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A B S T R A C T

Human decision-making involves the coordinated activity of multiple brain areas, acting in concert, to enable 
humans to make choices. Most decisions are carried out under conditions of uncertainty, where the desired 
outcome may not be achieved if the wrong decision is made. In these cases, humans deliberate before making a 
choice. The neural dynamics underlying deliberation are unknown and intracranial recordings in clinical settings 
present a unique opportunity to record high temporal resolution electrophysiological data from many (hundreds) 
brain locations during behavior. Combined with dynamic systems modeling, these allow identification of latent 
brain states that describe the neural dynamics during decision-making, providing insight into these neural dy
namics and computations. Results show that the neural dynamics underlying risky decisions, but not decisions 
without risk, converge to separate subspaces depending on the subject’s preferred choice and that the degree of 
overlap between these subspaces declines as choice approaches, suggesting a network level representation of 
evidence accumulation. These results bridge the gap between regression analyses and data driven models of 
latent states and suggest that during risky decisions, deliberation and evidence accumulation toward a final 
decision are represented by the same neural dynamics, providing novel insights into the neural computations 
underlying human choice.

1. Introduction

Human decision-making involves the coordinated activity of multi
ple brain areas, acting in concert, to enable humans and animals to 
adaptively make choices (Ebitz et al., 2020; Li et al., 2013; O’Connell 
et al., 2018; Wang, 2012). Increasing evidence from animal models 
supports a distributed view of neural activity underlying reward-guided 
behavior (Kennerley et al., 2011; Wallis and Miller, 2003), with acti
vation across brain regions emerging simultaneously rather than 
sequentially during the deliberation period prior to choice selection 
(Kennerley et al., 2011; Man et al., 2024; Ottenheimer et al., 2023; 
Steinmetz et al., 2019; Wallis and Miller, 2003). Animal studies have 

shown that localized neural activity in a variety of regions reflects 
specific reward-related computations such as risk (Preuschoff et al., 
2006; Schultz et al., 1997), value (Enel et al., 2020; Gottfried et al., 
2003; Hayden and Niv, 2021; Kennerley et al., 2011; Kobayashi et al., 
2021; Padoa-Schioppa and Assad, 2006, 2008; Paton et al., 2006; 
Dolanía et al., 2014; Rangel et al., 2008; Smith et al., 2010; Strait et al., 
2015; Usher et al., 2012; Wallis, 2012; Williams et al., 2021) and reward 
probability (Akaishi and Hayden, 2016; Balleine et al., 2007; Bayer and 
Glimcher, 2005; Farashahi et al., 2019; Gauthier and Tank, 2018; 
Gottfried et al., 2003; Gruber et al., 2013; Hayden et al., 2009; Hira 
et al., 2014; Hunt and Hayden, 2017; Kishida et al., 2016; Man et al., 
2024; Saez et al., 2018; Schultz, 2017; Schultz et al., 1997, 2008; Sosa 
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and Giocomo, 2021; Tremblay and Schultz, 1999; M. Z. Wang and 
Hayden, 2017). However, how this sub-second neural activity during the 
deliberation period enables choice, including the role of neural activity 
across different frequency bands and brain regions, is not well under
stood in the human brain, partially due to the difficulty of recording 
neural activity in multiple brain areas.

To directly observe human neural activity with high anatomical 
precision, signal-to-noise and temporal resolution we leveraged human 
intracranial electroencephalography (iEEG) recordings from neurosur
gical patients. We combined these recordings with reward tasks to study 
the relationship between distributed neurophysiological activity and 
choice behavior. This approach overcomes some of the limitations of 
non-invasive human neural methodologies including limited signal-to- 
noise ratio (EEG), temporal resolution (fMRI), or anatomical accuracy 
(EEG) (Buzsáki et al., 2012). Patients played an economic risky 
decision-making game while local field potentials (LFP) were recorded 
from multiple reward-related brain areas, including orbitofrontal, 
lateral prefrontal, premotor and motor cortices, insula, and amygdala 
(Saez et al., 2018). The game included trials where there was no risk (the 
outcome was certain) as well as trials with varying probabilities of 
resulting in a win (win probability).

To examine distributed neural dynamics during deliberation, we 
developed models that predicted single trial behavior (choice) and used 
them to assess how the information about choice is conveyed by changes 
in power across frequency bands and regions. Our models applied 
dimension reduction followed by classification techniques and were 
used first to identify the features that conveyed the most information 
about choice by evaluating the classifier performance. We then 
compared performance across models to identify candidate neural 
mechanisms that might be used by the brain to compute the subject’s 
final choice. Finally, we examined the output of the models to gain 
insight into the relationship between changes in neural activity and 
behavior. As a first approximation, we examined the linear representa
tion of neural computations underlying choice using two approaches: 
Principal Components Analysis (PCA) that describes how the covariance 
of data at different frequencies across different brain regions combine to 
encode choice and Linear Dynamical Systems (LDS) modeling that 
captures the linear component of how the neural activity at one moment 
in time produces the activity at the next (Cheng and Sabes, 2006; Tóth, 
2010; Yu et al., 2008). While there are likely critical non-linear com
putations, the aggregate activity of large populations of neurons re
flected by the on-going oscillatory activity is likely to have a substantial 
linear component (Rich and Wallis, 2016) and an understanding of this 
linear component will provide both insight into how, when and where 
non-linear computation are important, as well as a baseline for how 
much information can be conveyed linearly.

Our results show that information about choice can be represented in 
a relatively low dimensional state-space defined seven Principal Com
ponents (PCs) or seven latent variables (LVs) derived from the LDS 
model using high-frequency activity[30–200 Hz]. Highly accurate 
decoding can be accomplished with dynamical systems modeling that 
revealed convergence to two subspaces, one for each of the two options 
(gamble or safe bet). Early during deliberation, single trial neural tra
jectories show rapid transitioning between these subspaces, but as the 
time of choice selection approached, the single trial trajectories 
converged towards one of the subspaces, whose identity was consistent 
with the subject’s choice. These dynamics are specific to risky decisions 
as we found classification accuracy dropped to chance for trials where 
the gamble option was guaranteed to be successful (100 % win proba
bility) or unsuccessful (0 % win probability). These results suggest that 
deliberation and evidence accumulation toward a final decision in the 
presence of any risk can be represented by the same neural dynamics, 
providing novel insights into the neural computations underlying 
human choice.

2. Methods

2.1. Subjects

Data were collected from 34 subjects (19 female) with intractable 
epilepsy who were implanted with chronic subdural grid or strip elec
trodes (electrocorticography, ECoG) or stereotactic EEG (sEEG) elec
trodes as part of a procedure to localize the epileptogenic focus. 
Electrode placement was based solely on the clinical needs of each 
subject. Fourteen subjects had psychometric curves outside of the range 
recorded from healthy subjects (Saez et al., 2018), suggesting either they 
didn’t understand the game or were not paying attention during the 
game, and were, therefore, excluded from further analysis 
(Supplemental Data Fig. 5). For the remaining 20 subjects, we excluded 
electrodes that showed evidence of epileptic activity. Data were recor
ded postoperatively in the epilepsy monitoring unit at five hospitals: The 
University of California (UC), San Francisco Hospital (n = 3), the 
Stanford School of Medicine (n = 3), UC Irvine Medical Center (n = 23), 
and UC Davis Medical Center (n = 5). As part of the clinical observation 
procedure, subjects were off anti-epileptic medication during these ex
periments. All participants gave written informed consent to participate 
in the study in accordance with the University of California, Davis or 
University of California, Berkeley Institutional Review Board. Subjects 
understood that they could decline participation at any time, and verbal 
assent was reaffirmed prior to each experimental task.

