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The development of aperiodic neural activity 
in the human brain

 
 

The neurophysiological mechanisms supporting brain maturation are 
fundamental to attention and memory capacity across the lifespan. Human 
brain regions develop at different rates, with many regions developing 
into the third and fourth decades of life. Here, in this preregistered study 
(https://osf.io/gsru7), we analysed intracranial electroencephalography 
recordings from widespread brain regions in a large developmental cohort. 
Using task-based (that is, attention to to-be-remembered visual stimuli) and 
task-free (resting-state) data from 101 children and adults (5.93–54.00 years, 
63 males; n electrodes = 5,691), we mapped aperiodic (1/ƒ-like) activity,  
a proxy of neural noise, where steeper slopes indicate less noise and flatter 
slopes indicate more noise. We reveal that aperiodic slopes flatten with 
age into young adulthood in both association and sensorimotor cortices, 
challenging models of early sensorimotor development based on brain 
structure. In the prefrontal cortex (PFC), attentional state modulated age 
effects, revealing steeper task-based than task-free slopes in adults and the 
opposite in children, consistent with the development of cognitive control. 
Age-related differences in task-based slopes also explained age-related gains 
in memory performance, linking the development of PFC cognitive control 
to the development of memory. Last, with additional structural imaging 
measures, we reveal that age-related differences in grey matter volume are 
similarly associated with aperiodic slopes in association and sensorimotor 
cortices. Our findings establish developmental trajectories of aperiodic 
activity in localized brain regions and illuminate the development of PFC 
control during adolescence in the development of attention and memory.

Human brain regions develop at different rates, with many regions 
developing into the third and fourth decades of life, followed by grad-
ual declines in volume throughout adulthood1–3. Understanding the 
complexities of human brain development requires a comprehensive 
investigation into the intricate interplay between electrophysiological 
dynamics, brain structure and behaviour across the lifespan. Despite 
the importance of this endeavour to basic and translational neurosci-
ence, research has been limited by a paucity of methods capable of 
studying human brain function with high spatial and temporal preci-
sion and focused on narrow age ranges. Furthermore, non-oscillatory, 

aperiodic activity has yet to be fully characterized from a develop-
mental perspective (cf. refs. 4–7). Consequently, the manifestation of 
age-related differences in aperiodic activity and their relation to brain 
structure and cognition remain unknown.

The aperiodic component of the electrophysiological power spec-
trum, characterized by its spectral slope and offset8,9, is hypothesized 
to reflect neural noise10,11, with a flatter slope and lower offset posited 
to reflect increased excitatory neuronal population spiking12,13. While 
there are several interpretations of the aperiodic signal, it is prob-
ably produced by a variety of biological mechanisms14–16, including 
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maturation33,39–44. iEEG provides rich and novel measures of neuro-
physiology including low-frequency periodic and aperiodic activity, 
and high-frequency broadband activity reflecting neuronal population 
activity45–49. Thus, iEEG enables unique discoveries of the neurophysi-
ological mechanisms of cognitive and brain maturation in humans.

In this preregistered study (https://osf.io/gsru7), we sought to 
define regionally precise, brain-wide developmental trajectories of 
aperiodic activity in task-based and task-free states (Fig. 1a,b). In addi-
tion to mapping aperiodic activity across development, we defined 
the relationship between regionally precise aperiodic activity and 
cortical structure (Fig. 1c). Measures of regional grey matter volume 
(GMV) and electrophysiological activity show substantial overlap in 
relation to cognition, pathology50,51 and age52–55, which suggests that 
they may be jointly explained by shared factors, such as myelination 
and synaptogenesis. Thus, examining structure–function coupling 
can provide context to understand novel electrophysiological find-
ings, such as iEEG measures of aperiodic activity by age, based on 
well-documented age-related variability in regional brain structure1,2,56. 
Based on reports of age-related variability in global scalp EEG-derived 
aperiodic activity5,6,32,57,58 and in brain structure demonstrating that 
sensorimotor regions mature earlier than association regions2,3,59,60, 
we hypothesized the following: (a) in association cortices, the aperi-
odic slope flattens with age into young adulthood; (b) in sensorimotor 
cortices, the aperiodic slope flattens with age into adolescence; (c) 
attentional state (task-based versus task-free) modulates age effects 
observed in (a) and (b); and (d) age-related differences in aperiodic 
activity are modulated by regional GMV.

We first reveal a gradient in aperiodic activity across the brain, 
suggesting less neural noise in inferior lateral posterior regions and 
more neural noise in superior medial frontal regions. We then establish 
developmental trajectories of aperiodic activity, revealing a flattening 
of the slope from childhood to young adulthood in both association 
and sensorimotor cortices, challenging our hypothesis that aperiodic 
activity stabilizes before young adulthood in sensorimotor cortices. 
We further reveal how attentional state modulates age effects in select 
regions including the prefrontal cortex (PFC) and establish predictive 

low-pass filtering property of dendrites17, frequency dependence 
of current propagation in biological tissues18, stochastically driven 
damped oscillators with different relaxation rates19 and/or the balance 
between excitation and inhibition (E/I) in neuronal populations20,21. 
From this perspective, this broad range of biological factors probably 
makes up the aperiodic signal and reflects age-related differences in 
neural ‘noise’.

The balance of optimal levels of neural noise is a fundamental 
property of healthy brain function22. Indeed, optimal levels of neural 
noise are proposed to safeguard against hypersynchronization, with 
imbalances in noise implicated in neurodevelopmental disorders, such 
as schizophrenia and autism23–25, and generalized learning disabilities26. 
Studies using scalp electroencephalography (EEG) during passive (that 
is, task-free) states have consistently demonstrated a flattening of the 
slope and a downward shift in the offset with advancing age throughout 
adulthood8,16,27,28. Such age-related flattening in task-free aperiodic 
activity predicts declines in memory performance16 and alterations in 
stimulus-related neurophysiological responses, such as intertrial alpha 
phase clustering during visual spatial discrimination in the elderly29. 
By contrast, flatter task-based aperiodic slopes are associated with 
enhanced memory and learning in healthy young adults30,31, hinting 
at a nuanced interplay between aperiodic activity, attentional state 
and age. Thus, understanding the development of aperiodic activity 
and its modulation by attentional state, with high spatial precision, is 
necessary to understand brain development and cognitive function 
across the lifespan.

