpsyg.2023.1075779>.

R Core Team, 2019. R: A Language and Environment for Statistical Computing.

Radford, J., Green, J., Quintana, A., Safarpour, A., Simonson, M.D., Baum, M., Lazer, D., Ognyanova, K., Druckman, J., 2022. Evaluating the generalizability of the COVID states survey — a large-scale, non-probability survey. <https://doi.org/10.31219/osf.io/cwkg7>.

Raihani, N.J., Bell, V., 2019. An evolutionary perspective on paranoia. *Nat. Hum. Behav.* 3, 114–121. <https://doi.org/10.1038/s41562-018-0495-0>.

Saarinen, A., Granö, N., Hintsanen, M., Lehtimäki, T., Cloninger, C.R., Keltikangas-Järvinen, L., 2022. Bidirectional pathways between psychosocial risk factors and paranoid ideation in a general nonclinical population. *Dev. Psychopathol.* 34, 421–430. <https://doi.org/10.1017/S0954579420001030>.

Snagovsky, F., Stockemer, D., 2025. Does it matter how we measure conspiracy beliefs? A test of three measurement approaches. *Soc. Sci. Q.* 106, e13471. <https://doi.org/10.1111/ssqu.13471>.

Survey Disclosure Checklist - AAPOR, 2021 [WWW Document]. URL <https://aapor.org/standards-and-ethics/disclosure-standards/> (accessed 1.25.22).

The Coronavirus, 2020. A vast scared majority around the world [WWW document]. URL <https://www.gallup-international.com/survey-results-and-news/survey-results/the-coronavirus-a-vast-scared-majority-around-the-world> (accessed 5.2.24).

Uscinski, J., Enders, A., Diekman, A., Funchion, J., Klofstad, C., Kuebler, S., Murthi, M., Premaratne, K., Seelig, M., Verdear, D., Wuchty, S., 2022a. The psychological and political correlates of conspiracy theory beliefs. *Sci. Rep.* 12, 21672. <https://doi.org/10.1038/s41598-022-25617-0>.

Uscinski, J., Enders, A., Klofstad, C., Seelig, M., Drochon, H., Premaratne, K., Murthi, M., 2022b. Have beliefs in conspiracy theories increased over time? *PLoS One* 17, e0270429. <https://doi.org/10.1371/journal.pone.0270429>.

Uscinski, J.E., Parent, J.M., 2014. American Conspiracy Theories. Oxford University Press.

Valliant, R., 2020. Comparing alternatives for estimation from nonprobability samples. *Journal of Survey Statistics and Methodology* 8, 231–263. <https://doi.org/10.1093/jssam/smz003>.

van Prooijen, J.-W., Etienne, T.W., Kutylski, Y., Krouwel, A.P.M., 2023. Conspiracy beliefs prospectively predict health behavior and well-being during a pandemic. *Psychol. Med.* 53, 2514–2521. <https://doi.org/10.1017/S0033291721004438>.

van Prooijen van, J.-W., Klein, O., Dorević, J.M., 2020. Social-Cognitive Processes Underlying Belief in Conspiracy Theories. In: *Routledge Handbook of Conspiracy Theories*. Routledge.

Žaja, N., Vuković, J., Žarko, T., Mareljić, M., Vidović, D., Vukušić Rukavina, T., 2022. Internet use among patients with schizophrenia and depression. *Int. J. Environ. Res. Public Health* 19, 5695. <https://doi.org/10.3390/ijerph19095695>.

Glossary

ACTS: American Conspiratorial Thinking Scale
PHQ-9: 9-item Patient Health Questionnaire