2.2. Electrophysiological data acquisition

Subjects underwent either electrocorticography (ECoG), providing 
subdural coverage predominantly in frontoparietal regions (9/20 sub
jects), or stereotactic EEG (sEEG), predominantly in deep temporal lobe 
regions (amygdala, hippocampus, insula; 11/20 subjects). ECoG and 
sEEG activity was recorded, deidentified, and stored at the same time as 
behavioral data. Data were collected using Tucker-Davis Technologies, 
Nihon-Kohden, or Natus systems. Data processing was identical across 
all sites: channels were amplified x10000, analog filtered 
(0.01–1000 Hz) with > 1 kHz digitization rate, re-referenced to a 
common average offline, high-pass filtered at 1.0 Hz with a symmetrical 
(phase true) finite impulse response (FIR) filter (~35 dB/octave roll-off). 
Behavioral data were simultaneously collected using a PC laptop 
running Python (v.2.7) and PsychoPy (v.1.85.2) and synchronized with 
a timed visual stimulus (trial start) recorded by a photodiode through an 
analog input to the electrophysiological system.

2.3. Behavioral task

We probed risk-reward tradeoffs using a simple gambling task 
described previously (Saez et al., 2018). Briefly, subjects chose between 
a safe bet ($10, fixed) or a gamble for potential higher winnings (be
tween $15 and $30). Gamble win probability varied per trial based on an 
integer between 0 and 10 shown at game presentation. Trials with 0 or 
10 carried no risk as the outcome was certain and we used them as 
‘catch’ trials to evaluate whether our model is decoding risk, rather than 
just choice selection independent of risk (Supplemental Data Fig. 4). 
After choice (t = 550 ms post-choice, Fig. 1A), a second number (also 
0–10) is revealed. The gamble results in a win if the second number is 
greater than the first, and ties were not allowed, therefore, a shown ‘2’ 
had a win probability of 80 % and an ‘8’ had a win probability of 20 %. 
Both numbers were randomly generated using a uniform distribution. 
Location of safe bet and gamble options (left/right) were randomized 
across trials. Subjects played 10 practice trials, repeated as many times 
as necessary, to ensure they had full knowledge of the (fair) structure of 
the task prior to game play (200 trials). Timing is summarized in Fig. 1A. 
Trials started with a fixation cross (t = 0), followed by a game presen
tation screen (t = 750 ms). Subjects had up to 8 s to respond. Gamble 
outcome presentation appeared 550 ms after button press (choice) on 

L.M. Peters et al.                                                                                                                                                                                                                                Progress in Neurobiology 250 (2025) 102776 

2 



each trial regardless of choice. A new round started 1 s after outcome 
reveal. The experimental task typically lasted 12–15 min. This gambling 
task minimized other cognitive demands (working memory, learning, 
etc.) on our participants while allowing us to test for decision-making 
under risk. Behavioral performance was assessed by examining the 
proportion of trials in which the subject chose to gamble as a function of 
win probability; the proportion of risky trials was calculated for each 
win probability value (0–100 % in 10 % increments) and fit with a lo
gistic curve. Subjects gambled more often as the win probability 
increased. As a control for behavioral data quality, we excluded subjects 
in which a logistic function did not appropriately fit the relationship 
between percentage of gambles and win probability (p < 0.05, logistic 
fit). Results examining the correlation of differences in power between 
safe and gamble bets from these subjects playing the same task were 
published previously (Overton et al., 2025).

2.4. Anatomical localization

Electrode localization was based strictly on clinical criteria for each 
subject, 9/20 had electrocorticography (ECoG) grids, predominantly in 
orbitofrontal, lateral prefrontal, and parietal regions, whereas 11/20 
had stereotactic EEG (sEEG) coverage, predominantly of deep temporal 
lobe regions (amygdala, hippocampus) (Table 1). For each subject, a 
pre-operative anatomical MRI (T1) image and a post-implantation CT 
scan was collected. The CT scan allowed identification of individual 
electrodes but offered poor anatomical resolution, making it difficult to 
determine their anatomical location. Therefore, the CT scan was real
igned to the pre-operative MRI scan following a previously described 
procedure79. Briefly, both the MRI and CT images were aligned to a 
common coordinate system and fused with each other using a rigid body 
transformation. Following CT-MR co-registration, we compensated for 
brain shift, an inward sinking and shrinking of brain tissue caused by the 
implantation surgery. A hull of the subject brain was generated using the 
FreeSurfer analysis suite, and each grid and strip was realigned 

Fig. 1. Task and Data Collection. A. Subjects played a gambling game in which they chose between a safe $10 reward and a risky gamble between a $30 reward or a 
$0 reward. Gamble win probability varied parametrically on a trial-by-trial basis (0–100 %, 10 % increments). B. Local field potentials (LFPs) from iEEG electrodes in 
several brain regions were cleaned to remove noisy channels and epochs, downsampled, filtered and referenced to a common average. (Overton et al., J Neurosci 
under revision). C. Data were then windowed around the time of choice for each trial and decomposed into power across frequency bands (delta [1–4 Hz], theta 
[4–8 Hz], alpha [8–12 Hz], beta [12–30 Hz], gamma [30–70 Hz] and high-frequency activity [HFA; 70–200 Hz]. One second is removed at the beginning and end of 
each trial segment, channels were z-scored over time to correct for the 1/f profile of neural activity.

Table 1 
Count of electrodes per patient and region.

Patient LPFC OFC Cingulate Amygdala Hippocampus Insula Precentral 
Gyrus

Postcentral 
Gyrus

Parietal Total electrode 
number

p01 0 1 0 0 1 0 0 0 13 15
p02 24 5 0 0 0 0 7 8 2 46
p03 55 0 0 0 0 0 47 36 22 160
p04 7 49 6 1 7 0 0 0 0 70
p05 30 61 3 0 0 5 14 8 5 126
p06 29 7 0 0 0 0 10 15 24 85
p07 41 11 0 0 0 0 11 3 2 68
p08 26 10 2 1 8 0 9 6 4 66
p09 15 14 0 0 0 0 1 2 0 32
p10 8 3 2 6 6 0 1 0 0 26
p11 11 0 11 4 3 3 2 6 6 46
p12 15 5 4 5 9 5 0 0 0 43
p13 9 3 1 4 0 0 0 0 0 17
p14 15 4 4 1 4 0 0 0 0 28
p15 11 3 8 5 6 0 0 0 0 33
p16 12 4 3 2 10 1 3 0 0 35
p17 11 2 8 2 7 6 0 0 0 36
p18 29 6 18 0 1 7 3 4 0 68
p19 38 4 14 1 2 14 0 0 0 73
p20 5 1 0 0 1 5 0 0 0 12
total per ROI 391 193 84 32 65 46 108 88 78 1085
# patients with ROI 