So far, developmental studies of aperiodic activity have relied on 
scalp EEG4–6,32. Yet, scalp EEG is limited in spatial resolution and cannot 
reliably characterize regionally precise neurophysiological activity33–35. 
To overcome these limitations, we analysed rare intracranial EEG (iEEG) 
data from an exceptionally large developmental cohort of neurosur-
gical patients aged 5–54 years undergoing invasive monitoring for 
seizure management. In contrast to non-invasive neuroimaging, iEEG 
provides both spatially localized information and the high tempo-
ral precision needed to examine neurophysiology36–38 and is thus an 
invaluable tool for investigating mechanisms of cognitive and brain 
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Fig. 1 | Design, channel coverage and key variables. a, Intracranial 
neurophysiological activity was recorded using ECoG (middle) and sEEG 
(bottom) during both task-based (top left) and task-free (top right) wake states.  
b, Seizure- and artefact-free intracranial channel placements (n = 5,691) across  
all patients (n = 101) in MNI space. c, A schematic of key dependent and 
independent variables. Top left: iEEG patients (teal; n = 81) show the expected 
developmental trajectory of improved memory recognition from ~5 to 30 years 
of age (one-sided nonlinear regression, P < 0.001) and fall in the range of age-
matched, healthy controls (grey; n = 221). Shading indicates 83% CIs. Top right: 

schematic PSD plot illustrating the periodic (oscillatory) components over and 
above the aperiodic (1/ƒ-like) component in task-free (dashed) and task-based 
(solid) conditions. The offset (that is, y intercept) and slope (exponent) make up 
the aperiodic component when power (y axis) is in log-space. Bottom left: T1 MRI 
(T1-weighted magnetic resonance image) obtained for each patient, parcellation 
of cortical regions based on the DKT atlas, and GMV estimation (adapted from 
ref. 1). Bottom right: age-related differences in global GMV (mm3) in our cohort, 
showing the expected developmental trajectory of decreased GMV from ~5 to 
54 years of age (one-sided linear regression, P < 0.001).
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links between task-based aperiodic activity in the PFC and individual 
memory outcomes. Finally, we uncover novel associations between cor-
tical structure and function, highlighting how aperiodic slopes in both 
association and sensorimotor cortices are modulated by age-related 
variability in GMV. Taken together, we offer critical insights into the 
intricate interplay between aperiodic neural activity, cortical struc-
ture and behaviour from childhood to middle age and illuminate the 
development of PFC control during adolescence in the development 
of attention and memory.

Results
iEEG memory and brain volume measures are generalizable
In total, 101 neurosurgical patients participated (mean age 19.25, 
range 5.93–54.00 years; 63 males). Patients were selected on the basis 
of above-chance behavioural performance on two visual memory 
recognition tasks (mean normalized accuracy 0.54, standard devi-
ation (s.d.) 0.25, range 0.01–1.00; β = 0.54, s.e.m. 0.02, P < 0.001) 
and/or if there was a task-free recording available. Those with major 
lesions, prior surgical resections, noted developmental delays or neu-
ropsychological memory test scores <80 were considered ineligible.  
A nonlinear regression (single spline with two internal knots) of rec-
ognition accuracy by age indicated a positive association (first knot: 
β = 0.90, s.e.m. 0.16, P < 0.001; second knot: β = 0.30, s.e.m. 0.13, 
P = 0.027; R2 = 0.27; Fig. 1c), indicating that iEEG patients exhibit the 
expected developmental trajectory of improved memory from age 5 to 
30 years, consistent with age-matched, healthy controls33,40,61. Analysis 
of global GMV by age indicated a negative association (β = −46.56, 
s.e.m. 9.36, P < 0.001, R2 = .20; Fig. 1c), indicating that, with every 
1-year increase in age, there is a 47-mm3 reduction in GMV. This further 
demonstrates that iEEG patients show the expected developmental 
trajectory of decreased GMV from age 5 to 54 years, consistent with 
well-documented decreases in GMV from childhood through adult-
hood in healthy individuals1,2,56,62. These demonstrations provide 
converging evidence that the results of our iEEG analyses generalize 
to healthy populations41,63.

Aperiodic activity differs by brain region
Before testing hypotheses, we first characterized regional differences 
in aperiodic activity by implementing linear mixed-effects models, 
regressing region onto the aperiodic slope while regressing out atten-
tional state (task-based, task-free) and age, treating participants and 
nested channels as random intercepts41. Regions of interest (ROIs) were 
defined on the basis of the Desikan–Killiany–Tourville (DKT) atlas64. The 
goodness of fit (that is, R2) between task-based (mean (M) = 0.93, s.d. 
0.05) and task-free (M = 0.94, s.d. 0.05) conditions indicated good fits 
(see Supplementary Fig. 15 for the distribution of model fits between 
conditions). We revealed a gradient of steeper slopes in inferior lateral 
posterior regions to flatter slopes in superior medial frontal regions 
(χ2(19) = 1,038.30, P < 0.001; Fig. 2a). These results extend previous 
reports of a posterior-to-anterior gradient in task-free neural noise 
based on functional magnetic resonance imaging (fMRI; that is, Hurst 
exponent65) and the magnetoencephalography aperiodic component66. 
Our data demonstrate that aperiodic activity varies between localized 
brain regions to a higher degree than previously reported.

Second, to characterize relationships between regional GMV and 
aperiodic activity (that is, structure–function coupling), we correlated 
regional aperiodic slopes with regional GMV. We revealed regionally 
specific relationships between aperiodic activity and GMV (Fig. 2b–d). 
We observed a significant positive correlation with slope and GMV in 
the rostral middle frontal gyrus (rMFG; r = 0.27, Padj = 0.038, 95% confi-
dence interval (CI 0.04 to 0.48), and a significant negative correlation 
in the inferior temporal cortex (r = −0.22, Padj = 0.038, 95% CI −0.40 to 
−0.01). These results reveal opposing structure–function coupling 
between localized regions and indicate that there is not a one-to-one 
mapping between GMV and aperiodic activity.