coverage
19 18 13 11 13 8 11 9 8 110

Table 1 Electrode counts for each subject broken down by region. The number of electrodes in each anatomical regions for each patient in our final sample of n = 20 
subjects, as well as the total count of electrodes per ROI across all patients and the number of patients with coverage for each ROI.
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independently onto the hull. This step was necessary to avoid localiza
tion errors of several millimeters common in ECoG subjects. Subse
quently, each subject’s brain and the corresponding electrode locations 
were normalized to a template using a volume-based normalization 
technique and snapped to the cortical surface79. Finally, the electrode 
coordinates were cross-referenced with labeled anatomical atlases 
(Brainnetome atlas) to obtain the gross anatomical location of the 
electrodes, verified by visual confirmation of electrode location based on 
surgical notes. Electrodes across a broad set of regions known to be 
involved in reward-related behavior were used for analysis including 
lateral prefrontal cortex (LPFC; 391 electrodes from n = 19 subjects), 
orbitofrontal cortex (OFC; 193, n = 18), cingulate cortex (CC, 84, 
n = 13), hippocampus (HC; 65, n = 13), amygdala (Amy; 32, n = 11), 
insula (Ins; 46, n = 8), precentral gyrus (PrG; 108, n = 11), postcentral 
gyrus (PoG; 88, n = 9), and parietal cortex (PC; 78, n = 8) and white 
matter (WM; 258, n = 13). To avoid biasing the models based on 
whether the selected electrodes represented choice information, we 
included all electrodes in these analyses unless otherwise noted 
(Table 1).

2.5. Electrophysiological analyses

2.5.1. Quality control and preprocessing
As part of a study to regress change in power across frequency band 

with behavior (Multi-Areal Neural Dynamics Encode Human Decision 
Making, n.d.), LFPs were cleaned as follows. Epileptogenic channels and 
channels with excessive noise (low signal-to-noise ratio, 60 Hz line 
interference, electromagnetic equipment noise, amplifier saturation, 
poor contact with cortical surface) were identified and deleted. Data 
from 1317 out of 1452 electrodes were artifact-free and included in 
subsequent analyses. Each epoch of data was visually inspected to 
exclude epochs with aberrant or noisy activity (typically <1 % of 
datapoints). Data analysis was done using custom scripts written in 
MATLAB and Fieldtrip toolbox80. Data for each channel were down
sampled to 1KHz. Each channel was lowpass filtered (200 Hz), highpass 
filtered (1 Hz), and notch filtered (60 Hz and harmonics) to remove line 
noise, and downsampled to 1 kHz if necessary. Electrode channels were 
re-referenced to a common average reference of all electrodes in each 
strip/grid. Even though bipolar derivations or white matter referencing 
are often used for sEEG electrodes, we opted to use a single (CAR) 
re-referencing strategy for both ECoG and sEEG electrodes for analytical 
consistency. Trials were epoched to the time of decision using a window 
starting 4 s before choice and ending 3 s after choice. Time-frequency 
representations (DPSS taper method) were plotted for each region and 
subject (averaged across electrodes and trials) and visually inspected for 
artifacts after the leading and trailing 1 s of data were discarded to 
remove edge effects.

2.5.2. Time-frequency representation of neural activity (bandpass 
estimates)

To assess the role of individual oscillatory bands, the LFP was 
decomponsed into canonical, discrete activity bands: (delta, δ [1–4 Hz]; 
theta, θ [4–8 Hz]; alpha, α [8–12 Hz]; beta, β [12–30 Hz]; low gamma, 
ɣL [30–70 Hz]; hi gamma, ɣH[70–200 Hz]) for each electrode for each 
subject using the Filter-Hilbert method. Briefly, power in the 6 bands 
was calculated by applying a Butterworth bandpass filter (order 3 for 
delta and order 4 for all other power bands) and Hilbert transform and 
multiplying the resultant complex signal by its complex conjugate81. As 
before, one second is removed from the beginning and end of the data to 
reduce edge effects. Prior to dimensionality reduction for classification, 
power data for each trial and channel was z-scored over the time 
dimension within each band to correct for the 1/f profile of neural 
activity.

2.6. Decoding models

Four different models were compared to assess how the frequency 
band activity encoding choice. Two different dimension reductions 
techniques: Principal component analysis (PCA) and linear dynamical 
systems (LDS) modeling were used. For each, two different classifiers 
were used: a simple Euclidean distance (ED) classifier that compared the 
single trial response to the average response of all other trials separated 
by class (gamble or safe bet) and dynamic time-warping (DTW) that 
generates a distance metric that is capable of accounting for trial-by-trial 
variation in time of neural activation through flexible stretching or 
shrinking of the time dimension. How these dimensional reduction 
techniques and classifiers were used is described next.

2.6.1. Dimension reduction
Principal components analysis (PCA) was used to assess the covari

ance structure of the data. First, we examined the redundancy of the data 
across electrodes within region for each frequency band. PCA was per
formed separately on each frequency band for all of the electrodes in a 
single region. The amount of variance carried by each PC was assessed 
(refer to Supplemental Data Fig. 1). Second, to identify the optimal 
window of time and relevant frequencies of interest that encode choice, 
the variance captured when PCA was used to assess the covariance 
across all regions was examined using a scree plot and the optimal 
number of PCs was selected as the dimensionality of the system 
(Fig. 2A). Then, the performance of the Euclidean distance classifier (ED, 
see below) on the first 200 ms before choice was calculated and this was 
repeated by increasing the size of the window by 200 ms increments up 
to 3 s prior to choice (Fig. 2B). This was done separately for each subject 
and separately for each frequency band using leave-one-out cross-vali
dation (see ED classifier, below). Lastly, the performance of PCA using 
the two different classifiers (PCA-ED and PCA-DTW) were compared 
(Student’s t-test).

In addition to PCA, linear dynamical systems (LDS) modeling was 
employed. LDS models allow characterization of the development of 
neural activity through time, and thus may be better suited for identi
fying how neural computations unfold during the task (Ghahramani and 
Hinton, 1996a, 1996b). LDS has been used to model the dynamics of 
neural activity (Sani et al., 2018, 2021), but mainly in the motor cortex 
(Disse et al., 2023; Kao et al., 2015, 2017; Orsborn et al., 2014; Shanechi 
et al., 2014; Shenoy et al., 2011, 2013a). LDS reduces the dimensionality 
of the data by learning a set of model parameters using 
expectation-maximization likelihood to identify a set of low dimension 
latent variables (LV) that capture the dynamics of the system such that 
the dynamics of the neural activity at the current time can be predicted 
from the dynamics at the prior time (Buesing et al., 2012). LDS models 
have proven to be effective in characterizing the behavior of neural 
networks and predicting the response of neurons to external stimuli. In 
particular, it allows us to leverage the high temporal resolution of iEEG 
recordings to better understand the neural system dynamics.

Similar to PCA analysis above, the appropriate dimensionality of the 
dynamical system model (number of LVs) was determined empirically 
by learning new model parameters for a range of dimensions (1− 15) and 
examining the predictability of the neural dynamics. The dimension of 
the system was determined by the dimension that did not further 
improve the predictability of the neural dynamics. The dimensionality 
value ranged from 5 to 12 across subjects. Each dimension of the LDS 
model defines a latent variable that describes how the dynamics unfold 
and these LVs were exploited to further probe the underlying dynamics 
of choice processing.

2.6.2. Classifiers
Two different classification techniques were employed to decode 

trial-by-trial subject choices from the neural data prior to button press 
(t = 0): a simple Euclidean Distance (ED) classifier and a Dynamic Time 
Warping (DTW) approach. ED is computationally efficient and shown to 
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Fig. 2. Feature engineering and model development. A. Principal components analysis was used to reduce the dimension of the data and identify features that 
conveyed the most information about choice selection. B. The first PC from each region for each frequency band was used to assess the optimal window size and most 
relevant frequency for decoding choice. C. The selected features were used to compare and contrast four linear models: PCA followed by a simple Euclidean distance 
(ED) classifier or a dynamic time warped (DTW) classifier and Linear Dynamical Systems model followed by the two classifiers.
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be as effective as linear discriminate analysis (LDA) at classifying neural 
activity in response to different events (Foffani and Moxon, 2004). 
Briefly, we created separate neural trajectory templates for safe bets and 
gambles by averaging the reduced-dimensional neural features (see re
sults) across trials, on a per subject basis, leaving out a single test trial. 
The test trial was left out from both the dimensionality reduction step 
and this averaging procedure. After the templates were calculated, the 
overall Euclidean distance (sum of the square differences for each bin 
(time) and each PC or LV dimension), between this trial and the average 
safe bet/gamble templates was calculated with that trial left out. The 
predicted choice was then assigned to the closest template in Euclidean 
space. If the predicted choice matched the true, behaviorally expressed 
choice (either safe bet or gamble), the trial was correctly classified. This 
procedure was repeated for all trials in our sample. Decoding accuracy, 
or performance, of the model was defined as the percentage of correctly 
classified trials, calculated on a subject-by-subject basis using balanced 
accuracy by calculating performance separately for each class (gamble 
and safe bet) and then averaging them.

While an efficient classification method, the ED classifier’s fixed 
template matching and temporal comparison may not be the best 
approach for decoding complex neural processes. We attempted to 
improve on the ED classifier by using dynamic time-warping (DTW), a 
distance metric that is capable of accounting for trial-by-trial variation 
in time of neural activation through flexible stretching or shrinking of 
the time dimension. Briefly, DTW seeks to minimize differences between 
two temporal sequences (in this case, the individual trial and each of the 
two templates) while allowing some flexibility in the matching. Specif
ically, instead of matching point-by-point, temporal warping that re
spects the sequence of points in each time series is allowed. DTW does 
this by using dynamic programming to calculate whether one or neither 
of the time series should be stretched in order to minimize the Euclidean 
distance between the two time series. We used the Matlab imple
mentation of dynamic time warping (dtw). We hypothesized this addi
tional temporal flexibility would result in classification improvement if 
the timing of neural activity supporting subject choices varies from trial 
to trial, but the underlying computations are the same. In brief, similar 
to the approach for Euclidean distance classifier, we leave out one trial 
and generate the template for safe and gamble trials by averaging over 
the trials. We then allow DTW to quantify the distance between the 
single and each of the templates separately, except here, we allow for 
time warping. The warped single trial is then assigned the class of the 
warped template that it is closest to. If the classification matches the 
participants choice on that trial then the trial is successfully classified. 
For DTW we used the same leave-one-out procedure with balanced ac
curacy as the ED classifier with the average for both safe and gamble 
trials warped separately with each single trial to identify the best match.

To identify bias in the neural data that may account for performance 
above the expected 50 % chance performance, we randomly swapped 
the labels (gamble or safe bet) for each trial and assessed bootstrap 
performance. The distribution of performance provides an empirical 
assessment of chance performance for each subject. This is especially 
important here because in this task, subjects are more likely to select a 
gamble than a safe bet which could bias classifier performance. The 
bootstrap performance across subjects was almost exactly 50 %, as ex
pected (50.1 ± 0.002 %).

2.7. Contribution of brain areas/subcircuits to decoding accuracy

To examine the contribution of individual brain areas and subcircuits 
to decoding, the performance of the model (e.g. decoding accuracy) was 
calculated after progressively adding individual regions/subcircuits. We 
started by calculating performance using only the region with the worst 
individual classifier performance and iteratively added regions in order 
of increasing performance until all regions were included, separately for 
each subject. Because a single region might not have a significant impact 
on choice outcome, we also examined the contribution of subcircuits, by 

the same analysis using subcircuits (prefrontal: orbital frontal cortex, 
lateral prefrontal cortex and cingulate cortex), frontoparietal: precentral 
gyrus, post central gyrus and parietal cortex, and limbic: amygdala, 
hippocampus and insula) previously defined (Overton et al., 2025) 
instead of regions.

2.8. Latent variable trajectories and subspaces

We examined the latent variables (LVs) from the LDS model in order 
to probe the underlying dynamics of the neural activity. For demon
stration purposes (refer to Fig. 5), three of seven LVs from one subject 
that carried the most amount of information about choice were selected 
(refer to results). The selected LVs for gamble and safe bet trials were 
averaged separately and plotted against time and in 3D LV space. To 
confirm our observation that neural trajectories for safe and gamble 
trials converged to separate subspaces, we applied two approaches 
across all subjects.

First, the Lyapunov exponents for safe and gamble trials were esti
mated. The Lyapunov exponent measures the rate at which two similar, 
multi-dimensional time series diverge from each other as time pro
gresses (Pesin, 1977) with positive values indicating that the trajectories 
are getting farther apart over time, e.g. more chaotic, and negative 
values indicating the trajectories are getting closer together over time, 
or converging, potentially towards an attractor. For each of the 7-dimen
sional trajectories, for each trial, we calculated the rate of divergence of 
the LV between trials within trial type to estimate the Lyapunov expo
nent over time separately for each subject. The temporal evolution of the 
exponents was averaged across subjects to evaluate whether, on average 
across subjects, the Lyapunov exponent declined towards negative 
values, indicating an attractor-like subspace.

Second, we examined how the trajectories for individual trials 
diverged from each other as the time of choice selection neared, sepa
rately for safe and gamble trial. The Matlab implementation of convex 
hull was used (convhull) to quantify the subspaces defined by the safe or 
gamble trajectories. At 100 ms intervals prior to choice, the LV data 
points from all of the safe or gamble trials separately were used to 
generate a safe hull and a gamble hull. Then the percentage of data 
points, separately for each trial, that were contained in both hulls was 
calculated to assess the overlap.

3. Results

Twenty medication refractory epilepsy subjects whose neural activ
ity has previously been studied were included in this analysis (Overton 
et al., 2022; Saez et al., 2018). Local field potential data were recorded 
postoperatively from intracranial electroencephalographic (iEEG) elec
trodes while subjects played a gambling task17, during their stay at the 
epilepsy monitoring unit. For each trial, subjects could choose between a 
safe prize or a risky gamble with varying win probabilities (Saez et al., 
2018). As expected, subjects gambled more often in trials with higher 
win probability, to maximize reward (Doll et al., 2012; Niv, 2009). LFPs 
from all electrodes were transformed into the magnitude of the power 
for 6 frequency bands (see Methods) and changes in power with time 
prior to choice were used to understand how these features of the data 
contributed to information about the subject’s choice. LFPs were 
recorded from several brain regions frequently targeted for clinical 
monitoring in patients, including orbitofrontal, lateral prefrontal, 
cingulate and parietal cortices, pre- and postcentral gyri, hippocampus 
and amygdala.