Aperiodic activity stabilizes in young adulthood
Having demonstrated that aperiodic activity differs by brain region, 
we sought to establish developmental trajectories of aperiodic activ-
ity between association and sensorimotor cortices. We first examined 
hypothesis (a), that in association cortices, the aperiodic slope flattens 
with age into young adulthood, and hypothesis (b), that in sensorimo-
tor cortices, the aperiodic slope flattens with age into adolescence (see 
Supplementary Table 1 for a summary of association and sensorimo-
tor regions). We implemented nonlinear mixed-effects regressions, 
modelling aperiodic activity as a function of age (fit with one spline; 
two knots) and cortex type (association, sensorimotor; Supplementary 
Table 1), treating participant and DKT region as random effects on 
the intercept, and channel nested under participant. We revealed a 
significant age × cortex type interaction (β = 0.22 (95% CI 0.14 to 0.30), 
s.e.m. 0.04, P < 0.001; see Supplementary Fig. 1 for model diagnostics), 
demonstrating that the slope flattens with age into young adulthood, 
with the greatest flattening difference in sensorimotor compared with 
association cortices at 30 years of age (β = −0.18, s.e.m. 0.08, P = 0.021; 
Fig. 3). These results support our hypothesis that the aperiodic slope 
flattens with age into young adulthood in association cortices. These 
results are contrary to our hypothesis that aperiodic activity stabilizes 
with age into adolescence in sensorimotor cortices; however, the differ-
ence in flattening suggests dissociable trajectories between association 
and sensorimotor cortices.

Aperiodic activity differs by age and attentional state
We next sought to establish developmental trajectories of aperiodic 
activity within localized brain regions and test hypothesis (c), that age 
effects would differ between attentional states. To identify regional 
age effects in aperiodic activity and whether they differ by attentional 
state, we implemented separate linear mixed-effects models for each 
ROI. Our strategy for each analysis was to fit a model to the aperiodic 
slope and regress the estimates onto age (in years), attentional state 
(task-based, task-free) and the interaction of age and attentional state. 
All models were fit with by-participant and by-task random intercepts, 
with channel nested under participant (see Supplementary Figs. 2 and 
3 for model diagnostics).

We revealed significant age × attentional state interactions in 
the caudal middle frontal gyrus (cMFG; β = −0.003 (95% CI −0.006 
to −0.002), s.e.m. 0.001, Padj = 0.007) and rMFG (β = −0.004 (95% CI 
−0.008 to −0.002), s.e.m. 0.001, Padj = 0.045). In both cMFG and rMFG, 
task-free slopes are steeper than task-based slopes in children, and the 
opposite is observed in adults; the direction of differences reverses 
around age 18–20 years (Fig. 4). If flatter slopes imply greater neural 
noise, and PFC activity reflects cognitive control, then these results are 
consistent with increased cognitive control during task engagement 
in adolescence60,67–69 and mirror the development of domain-general 
cognitive control70. These results also support our hypothesis that 
attentional state modulates age-related flattening of the aperiodic 
slope. For visualizations of the main effects of age and condition on 
the aperiodic slope, see Supplementary Figs. 4 and 5, respectively.

Task-based slopes in association cortices predict memory
Having demonstrated that memory performance improves with age, 
with marked variability among adolescents (Fig. 1c), we examined 
whether age interacts with regionally specific task-based and task-free 
aperiodic slopes, respectively, to predict memory performance. For 
each analysis, we fit a general linear model to recognition accuracy 
and regressed the estimates onto age (in years) and aperiodic slopes 
(task-based or task-free), and the interaction of age and slope. For 
task-based slopes (after accounting for the unique contribution of 
age) we observed an age × slope interaction in the rMFG (β = 0.02 (95% 
CI 0.009 to 0.04), s.e.m. 0.01, Padj = 0.046; R2 = .40; Fig. 5). In the rMFG, 
memory performance increases with age and an age-related flattening 
of the aperiodic slope. Although overall steeper slopes were observed 
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Fig. 2 | Regional differences in the aperiodic slope and correlations with 
GMV. a, Brain-wide standardized means (predicted marginal means) of regional 
aperiodic slopes adjusted across attentional state, age and the random effects 
structures. Warmer colours/higher values indicate steeper slopes. b, Brain-
wide correlations (one-sided, false discovery rate (FDR)-corrected Spearman 
correlations) between regional GMV (mm3) and aperiodic slopes. Warmer 
colours/higher values indicate positive correlations; cooler colours/lower values 
indicate negative correlations. Note that the area corresponding to subcortical 

space is white as no analysis of subcortical GMV was performed. Regions with 
statistically significant correlations (P < 0.05) are indicated by dashed borders. 
c, Scatter plots illustrating relationships between GMV (x axis) and aperiodic 
slopes in regions with statistically significant correlations. Individual data 
points represent single participant data averaged across channels for each 
representative ROI. Shading shows the standard error. d, A ridgeline plot 
illustrating the distribution of aperiodic slopes (x axis; higher values denote a 
steeper slope) by region (y axis) and condition (left: task-free; right: task-based).
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in children, relatively flatter slopes in children and adolescents were 
associated with relatively superior memory. There were no other sig-
nificant main effects of the task-free slope or interactions between 
the task-free slope and age on memory performance (all P > 0.05). For 
visualizations of model diagnostics, see Supplementary Figs. 6 and 7, 
and for main effects of task-based and task-free slopes on memory, see 
Supplementary Figs. 8 and 9, respectively.

Taken together, our results elucidate how age-dependent effects 
on aperiodic slopes in PFC predict individual memory performance. 
These effects were evident exclusively during task-based states, thus 
linking aperiodic activity during attention to to-be-remembered visual 
information to an individual’s memory for that information. From this 
perspective, the aperiodic slope may serve as a key marker of typical 
and atypical memory development.

Brain structure and age interact to predict aperiodic activity
Thus far, we have established that aperiodic slopes in PFC differ by age 
and attentional state and predict age-related variability in memory 
outcomes, whereas slopes in sensorimotor regions do not differ by 
attentional state or predict age-related variability in memory outcomes. 
Last, we focus on structure–function relationships. Before testing 
hypothesis (d), that age-related differences in aperiodic activity are 
modulated by regional GMV, we sought to replicate previous reports 
of age-related reductions in regional GMV1,2,56. Having demonstrated 
that global GMV decreases with age in our cohort (Fig. 1c), we exam-
ined GMV by ROI. We implemented a linear mixed-effects model, 
regressing region and age onto GMV, treating participants as random 
intercepts. Our model confirmed a significant main effect of region 
(χ2(19) = 11,081.98, P < 0.001) and revealed an age × region interaction 
(χ2(19) = 92.05, P < 0.001; Fig. 6). GMV is reduced with age in lateral 
orbitofrontal cortex (r = −0.61, P < 0.001, 95% CI −0.77 to −0.35), medial 
orbitofrontal cortex (r = −0.60, P = 0.001, 95% CI −0.81 to −0.27), rMFG 
(r = −0.38, P = 0.007, 95% CI −0.61 to −0.11), cMFG (r = −0.42, P < 0.001, 
95% CI −0.60 to −0.20), inferior frontal gyrus (r = −0.35, P = 0.010, 95% 
CI −0.57 to −0.09), superior temporal cortex (r = −0.40, P = 0.001, 95% 
CI −0.59 to −016), middle temporal cortex (r = −0.33, P = 0.005, 95% CI 

−0.52 to −0.09), posterior cingulate cortex (PCC; r = −0.36, P = 0.038, 
95% CI −0.62 to −0.02) and inferior parietal cortex (r = −0.54, P < 0.001, 
95% CI −0.70 to −0.33). These results replicate previous reports 
of age-related reductions in GMV in association cortices starting  
in childhood1,2,56.