3.1. Covariance structure reveals role of high frequency activity for 
encoding choice

To assess the role of oscillatory activity, PCA was performed on the 
data from electrodes within a region separately for each power band, 
separately for each region. The first PC carried the majority of the 
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variance (>50 %) for all regions for each frequency band, suggesting a 
low dimensional system was a good representation (Supplemental Data 
Fig. 1). In fact, more than 90 % of the variance could be captured by less 
than 5 PCs (Supplemental Data Fig. 1) suggesting that, within region, 
most of the variance is linear. Upon visual examination, the first PC was 
a good representation of the average power in each region for each 
frequency band.

To assess the dimensionality of the system across regions, PCA was 
repeated using all the electrodes separately for each frequency bands. 
More than 80 % of the variance was explained by 7 PCs across all fre
quency bands (Fig. 3A). To identify which frequency bands conveyed 
the most information about choice, a simple Euclidean distance classifier 
(ED) was used to access when the information was represented (Fig. 3B), 
using a leave-one-out validation strategy and balanced accuracy. As 

Fig. 3. Covariance structure of power changes prior to choice reveals neural features that encode choice. A. The variance within each region for each frequency band 
is captured by the first 7 principal components, as denoted by the dotted black line. B. HFA activity including activity in both low (30–70 Hz) and high (>70 Hz) 
gamma power band, provides most of the information about the subject’s choice in the second before choice selection.
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expected (Saez et al., 2018), both low and high gamma activity sepa
rately conveyed significant amounts of information (>55 % perfor
mance) with data from all of the other frequency bands only slightly 
better than chance (bootstrapped random performance 50.1 
± 0.002 %). Interestingly, the low gamma band activity peaked imme
diately prior to choice and increasing the window actually disrupted this 
information. The high gamma activity, on the other hand, contained the 
most information about choice, peaking when a 1 s window was used, 
suggesting that information about choice accumulated during the trial 
since the average duration was greater than 1.5 s (average reaction time 
1.52 ± average std dev 5.88 s). Thus, in subsequent analyses using PCA, 
both low and high gamma band activity were included, reducing the 
number of features for each subject from the varying number of 

electrodes per region by six frequency bands to 7 PCs.
This simple ED classifier, using 7 PCs derived from high frequency 

activity (HFA: both high and low gamma) had an average performance 
of 59.6 ± 7.6 % with performance ranging from just above chance 
(40.6 %) to just over 70 % (70.8 %). Given the variability in the dura
tion of each trial, we suspected that while the underlying covariance 
structure might be the same, the neural computations performed during 
short duration trials would occur more quickly while for longer duration 
trials, the computation would evolve more slowly. To test this, we 
compared this ED classifier with one that utilized dynamic time warping 
(see Methods). DTW had a modest yet significant improvement in per
formance (62.5 ± 6.36 %) over the strict average response of the ED 
classifier (p < 0.05, Student’s t-test one-sided, paired), suggesting some 

Fig. 4. Linear dynamic system modeling. A. The LDS-based models outperformed the PCA-based models regardless of whether the simple Euclidean Distance 
classifier (ED) or the dynamic time warping (DTW) classifier was used. When the best performance for each subject was selected from each of the model, there was no 
difference between LDS-DTW and best performance suggesting that LDS-DTW will work as the best model for most subjects. B. Model performance fell to chance 
when no real option was offered (i.e. win probability equal to 0 or 100, denoted by red circles). However, when a choice is offered, model performance is the same 
regardless of the win probability. C. Accuracy of the model increases linearly as the number of regions included increase. D. Further, dropping any subcircuit from the 
model does not impact accuracy. Comparisons were made using one-way ANOVA with Tukey post-hoc when appropriate. *p < 0.05, ** p < .01, ****p < .0001.
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trial-to-trial variability in the speed at which the computation was 
performed.

3.2. Neural population dynamics exhibit a low-dimensional structure that 
discriminates choice

LDS characterizes ongoing neural dynamics by identifying the un
derlying latent variables (LVs) that describe how the dynamics at the 
current moment in time produce the dynamics at the next moment in 
time (see Methods). These LVs capture the linear component of these 
neural dynamics. We constructed these 7 LVs (see Methods) for each 
trial in the 1 s before choice and repeated the ED and DTW classification, 
again using a leave-one-out validation strategy and balanced accuracy.

LDS outperformed PCA regardless of the classifier (ANOVA F 
(3,3734)= 4.17; p < 0.005; Fig. 4A). The optimal decoding strategy, 
LDS followed by DTW, accurately classified choice 74.3 ± 3.4 % across 
all subjects (Table 2) and its performance was close to the maximal or 
best performance for all subjects (Fig. 4A “Best”, 74.6 % ± 3.2 %). 
Therefore, a low dimensional, linear dynamical model followed by a 
classifier that accounted for variation in temporal dynamics across trials 
was the best strategy for choice decoding.

Importantly, the LDS+DTW model achieved above-chance decoding 
in all subjects, with a minimum decoding accuracy of 65.7 %, indicating 
that it was robust to the variation in number of electrodes and 
anatomical localization across subjects (refer to Table 1). Decoding ac
curacy was as high as 79.7 % for one subject, p06 (Table 2). There were 
no differences between decoding performance between safe and gamble 
trials (paired t-test, t(19) = 0.6152, p > .05). Importantly, model per
formance depended on the win probability of the gamble trials, with the 
model performance falling to chance levels when there was no risk 
associated with the choice (i.e. win probability either 0 % or 100 %). In 
contrast, model performance was similar for all risky choices (win 
probability between 10 % and 90 %; Fig. 4B. Furthermore, even when 
the choice was straight-forward (win probabilities of 10 %, 20 %, 80 % 
or 90 %), information about the subject’s choice selection was repre
sented by the neural data as well as the choice on more difficult trials 
(30 %- 70 % win probability). These differences in decoding accuracy 

could not be accounted for by differences in reaction time or gamma 
power (t-test, Bonferroni corrected p > 0.025) between trials with no 
risk and trials with varying degrees of risk. Therefore, we excluded trials 
with no uncertainty in the outcome (gamble win probability = 0 % or 
100 %) from model results.

These results provided confidence in our model to further assess the 
relative contribution of individual brain areas to classifying choice. 
Model training and classification was performed as individual regions 
were iteratively added to the decoding model starting with the least 
informative region (Fig. 4C). For individual regions, the marginal in
crease for each region added suggests that within subject, no particular 
region conveyed a majority of the information (ANOVA F(1.889, 
35.89)= 25.44). To account for the possibility that known subcircuits 
that these regions are a part of ((Overton et al., 2025) and see methods) 
convey significant information that is not observable by looking at each 
region separately, we examined the information conveyed by sub
circuits. Similar to the single region analysis, performance was not 
dependent on whether any specific subcircuit was included in the model 
(Fig. 4D). These results further our understanding of the distributed 
nature of the encoding of choice demonstrating that although specific 
brain regions may contain specific information about choice-related 
variables including value (Rich and Wallis, 2016) win-probability 
(Hampton et al., 2007) and risk (Schultz et al., 2008), information 
about the final choice selection is shared among broad regions of the 
brain.

3.3. Latent variables reveal sub-second neural dynamics underlying 
choice

To gain further insight into the neural computations during delib
eration prior to choice selection, the LVs for each trial were averaged 
separately for gamble and safe bet trials. Because some LVs may not 
reflect choice-related activity, for visualization purposes, we selected 
the three LVs whose representations during gamble trials were most 
different from safe bet trials, as assessed by their Euclidean distance, 
separately for each subject. Each of these LVs capture different compo
nents of the neural dynamics underlying choices. They separated 
repeatedly during the deliberation phase, albeit with different temporal 
dynamics, especially within 500 ms of choice (Fig. 5A and Supplemental 
Figure 2). To gain an understanding of these temporal dynamics during 
deliberation and their relationship to behavior, we examined the 3- 
dimensional LV projections for safe bet and risky gamble choice trials 
as they unfolded in time within the state space (Fig. 5B and Supple
mental Figure 3). First, we observed that the neural trajectories occupy a 
limited portion of the state space that captures all the data points prior to 
choice. Additionally, early in the deliberation period (-1 s to − 500 ms 
prior to choice), safe bet and gamble trajectories overlapped as the 
single trial trajectories moved back and forth from one end of the state 
space to the other (Fig. 5B top). As the decision point for choice 
approached (500–0 ms pre-choice), safe bet and gamble LV trajectories 
diverged into non-overlapping subspace, suggesting a bistable system 
and the possible existence of separate attractors for gamble and safe bets 
(Fig. 5B bottom and Supplemental Data Movie 1).

Supplementary material related to this article can be found online at 
doi:10.1016/j.pneurobio.2025.102776.

To confirm our observation that neural trajectories for safe and 
gamble trials have similar dynamics and converged to separate sub
spaces, we applied two approaches across all subjects (see Methods 
Section 2.8). First, to assess the generalizability of this effect, we esti
mated and compared Lyapunov exponents separately for safe and 
gamble bets using all 7 LVs for each subject. Lyapunov exponents 
represent whether a system is chaotic or converging to some stable or 
dissipative subsystem over time. Specifically, Lyapunov exponents 
measure the rate at which two initially similar, multi-dimensional tra
jectories diverge from each other as time progresses35, with positive 
values indicating that the trajectories are getting farther apart over time 

Table 2 
Decoder performance per patient.

Patient LDS+DTW LDS + ED PCA+DTW PCA + ED Best

p01 65.7 % 68.1 % 63.8 % 60.3 % 68.1 %
p02 76.5 % 61.9 % 57.9 % 67.4 % 76.5 %
p03 72.5 % 62.9 % 61.9 % 70.8 % 72.5 %
p04 76.1 % 56.9 % 63.6 % 57.5 % 76.1 %
p05 77.1 % 62.8 % 74.0 % 69.3 % 77.1 %
p06 79.7 % 77.7 % 77.1 % 68.8 % 79.7 %
p07 76.7 % 64.8 % 54.0 % 55.9 % 76.7 %
p08 71.9 % 65.7 % 67.3 % 61.8 % 71.9 %
p09 77.4 % 78.5 % 68.5 % 58.0 % 78.5 %
p10 79.8 % 71.3 % 60.7 % 53.5 % 79.8 %
p11 71.5 % 66.1 % 62.8 % 65.9 % 71.5 %
p12 75.2 % 73.4 % 56.9 % 64.1 % 75.2 %
p13 73.6 % 72.1 % 59.0 % 50.6 % 73.6 %
p14 70.5 % 63.1 % 61.8 % 57.4 % 70.5 %
p15 76.6 % 78.3 % 54.7 % 54.2 % 78.3 %
p16 72.3 % 71.1 % 64.1 % 65.2 % 72.3 %
p17 76.1 % 75.3 % 55.8 % 40.5 % 76.1 %
p18 72.4 % 70.1 % 63.6 % 60.1 % 72.4 %
p19 73.1 % 71.1 % 70.2 % 63.8 % 73.1 %
p20 70.8 % 71.5 % 52.9 % 47.7 % 71.5 %
Mean 74.3 % 69.1 % 62.5 % 59.6 % 74.6 %
SD 3.36 % 5.86 % 6.36 % 7.60 % 3.19 %

Table 2: Performance (% accurately classified trials) for each model for each 
patient. Trials with no uncertainty (i.e., gamble win probabilities of 0 % and 
100 %) are excluded. Data Table corresponds to Fig. 4a. Abbreviations: linear 
dynamical systems (LDS), Principal Components analysis (PCA), Euclidean dis
tance classifier (ED), dynamic time warping classifier (DTW). Best is simply the 
best performance of the 4 models.
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and negative values indicating they are converging. For both gamble and 
safe bets trials, the Lyapunov exponents were calculated to measure the 
temporal rate of divergence separately for each subject and the result 
was averaged to examine temporal dynamics across subjects. On 
average, we observed that the value of the exponents early before choice 
(− 1.0 s to − 0.5 s) was different from immediately before choice (− 0.5 
to 0.0 s; t(38) = 7.197, p < .0001). Moreover, on average, the expo
nents for both safe and gamble trials transitioned from positive to 
negative by 300 ms prior to choice, suggesting that the trajectories, 
across subjects, did in fact converge towards subspaces for gamble and 
safe bets as subjects neared a decision (Fig. 5C). Thus, single trial tra
jectories first repeatedly visit the subspace for gamble and then safe bet, 
suggestive of deliberation. Then, the trajectory moves towards and 
spends more time in one or the other subspace, providing a network 
level view of how the brain can keep track of the accumulation of evi
dence for one or the other choice.

Second, to examine how these subspaces capture the neural dy
namics for safe versus gamble trials evolve over time, we built convex 
hulls around the data points for safe and gamble bets separately at 
100 ms intervals prior to choice and assessed the percentage of data 
points that were contained in both hulls (% overlap, Fig. 5D). Consistent 
with the Lyapunov assessment, as we approached choice from 1 s prior, 
the percentage of data points with overlap decreased. The reduction in 
overlap accelerated as choice was approached (log fit r2 = 0.98) sug
gesting a rapid transition to the separate subspaces as the decision was 
made. For both approaches (Lyapunov exponent and convex hull) the 
transition to separate subspace occurs after 500 ms prior to choice, 
supporting our 3D visualization (see Supplemental Data Fig. 2). Taken 
together, this network level view shows single trial trajectories repeat
edly transversing subspaces to encode each choice followed by 

progressive separation to the subspace representing the preferred choice 
until sufficient information is accumulated for the participant to make a 
selection.