To test whether age-related differences in aperiodic activ-
ity are modulated by regional GMV, we fit mixed-effects models to 
task-based slopes and regressed these estimates onto age (in years), 
GMV and the interaction between age and GMV. All models were fit with 
by-participant and by-task random intercepts, with channel nested 
under participant. We revealed age × GMV interactions on task-based 
aperiodic slopes in the PCC (β = −4.83 × 10−5 (95% CI 7.58 × 10−5 to 
2.05 × 10−5), s.e.m. 1.43 × 10−5, Padj = 0.040) and postcentral gyrus 
(β = −1.08 × 10−5 (95% CI −1.79 × 10−5 to −3.80 × 10−6), s.e.m. 3.57 × 10−6, 
Padj = 0.040; Fig. 7). In both association and sensorimotor regions 
(Table 1), while there was no relationship between task-based slopes and 
GMV in children, flatter slopes were linked with higher GMV in adults. 
For visualizations of the main effects of age and GMV on aperiodic 
slopes, see Supplementary Figs. 10 and 13, and for model diagnostics, 
see Supplementary Figs. 11 and 12, respectively.

Discussion
We mapped aperiodic activity—a marker of neural noise—from 
childhood to late middle adulthood. Our findings demonstrate:  
(1) a gradient of slopes from inferior lateral to superior medial 
regions, suggesting reduced neural noise in inferior lateral tem-
poral regions and increased neural noise in superior medial frontal 
regions (Fig. 2); (2) a U-shaped relationship in slopes by age, sug-
gesting increased neural noise into young adulthood followed by 
reduced neural noise into middle adulthood (Fig. 3); (3) a flattening 
of PFC slopes by age, with more pronounced flattening in task-free 
states, suggesting that age-related increases in neural noise are task 
dependent (Fig. 4); (4) PFC-derived aperiodic slopes during task-based 
states predict age-related variability in memory (Fig. 5); and (5) lower 
GMV is associated with steeper slopes across age in association and 
sensorimotor cortices (Fig. 7). In sum, these findings reveal regional 
and attentional differences in neural noise from early childhood to 
late middle adulthood and establish the balance of neural noise in PFC 
as a mechanism of memory development (for a schematic summary 
of the main results, see Fig. 8).

Aperiodic activity stabilizes during adulthood
The spatiotemporal patterning of cortical maturation progresses from 
sensorimotor to higher-order association cortices, characterized by 
heightened plasticity in late-maturing association regions, potentially 
influencing higher-order cognition in adulthood60. Based on these 
observations, we hypothesized that aperiodic activity would follow 
similar developmental trajectories, such that it would stabilize during 
adolescence in sensorimotor cortices and during young adulthood 
in association cortices. Indeed, recent work emphasizes that, while 
sensorimotor regions exhibit a more localized and intrinsic activa-
tion pattern, indicative of a more segregated and stable E/I balance, 
association regions show more integrated and interconnected activ-
ity, with a greater reliance on recurrent feedback loops, reflecting a 
more dynamic and finely tuned E/I balance that develops later in life71. 
Consistent with our hypothesis, we revealed that the aperiodic slope 
flattens from childhood to young adulthood in association cortices. 
However, contrary to dominant models of brain development based 
on structural measures2,3,60, we found that aperiodic activity in senso-
rimotor cortices does not stabilize until young adulthood. We further 
revealed that the magnitude of flattening is greater in sensorimotor 
than association cortices during adolescence and young adulthood, 
pointing to a developmental dissociation. Our findings establish that 
the development of aperiodic activity in sensorimotor regions does 
not mirror the development of cortical structure and suggest that 

Steeper
Flatter

3.00

2.85

2.70

2.55

2.40

2.25

2.10

1.95

1.80

1.65

1.50

1.35

Age (years)

Association Sensorimotor

Ap
er

io
di

c 
sl

op
e

5 10 15 20 25 30 35 40 45 50 55

Fig. 3 | Age-related differences in aperiodic slopes between association and 
sensorimotor cortices. Modelled effects for differences in the aperiodic slope  
(y axis; higher values denote a steeper slope) by age (x axis). Association cortices 
are presented in teal and sensorimotor cortices in orange. Shading indicates  
83% CIs. Individual data points represent slope values per participant averaged 
over channels.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02270-x

developmental differences in neural noise in sensorimotor regions 
follows a protracted trajectory into adulthood.

Attention modulates aperiodic activity by age in PFC
Scalp-EEG studies have consistently demonstrated an age-related 
flattening of the aperiodic slope, often with a frontal-central 
distribution4,6,27,58,72–74. To our knowledge, only one iEEG study has 
examined age-related variability in aperiodic slopes, demonstrating 
an age-related flattening of task-based slopes in the visual cortex of 15 
individuals aged 15–53 years16. Little is known regarding regional differ-
ences in the slope. We found that subregions of PFC, namely caudal and 
rostral MFG, exhibit a flattening of the aperiodic slope across age. We 
further reveal that the age-related flattening of the slope is modulated 
by attentional state, with less pronounced flattening for task-based 
relative to task-free states. This finding can be interpreted in the context 
of PFC control: a central role of the PFC is to exert cognitive control in 
the service of behaviour, partially by modulating activity in regions 
further upstream, such as the visual cortex and medial temporal lobe 
(MTL)75–77. The difference between task states also emerges at roughly 
18–20 years of age, revealing the aperiodic slope as a potential marker 
of the development of cognitive control in adolescence, and mirroring 
the development of domain-general cognitive control70. Functionally, 
steeper task-based slopes, suggesting reduced neural noise, have been 
proposed to reflect the maintenance of top-down predictions30,78 and 
support information integration72,79. By contrast, flatter slopes have 
been associated with slower processing speed74, and poorer visual 
working8 and visuomotor80 memory, although these studies analysed 
task-free slopes. Our findings suggest that the PFC gains flexibility in 
control with age, exerting increased control during the processing of 
task-relevant information.