4. Discussion

Economic-based decision-making depends on coordinated activity 
across multiple brain areas, but how this distributed neural activity 
encodes information about choice in the human is not well understood. 
Our results provide several novel insights into the neural computations 
underlying human decision-making. First, for each frequency band, over 
half of the covariance of the power modulations can be represented by a 
single dimension supporting recent work that linear models capture a 
significant amount of neural activity (Gallego et al., 2020; Nozari et al., 
2020, 2024). Second, the activity in HFA carries most of the informa
tion, which is consistent with prior studies showing that HFA is a good 
approximation of the underlying single neuron activity (Buzsáki et al., 
2012; Ray et al., 2008; Ray and Maunsell, 2011) which often encode 
information about choice (Anders et al., 2017; Azab and Hayden, 2017, 
2018; Blanchard and Hayden, 2014; Enel et al., 2020; Hayden et al., 
2011; Pearson et al., 2009; Wallis, 2012, 2018; Wallis and Miller, 2003). 
Importantly, our decoding model fails when there is no risk associated 
with the gamble option (win probability of 0 or 100) but does similarly 
well in uncertain trials regardless of the win probability (10–90 %). 
Therefore, the computations made during risky decisions are substan
tively different from those in non-risky decisions, potentially reflecting 
the fact that certain win/loss trials can be conceptualized as single op
tion trials rather than value comparison trials.

Our results also show that allowing warping of the time prior to 
choice improves classification performance. This suggests that the shape 

Fig. 5. Linear dynamic systems modeling provides insight into decision-making behavior. A. Latent variables (LV) plotted as function of time before choice. The 3 
LVs plotted here have the best individual classification performance of the 7 possible LVs per subject and show increased separate between gamble and safe choices at 
approximately 500 ms prior to choice as denoted by the dotted black line. B. The same 3` LVs plotted for one subject with the best overall performance. Top plot 
shows the time between 1 s and 0.5 s prior to choice. Bottom shows the 0.5 s before choice. C. For both safe (top) and gamble (bottom) trials, the Lyapunov exponent 
is positive early during deliberation but then becomes negative approximately 0.5 s before button press (time=0) denoted by dotted black line. D. The overlap 
between convex hulls over the latent variables of the safe trials and gamble trials generated at 100 ms intervals prior to choice decreases as the time of choice 
approaches and transitions from a linear change to a supra-linear change at 500 ms prior to choice denoted by dotted black line.
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trial-by-trial neural trajectories that are derived from the latent vari
ables are similar, regardless of the duration of the trial. In addition, 
results show that LDS, which models the neural dynamics, outperforms 
PCA, which models the covariance. The neural dynamic of HFA, as noted 
above, reflect the underlying neuronal activity. These latent variables 
thus capture an emergent property of the neural activity that is shared 
across brain regions. Current recording technologies and analytical 
techniques have allowed for a deeper comprehension of the computa
tions that populations of cortical neurons employ together as an 
ensemble (Gallego et al., 2017), during motor planning and execution 
(Churchland et al., 2007, 2010a; Michaels et al., 2016; Shenoy et al., 
2013b), as well as during locomotion (DiGiovanna et al., 2016; Disse 
et al., 2023; Melbaum et al., 2022; Mimica et al., 2018) (Disse et al., 
2023). A significant result of this work has suggested that characterizing 
the dynamical response of a neural population, rather than simply 
assessing covariance between neurons, can allow for better predictions 
of neural activity and, importantly, provide insight into the computa
tions the brain performs during motor tasks. Therefore, to understand 
the computations undertaken by the cortex during postural control, it is 
necessary to characterize population dynamics.

Finally, these results provide insight into the likely importance of 
non-linear information in the data. The fact that the LVs from LDS 
converge to their own unique subspaces prior to choice, is highly sug
gestive of nonlinear activity since a single linear system cannot model 
two attractors. Moreover, the fact that choice for trials with win prob
abilities of 0 or 1 could not be decoded also supports that some of the 
information is likely encoded in a nonlinear representation of the data. 
Therefore, while noted above, a significant amount of information is 
carried by the linear model, nonlinear models are likely to capture more, 
and will, therefore, likely have better single trial decoding performance, 
as has been note for motor system (Abbaspourazad et al., 2024; Chapin 
et al., 1999; Christen et al., 2004; Song and Berger, 2010; Yu et al., 
2008). Together, these data provide important insights into the com
putations the brain performs during decision-making.

Our approach relied strictly on linear dimension reduction tech
niques and linear classifiers. To date, almost all studies of the neural 
underpinnings of cognitive process use linear correlations and linear 
statistics to assess average differences in experimental classes, and they 
have provided important insights. Linear classifiers have been used in 
the past to understand neural computations associated with decision- 
making, including linear discriminant analysis (Avvaru et al., 2021; 
Basu et al., 2021; Provenza et al., 2019; Rich and Wallis, 2016; 
Rossi-Pool et al., 2017; Wallis, 2018). This is an initial approximation, 
since neural computations have a non-linear component. Nonetheless, 
linear approaches have three important advantages. First their impact 
on the data is easily interpretable and can be more easily tied back to the 
underlying neural activity. The fact that the linear component of the 
information was able to correctly classify a high proportion of single 
trials correctly suggests the models captured a significant amount of 
information about choice. Second, some of our principal results (low 
frequency activity across a single brain region can be captured by a 
one-dimensional model or high frequency activity carries most of the 
information) are strongly supported by earlier work in animal models, 
lending further confidence in the value of the model. Finally, our 
long-term goal is to develop closed-loop neuromodulation systems to aid 
those with pathological decision-making disorders (e.g. depression or 
addiction). A linear model can guarantee robustness and safety (Tóth, 
2010). Nonetheless, more work needs to be done to understand what 
information is missing, preventing better performance, and non-linear 
models will likely shed insight into this in future studies. Combined 
with the ability to directly and precisely modulate brain activity using 
direct electrical stimulation71–78, these results open the door to the 
development of cognitive prostheses to modulate abstract brain states in 
the human brain to reduce the likelihood of pathological brain states 
(Saez and Gu, 2023).

Despite the fact that we restricted our analysis to low dimensional, 

linear models, their performance at correctly classifying the subject’s 
choice, or decoding accuracy, was high, especially considering our 
model produces trial-by-trial decoding. Therefore, regardless of the 
brain’s non-linear, higher order computations, substantial information 
is stored in a low dimensional linear manifold. The model performed 
significantly above chance in all subjects in our sample, despite differ
ences in electrode location. Our decoding accuracy was significantly 
higher than comparable non-invasive decoding approaches. For 
example, Vickery et al. (Vickery et al., 2011) used MVPA whole-brain 
approaches to decode both outcome (win/loss) information and choice 
(stay/shift) from distributed brain activity, but only achieved a mean 
accuracy of 52.6 % for binary choices. A similar study using voxel-based 
techniques, found decoding accuracies as high as 64 % in ACC 
(Hampton et al., 2007). A recent (2018) review reported that typical 
fMRI MVPA-based decoding accuracies for reward-related signals are a 
few percent points above chance (Kahnt, 2018). Our robust decoding 
performance is consistent with previous studies showing successful 
decoding of mental states from iEEG data (Kirkby et al., 2018; Sani et al., 
2018; Thiery et al., 2020) and suggests that iEEG data provides a more 
sensitive measure of the information encoded about choice than 
non-invasive approaches. Therefore, despite the need to learn the spe
cific parameters of the model for each subject, consistent encoding of 
choice information can be achieved by a low dimensional, linear model 
and supports their development to gain insight into human behavior.

4.1. Latent variables reveal neural computations underlying choice

Four results combine to provide insight into the neural computations 
underlying choice in this task. First, the model could not decode deter
ministic ‘catch’ trials (win probability equal to 0 % or 100 %) where the 
participant still needed to make a selection, but the risk was zero and, 
therefore, not a factor for choice selection. This suggests that the model 
identified neural computations that evaluated the risk underlying the 
choice selection. In fact, prior studies have shown significantly different 
behavioral responses to decision making when risk is present (Provenza 
et al., 2019; Schiebener et al., 2015). Moreover, certain brain regions, 
such as the parietal cortex, dorsolateral prefrontal cortex and anterior 
insula show changes in activation depending on whether a choice in
volves risk or not (Mohr et al., 2010; Wu et al., 2021). Our results clarify 
that not only are there behavioral differences but these changes in 
activation reflect fundamental differences in the neural computations 
when risk is involved with a decision.

Second, in contrast, performance across a broad range of win prob
abilities (10–90 %) was similar, suggesting that the neural computations 
for easier choices are similar to those for more difficult choices. These 
likely involve calculating and comparing the expected utility of both 
options (safe bet and gamble) to guide choices. Third, the time warping 
algorithm (DTW) improved decoding performance, suggesting that 
decision-encoding had consistent yet time-varying trial-by-trial tempo
ral dynamics that impact the ability of models to decode choice. Finally, 
a small number of latent variables captured broadly distributed, high 
dimensional neural activity, suggesting significant redundancy in the 
data. In fact, despite differences in anatomical coverage and surgical 
strategy from subject to subject, these models robustly decoded single 
trial activity to predict choice in every participant in the dataset. This 
redundancy is likely a necessary function of the system to bring together 
information from different types of calculations performed in different 
brain regions (e.g. expected value in OFC (Rich and Wallis, 2017)) in 
order for the subject to make the final selection, supporting prior studies 
that that specific information about regional computations is shared 
broadly across the brain (Overton et al., 2025).

Together, these results support two important hypotheses underlying 
choice selection in this type of task. First, while it is understood that 
within OFC, for example, neural activity scales with risk, the neural 
computations underlying risky choices as identified by the latent vari
ables, are qualitatively similar, regardless of the amount of risk. A 
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subject may be able to perform a low-risk trial (very high or very low win 
probability trials) faster, but the neural computations are the same and, 
importantly, provide the same information as more difficult trials with 
moderate win probabilities. Second, the neural information about risk 
that drives the final choice in this type of task is shared widely across the 
brain despite the fact that individual brain regions perform different 
calculations to assess different components of that overall decision (e.g. 
OFC = value). To confirm these hypotheses requires additional study 
that will likely include more complex tasks and non-linear decoding 
models. Nonetheless, the work presented here clarifies common com
putations underlying risky decision-making.

4.2. Attractor-like dynamics of power modulations underly deliberation

In latent space, the movement of the neural trajectories across the 
entire state space during deliberation suggests that the subject alternates 
between considering one choice and then the other. This intuitively 
makes sense and is also consistent with linear discriminant analysis 
approaches to decoding choice during deliberation in animal studies 
(Rich and Wallis, 2017), demonstrating an important role for sub-second 
dynamics underlying choices that are suggestive of a dissipative system. 
This is the first view of such latent activity in humans. Importantly, both 
the changes in the Lyapunov exponent and the changes in overlap be
tween the subspaces during deliberation were the same, suggesting that 
despite the fact that they converge to different subspaces, the time ho
rizon of this convergence is similar for safe and gamble bets. Moreover, 
the fact that the neural trajectories were relatively chaotic more than 
300 ms before choice but then accelerated to separate subspaces as 
choice selection neared suggests that once enough information to make 
the choice was collected, neural activity moves to a smaller space 
reminiscent of the coalescing of neural activity identified prior to 
movement in a delayed go-cue task (Churchland et al., 2010b). In that 
study, the data were recorded from pre-motor cortex and the final 
subspace was the same regardless of the choice the animal ultimately 
made. Here, we recorded across broad regions of the brain, including 
those that are part of a prefrontal (OFC/LPFC/CC), limbic (Amy/H
C/Ins) and frontoparietal (PrG/PoG/PC) subcircuits and identified 
different subspaces for each option.

Further, the latent variables that best discriminated between gamble 
and safe bets suggest a view of deliberation wherein the neural repre
sentations underlying each option define separate attractors for that 
option, or a bistable system in the case of two options. During deliber
ation, this low dimensional representation of the neural dynamics tra
versed the state space multiple times. In fact, rapid transitions between 
the subspaces were observed for multiple trajectories separately, albeit 
with different dynamics, demonstrating that both safe bet and gamble 
subspaces were visited multiple times before a choice was made. This is 
similar to activity patterns observed in multi-electrode OFC recordings 
during deliberation in non-human primates that reflect the fast alter
native evaluation of binary choices as in our task (Peixoto et al., 2021; 
Rich and Wallis, 2016).

Yet, as choice selection approached, the neural trajectories pro
gressively converged to one of the subspaces. Importantly, this pro
gressive separation of the neural dynamics required a higher 
dimensional space (multiple LVs) to observe. Moreover, this progressive 
nature suggests that the neural computations underlying deliberation 
evolve until a decision-threshold is reached, similar to non-human pri
mate studies of evidence accumulation (Ditterich, 2006; Mazurek et al., 
2003). Therefore, our results support work from animal studies about 
accumulation of knowledge on the one hand and consideration of op
tions on the other and clarifies that during the deliberative process both 
rapid transitions considering each option and accumulation of knowl
edge about the ultimate choice are occurring simultaneously. Further, 
these latent dynamics suggest that these two processes can be repre
sented by the same neural dynamics. This suggests that the neural 
computations underlying deliberation related to considering options 

and knowledge accumulation have similar underlying structure, but 
additional work would be needed to draw a firm conclusion. However, 
more work needs to be done to assign a causal relationship between 
these network level phenomena and behavior. Rather, we consider this 
state-space representation and the behavior of these neural trajectories 
as a view of the system that provides insight into how brain-wide net
works gather information from populations of single neurons perform
ing the specific computation. A majority of studies examining 
reward-based choice patterns use binary choices; our results open the 
door to the study of multi-option processes, since they predict that 
multiple subspaces would appear in the case of multi-option choices.

In summary, invasive iEEG recordings with high anatomical speci
ficity, temporal resolution, and neurobiological detail, combined with 
economic probes of decision-making, and machine learning approaches 
provide insight into neural computations underlying decision-making 
behavior. Specifically, (1) information about decision-making is 
broadly distributed and carried by low dimensional, linear latent vari
ables comprised of high frequency activity (>30 Hz), (2) computations 
underlying easy versus more difficult choices are similar, as long as some 
uncertainty exists, (3) during deliberation these LVs move through large 
regions of the manifold, repeatedly visiting smaller subspaces that 
represent the choice options, and (4) the ability of the neural trajectories 
to separate into distinct subspaces prior to choice improved behavioral 
outcome and likely reflects the progression towards a decision 
threshold. Therefore, the models presented here suggest computations 
underlying single trial behavior involves rapid switching between op
tions and knowledge accumulation toward a final decision are repre
sented by similar neural dynamics.
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