Task-based aperiodic activity in PFC predicts memory
Do age-related differences in aperiodic activity predict age-related 
differences in memory? Prior work on aperiodic activity has reported 
mixed findings in relating the slope and offset to various aspects of 
cognition. Steeper task-free slopes have been associated with faster 
reaction times in young adults and improved recognition accuracy 
during initial learning80. However, in the same study, flatter slopes 
and higher offsets were associated with improved recognition with 
increasing task exposure. In a similar study with young adults, flatter 
task-free slopes and higher offsets were associated with improved 
decision-making performance81. Of the studies examining task-based 
aperiodic activity, flatter slopes have been associated with improved 
learning of an artificial language in young adults aged 18–40 years30, 
but lower working memory performance with age from 15 to 53 years16. 
Critically, past work has focused on either task-based or task-free aperi-
odic activity and cognition without accounting for differences between 
task states, and it is unknown how task-based differences in localized 
brain regions relate to behaviour by age.

Here, we overcame this limitation by mapping task-based and 
task-free aperiodic slopes by age to behaviour on a region-by-region 
basis. We revealed an interaction between aperiodic slopes and age on 
memory in the MFG. In the MFG—a region core to executive functions 
and cognitive control and that undergoes protracted development82,83—
children with steeper slopes exhibited worse memory performance. 
This finding suggests that too little noise8,16 in the MFG during child-
hood may hinder attentional control. Indeed, children diagnosed with 
attention deficit hyperactivity disorder who are medication-naive 
exhibit steeper slopes than their typically developing counterparts84, 
as do individuals with schizophrenia85,86, suggesting that even greater 
reductions in neural noise in childhood results in inefficient neural 
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communication and disrupted coordination, manifesting in poorer 
memory outcomes.

As individuals age, structural and functional changes in MFG (that 
is, synaptic pruning and changes in neurotransmitter levels (GABAe-
rgic interneurons and glutamate)87) probably lead to a flattening of 
aperiodic slopes88,89. Flatter slopes have been likened to increased 
neural noise16,72,78,90, due to increased levels of aberrant neural firing 
in the absence of a slower modulatory oscillation15,16. We observed 
that flatter slopes in the MFG during adulthood were less related to 
memory outcomes than in children, probably due to the emergence of 
compensatory neural recruitment and altered cognitive strategies91–93.

Interestingly, we did not observe significant relationships between 
task-free slopes and memory performance. This apparent discrep-
ancy with past findings can probably be explained by differences in 
experimental task designs and interregional source mixing inherent to 
scalp-EEG, where signals from multiple cortical areas are mixed owing 
to volume conduction34,35. Scalp EEG, with its relatively low spatial 

resolution, could mask region-specific relationships between aperiodic 
slopes and behaviour, explaining discrepancies with previous findings. 
Although source localization techniques can help to mitigate these 
issues, they are limited in resolving precise cortical sources94,95. Fur-
thermore, previous work has focused on mapping intrinsic, task-free 
aperiodic activity onto trait-like measures of cognition (for example, 
processing speed and verbal ability96–98) or tasks that do not measure 
episodic or working memory80,81,90. Our findings demonstrate that 
aperiodic activity during the encoding of visual stimuli predicts rec-
ognition of those stimuli, a direct relationship that did not survive on 
a region-by-region basis with intrinsic (that is, task-free) activity.

Aperiodic activity relates to age-related variability in GMV
Finally, having established that aperiodic activity differs by age and 
attentional state and that task-based aperiodic activity predicts 
memory outcomes, we mapped task-based aperiodic activity onto 
GMV across age. We reveal that, in the PCC, aperiodic slopes are not 
dependent on GMV during childhood. However, as individuals age, 
the relationship between GMV and aperiodic slopes becomes pro-
nounced. Specifically, individuals who maintain higher GMV in the 
PCC exhibit a flattening of aperiodic slopes over time. By contrast, 
those with lower GMV in the PCC during development show stable, 
steep aperiodic slopes, meaning that their slopes do not differ by age 
and remain relatively steep across development.

Mechanistically, this pattern may reflect differential cortical matu-
ration and the influence of GMV on neural network stability. In individu-
als with higher GMV, the gradual stabilization of synaptic networks may 
facilitate a more balanced cortical state, resulting in flatter aperiodic 
slopes as they age. In those with lower GMV, however, the lack of such 
stability may prevent the flattening of the aperiodic slope, leading to 
a persistently steeper slope despite developmental differences. These 
findings suggest that early cortical changes in GMV, particularly in the 
PCC, may be key to understanding the long-term stability of aperiodic 
neural dynamics and their relationship to cognitive processes such as 
memory. This should be further elucidated in future work.

Similarly, in the postcentral gyrus (that is, the primary motor 
cortex), we observed that higher GMV is associated with steeper slopes 
during childhood and flatter slopes during adulthood. This adds to 
the finding that sensorimotor cortical development—as indexed by 
neural noise—stabilizes during young adulthood, challenging models 
of early sensorimotor development based on cortical structure1,99. 
Future research should further examine relationships between ape-
riodic activity and brain structure to elucidate the mechanisms by 
which structure–function development impacts the development of 
higher-order cognition.

Limitations and future directions
We have revealed regional age-related variations in aperiodic neural 
activity dependent upon task state. Our findings suggest that brain 
development may be best understood as a diverse set of regionally 
independent trajectories, partially indexed by aperiodic activity. 
However, as iEEG data are cross-sectional, we were unable to follow 
these putative trajectories through time. A critical next step will be 
to establish the potential utility of aperiodic activity in elucidating 
longitudinal changes in regional structure–function relationships33. As 
such, future studies, focusing a priori on the regions we identified (for 
example, MFG), could capitalize on the spatiotemporal precision and 
capacity to perform multivisit longitudinal studies with, for example, 
magnetoencephalography.

While our cohort is representative of typical development and 
the use of iEEG affords precise spatiotemporal precision, iEEG sam-
ples are composed of patients with pharmacoresistant epilepsy, 
potentially limiting the generalizability of our findings41. For this 
reason, it is important to note that our sample demonstrated typical 
age-related gains in memory performance and age-related differences 
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in global GMV (Fig. 1c), both of which are consistent with healthy 
cohorts1,40. An additional limitation is the relatively lower represen-
tation of older individuals within our sample, a common observa-
tion in iEEG investigations, and the relatively lower representation 
of patients with task-free (n = 65) compared with task-based (n = 81) 
data. We also acknowledge that there was low sampling of certain brain 
regions (see Supplementary Tables 2 and 3 for the channel count by 
region), which may reduce the generalizability of some results. Low 
sampling reduces statistical power, potentially masking meaningful 
neural activity or introducing biases in region-specific analyses40,41. To 
address this limitation, we caution readers against overinterpreting 
non-significant results for regions such as the amygdala, insula and 
superior parietal cortex. Furthermore, in our analysis, we focused on 
the frequency range of 1–60 Hz and did not specifically account for 
the potential influence of a ‘knee’ in power spectral density (PSD), typi-
cally observed around 75 Hz (ref. 100). This knee can result in a shift in 
PSD scaling behaviour, which may affect the aperiodic slope values if 
not addressed in the fitting process. Future research should prioritize 
obtaining more balanced sampling across these regions, possibly by 
using even larger, more diverse datasets and in using algorithms that 
account for potential knees in PSD8. Nonetheless, the current results 

underscore maturation within MFG, and this effect was present across 
our entire age range of 5–54 years. To obtain larger samples across age, 
future research may seek to increase sample sizes through multisite 
collaboration and data sharing40,41.

We also found no significant age-related difference in aperiodic 
activity in the hippocampus in relation to attentional state, or in pre-
dicting individual memory performance. Given that our study exam-
ined memory, these results may be somewhat surprising. However, it is 
possible that the development of oscillatory (that is, periodic) activity 
in the hippocampus exhibits effects related to attentional state and 
memory outcomes, consistent with ample literature on hippocampal 
theta oscillations36,44,101,102. Future research should directly investigate 
this hypothesis. Lastly, with our task-based versus task-free contrast 
as a starting point, future research may also aim to examine additional 
attentional states, such as sleep versus wake states. The aperiodic 
slope and offset systematically shift as a function of sleep stage, which 
has recently been shown to differ across development4. However, it is 
unknown whether there are region-specific differences in sleep-based 
aperiodic activity, whether these regional differences relate to the 
development of higher-order cognition and whether sleep-based and 
wake-based aperiodic activity change concomitantly.
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Implications
Historically, neuroscientific research has predominantly focused 
on young adults aged 18–40 years, largely overlooking the influence 
of age on brain dynamics. This practice has resulted in a significant 
knowledge gap regarding brain development. Addressing this gap 
is crucial due to its profound clinical implications across various 
domains, including neurodevelopmental disorders, traumatic brain 
injury, stroke, age-related cognitive decline and neurodegenerative 
diseases, as well as advancements in neural prosthetics for injury, 
stroke or disease management. Our study addresses this knowledge 
gap by elucidating the trajectory of aperiodic slopes and their asso-
ciations with brain structure and memory across development, from 

childhood into late middle adulthood. Previous attempts to char-
acterize these dynamics have been constrained by limitations in 
imprecise spatiotemporal measurements and relatively small sample 
sizes. To overcome these challenges, we adopted a comprehensive 
approach. First, we used iEEG to delineate developmental neurophysi-
ology with exceptional precision. Second, we applied sophisticated 
analyses of aperiodic components in iEEG data to establish novel con-
nections between aperiodic activity and developmental variations 
in memory. Third, we explored the relationship between aperiodic 
components and GMV. Lastly, we leveraged an exceptionally large 
iEEG dataset to detect subtle effects that may have been undetected 
in smaller cohorts.
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Table 1 | Summary of main statistical tests including number of models computed, outcome variables, fixed effects and 
random effects

Analysis Number of 
models

Type Outcome Fixed effects Random effects FDR

Association versus 
sensorimotor

1 Nonlinear mixed-effects 
regression

Slope (1)  Age (continuous; one spline, 
two knots)

(2) Cortex type (categorical)

(1) Participant (intercept)
(2) ROI (intercept)
(3) Channel (nested under participant)

No

Attentional state 21 Linear mixed-effects 
regression

Slope (1) Age (continuous)
(2) Condition (categorical)

(1) Participant (intercept)
(2) Channel (nested under participant)
(3) Task (intercept)

Yes

Memory (task-based) 21 General linear regression Accuracy (1) Age (continuous)
(2) Slope (continuous)

NA Yes

Memory (task-free) 21 General linear regression Accuracy (1) Age (continuous)
(2) Slope (continuous)

NA Yes

GMV 20 Linear mixed-effects 
regression

Slope (1) Age (continuous)
(2) GMV (continuous)

(1) Participant (intercept)
(2) Channel (nested under participant)
(3) Task (intercept)

Yes

‘Number of models’ refers to the number of models performed for each analysis; ‘Outcome’ is the dependent variable; ‘Cortex type’ has two levels of association and sensorimotor; ‘Condition’ 
has two levels of task-free and task-based; false discovery rate (FDR) corrections were applied to all analyses apart from ‘Association versus sensorimotor’, given that one model was computed.
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Understanding how cortical maturation influences memory 
encoding processes is also fundamental to cognitive function and 
daily performance, given well-documented changes in brain structure 
and function over the lifespan. Furthermore, elucidating the impact 
of brain development on memory formation across different life 
stages holds promise for early detection and intervention strategies 
targeting the emergence of both neurodevelopmental disorders 
and age-related memory decline. Identifying markers of healthy 
brain development and ageing is crucial for detecting dysfunction in 
age-related pathologies, which often manifest gradually over many 
years before exhibiting overt behavioural symptoms103,104. In this 
context, our findings may contribute to the prevention or delay of 
pathological ageing, offering significant health benefits, particularly 
considering the limitations and risks associated with current pharma-
cological treatments. Furthermore, our study lays the groundwork for 

investigating memory dysfunction in psychiatric disorders, many of 
which emerge during adolescence and young adulthood, and which 
show deviations in aperiodic activity from healthy populations23–26.

Conclusions
We reveal that aperiodic neural activity follows the same developmental 
time course across young adulthood in both sensorimotor and associa-
tion cortices, challenging models of early sensorimotor development 
based on measures of brain structure. We also isolate attentional state 
and age-related differences in the aperiodic slope to the PFC, demon-
strating that task-based slopes are steeper, reflecting less neural noise, 
and that this difference emerges during adolescence. We further estab-
lish the functional role of PFC-derived slopes in memory, revealing that 
age-related improvements in memory outcomes are associated with 
the age-related flattening of aperiodic slopes. Lastly, we characterized 
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Fig. 8 | Aperiodic activity stabilizes in young adulthood, differs by age and 
attentional state, predicts age-related variability in episodic memory 
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in sensorimotor (orange) and association (teal) cortices flatten from age 5 to 
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(grey shading). Regarding attentional state (that is, task-based versus task-
free) differences in aperiodic activity, in the PFC, task-free (dashed red) slopes 
are steeper (that is, less neural noise) than task-based (solid red) slopes in 
children, and the inverse is observed in adults. Effects reverse at ~18–20 years 
of age, probably reflecting the development of control. Shading indicates 

83% CIs. b, PFC-derived aperiodic slopes during task-based but not task-free 
states predicted age-related variability in memory performance, whereby 
the age-related flattening of aperiodic slopes was associated with age-related 
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the relationship between age-related differences in aperiodic activity 
and brain structure, identifying region-specific trajectories in struc-
ture–function relationships during development. Taken together, 
our findings establish brain-wide maps in aperiodic neural activity, 
its relation to age-related variability in memory and novel structure– 
function relationships, findings that are critical for understanding 
brain development and ageing in both health and disease.

Methods
Participants
The participants were 101 neurosurgical patients aged 5.93–54.00 years 
(63 males; mean age 19.25 years) undergoing iEEG monitoring as part 
of clinical seizure management. Patients with major lesions, prior 
surgical resections, noted developmental delays or neuropsychologi-
cal memory test scores <80 were considered ineligible. Patients were 
recruited from Northwestern Memorial Hospital, the Ann & Robert 
H. Lurie Children’s Hospital of Chicago, the Children’s Hospital of 
Michigan, the University of California (UC), San Diego Rady Children’s 
Hospital, UC Irvine Medical Center, UC Davis Medical Center, UC San 
Francisco Medical Center, Mount Sinai Hospital, California Pacific 
Medical Center, St. Louis Children’s Hospital and Nationwide Children’s 
Hospital. The institutional review boards of Northwestern University 
(no. STU00215843), Lurie Children’s Hospital (no. 2022-5020), Wayne 
State University (no. 048404MP2E), UC Irvine and UC San Diego (no. 
2014-1522), UC Davis (no. 1623773-1), UC San Francisco (no. 10-03842), 
Mount Sinai (no. STUDY-22-00529), California Pacific Medical Center 
(no. 666687-17), Washington University in St. Louis (no. 201102222) 
and the Nationwide Children’s Hospital (no. 2020N0022) approved the 
study in accordance with the Declaration of Helsinki. Written informed 
consent was obtained from participants aged 18 years and older and 
from the guardians of participants aged under 18 years. Written assent 
was obtained from participants aged 13–17 years, and oral assent was 
obtained from younger children.

Given that electrode positioning in these participants was based 
on clinical necessity rather than for experimental reasons, a priori 
power analyses were not performed. Human iEEG research is limited 
by the availability of neurosurgical patients. From this perspective, the 
majority of iEEG work has been based on relatively small sample sizes 
and could not consider age-related or other sources of interindividual 
variability41.

Experimental design
Task-based iEEG data were derived from the encoding phase of two 
visual memory recognition tasks that have been used extensively to 
study memory in adults and children across neuroimaging modalities, 
including iEEG. In the blocked-trial paradigm, participants encode a 
set of 40 indoor and outdoor scenes and classify each as indoor or out-
door in preparation for a self-paced old/new recognition test of all 40 
studied scenes intermixed with 20 new scenes as foils33,39,40,42–44,61,105–107. 
In the single-trial paradigm, participants encode three shapes in a 
specific spatiotemporal sequence in preparation for a self-paced old/
new recognition test of sequences that match exactly or mismatch on 
one dimension (that is, shape identity, spatial position or temporal 
order; cf. refs. 108–113). Both paradigms use visual stimuli to avoid 
potential confounds on memory with verbal material in children and 
were presented using Psychtoolbox v.3.0.14. The encoding phases of 
the two paradigms are similar because, in both paradigms, participants 
encode visual stimuli (3,000 ms, 500–1,500 ms intertrial interval) in 
preparation for a self-paced, two-alternative forced-choice recogni-
tion test. We ensured that task-based data reflected task engagement 
by analysing only iEEG data recorded during the viewing of stimuli 
that were attended during encoding, as indexed by a correct indoor/
outdoor classification of each scene in the blocked-trial paradigm 
and correct old/new classification of each sequence in the single-trial 
paradigm39,40,42,43. For a schematic of both visual memory tasks, see 

Supplementary Fig. 14. For task-free data, participants were instructed 
to sit quietly with their eyes open, fixating on the centre of a computer 
monitor for 5 min. If no formal task-free task was administered, 5 min 
of task-free data were taken from natural rest in continuous 24/7 iEEG 
recordings. This occurred for 27 participants.

Behavioural analysis
Both visual memory tasks test memory in a two-alternative 
forced-choice design, permitting the use of similar measures of mem-
ory performance across tasks. For both tasks, for all participants, we 
calculated the hit rate (that is, the number of previously studied stimuli 
that were correctly recognized as old/match out of all studied stimuli) 
and false alarm rate (number of new stimuli presented that were incor-
rectly identified as ‘old’ or ‘match’ out of all ‘new’ or ‘mismatched’ 
stimuli). Performance accuracy was calculated as the hit rate minus the 
false alarm rate to equate measures across memory tasks and correct 
for differences in an individual’s tendency to respond ‘old’/‘match’ or 
‘new’/‘mismatch’, respectively. For a summary of behavioural perfor-
mance, see Fig. 1c.

iEEG acquisition and preprocessing
iEEG data were recorded at a sampling rate of 200–5,000 Hz using 
Nihon Kohden JE120 Neurofax or Natus Quantum LTM recording sys-
tems, which at two sites were interfaced with the BCI2000 software. 
Data acquired >1,000 Hz were resampled to 1,000 Hz after the fact. As 
described below, spectral analysis was performed up to 60 Hz. Thus, 
the lowest sampling rate of 200 is well over the minimum Nyquist 
frequency required for analysis (that is, 2 cycles/frequency = 120 Hz). 
For consistency, all data from both visual memory tasks and from 
task-free recordings were preprocessed using the same procedures. 
Raw electrophysiological data were filtered with 0.1-Hz high-pass 
and 300-Hz low-pass finite impulse response filters, and 60-Hz line 
noise harmonics were removed using a discrete Fourier transform. 
Task-based continuous data were demeaned and epoched into 3-s 
trials (that is, 0–3 s from scene or study sequence onset). Continuous 
task-free data were also demeaned and transformed into 3-s epochs 
with 25% overlap. All epoched data were manually inspected blind to 
electrode locations and experimental task parameters. Electrodes 
overlying seizure onset zones and electrodes and epochs displaying 
epileptiform activity or artefactual signal (from poor contact, machine 
noise and so on) were excluded (mean proportion of rejected epochs 
16.96%, s.d. 12.51). We used a bipolar re-referencing strategy, which 
has been shown to minimize the impact of impedance and electrode 
size differences between stereoelectroencephalography (sEEG) and 
electrocorticography (ECoG) and, thus, maximize standardization 
across these two types of recordings114. Neighbouring electrodes within 
the same anatomical structure were re-referenced using consistent 
conventions (ECoG, anterior–posterior; sEEG, deep–surface). For 
ECoG grids, electrodes were referenced to neighbouring electrodes 
on a row-by-row basis. An electrode was discarded if it did not have 
an adjacent neighbour, its neighbour was in a different anatomical 
structure, or both it and its neighbour were in white matter. Bipolar 
referencing yielded virtual channels that were located midway between 
the original physical electrodes. Data were then manually reinspected 
to reject any trials with residual noise. Preprocessing routines used 
functions from the FieldTrip toolbox for MATLAB115. All results were 
based on analysis of non-pathologic, artefact-free channels, ensuring 
that data represented healthy cortical tissue116.

Aperiodic neural activity
The irregular-resampling auto-spectral analysis method9 (IRASA) was 
used to estimate the 1/ƒ power-law exponent. IRASA estimates the 
aperiodic component of neural time series data by resampling the 
signal at multiple non-integer factors h and their reciprocals 1/h. As 
this resampling procedure systematically shifts narrowband peaks 
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away from their original location along the frequency spectrum, aver-
aging the spectral densities of the resampled series attenuates peak 
components while preserving the 1/ƒ distribution. The exponent sum-
marizing the slope of aperiodic spectral activity is then calculated by 
fitting a linear regression in log–log space. Using the YASA toolbox117 
v.0.6.3, we fit a power-law function to each epoch within the frequency 
range of 1–60 Hz. For each epoch, channel and task, the inverse slope 
of the power-law function was taken as the trial-level estimate of the 
1/ƒ exponent.

iEEG localization
Macro-electrodes were surgically implanted for extraoperative 
recording based solely on clinical need. The electrodes were sub-
dural electrode grids or strips with 10-mm spacing or sEEG electrodes 
with 5–10 mm spacing. Anatomical locations were determined by 
co-registering postimplantation computed tomography coordi-
nates to preoperative magnetic resonance images, as implemented 
in FieldTrip118, FreeSurfer119, iELVis120 or VERA121. Electrode locations 
were then projected into standard Montreal Neurological Institute 
(MNI) space and bipolar channel locations (see preprocessing) were 
projected at the midpoint between their contributing electrodes. 
Based on these MNI coordinates, the R package label4MRI v1.2 (https://
github.com/yunshiuan/label4MRI) was used to categorize each chan-
nel into its corresponding Brodmann area, which were then grouped 
according to the DKT atlas64.

Structural imaging and regional GMV
T1-weighted MRI scans were acquired as part of routine preopera-
tive procedures. Parcellation of cortex into ROIs was performed on 
the basis of standard procedures implemented within FreeSurfer119. 
Regional GMVs were then estimated on the basis of the DKT atlas64. 
GMV from each ROI was calculated using FreeSurfer119. Volumes were 
calculated for left and right ROIs and averaged across hemispheres 
for analysis.

Statistical analysis
Data were imported into R version 4.2.3 with the aid of the tidyverse 
package122 and analysed using linear and nonlinear mixed-effects mod-
els fit by restricted maximum likelihood using lme4123 and splines. P 
values for region-specific models were estimated using the summary 
function from the lmerTest package, which is based on Satterthwaite’s 
degrees of freedom123, and type II Wald tests from the car package124 
for examination of whole-brain effects (that is, models that included 
all ROIs). Effects were plotted using the package ggeffects125 and 
ggplot2126. Spearman correlations were used to assess structure–func-
tion relationships without the effect of age, with coefficients used to 
plot region-specific relationships between aperiodic activity and GMV 
across the whole brain. Statistical significance was adjusted using the 
false discovery rate with an alpha threshold of 0.05. Task was entered 
as an unordered factor using sum-to-zero contrast coding, and age was 
specified as a continuous predictor. Please see Table 1 for a summary of 
the main analyses, including the types of models used and their fixed 
and random effects structures.

In our preregistration, we specified that we would apply a spline 
to age to model potential nonlinear effects of age on aperiodic activ-
ity for each ROI, as well as a random effect of task-free recording type 
(eyes open versus eyes closed). However, in doing so, models indicated 
non-convergence or singular fit. To reduce model complexity, we 
modelled age as a linear predictor and removed task-free recording 
type as a random effect in our analysis of each ROI. For analyses testing 
hypotheses (a) and (b), where we tested differences in association and 
sensorimotor cortices, we had sufficient power to model nonlinear dif-
ferences. Specifically, we used linear mixed-effects models with a single 
spline with two internal knots on age specified using the splines pack-
age. The model uses a natural spline with two degrees of freedom, which 

corresponds to a single spline with two knots. This spline approach 
allows for a nonlinear relationship between age and the aperiodic 
slope by dividing the age range into three segments. The choice of 
two knots reflects a balance between flexibility and model complexity, 
ensuring that we can model age-related differences without introduc-
ing excessive parameters. This approach enables the model to capture 
potential nonlinear patterns in the data, which is necessary to test 
our hypotheses that slopes would vary by age in childhood and then 
stabilize in adolescence or adulthood. To determine whether there 
were differences between spline choices, we ran the same model but 
with a spline with three internal knots. Comparing the fits between the 
model with two and three knots did not reveal a significant difference 
in model fit indices (P > 0.05).

When contrast coding is explicitly described, the need for post-hoc 
testing is eliminated (for a detailed discussion of contrast coding in lin-
ear mixed-effects regressions, see ref. 127). Furthermore, for modelled 
effects, an 83% CI threshold was used, given that this approach corre-
sponds to the 5% significance level with non-overlapping estimates128,129. 
To isolate outliers for variables that were specified as outcomes (that is, 
aperiodic slopes, memory performance), we used Tukey’s method130, 
which identifies outliers as exceeding ±1.5× interquartile range. The 
packages ggseg131 and ggsegDKT were used to generate cortical plots 
based on DKT atlas nomenclature. Hypotheses (a) and (b) were tested 
using the following formula (note that, in all models, asterisks denote 
interaction terms, plus signs denote additive terms, B0 denotes the 
intercept of the model, and B1, B2 and so on denote the chronological 
specification of fixed effect parameters):

EEGi = β0 + β1ns (age, 2)i ∗ β2regioni + channel/subject0i + ϵ,

where EEG is the aperiodic slope; age is age in years modelled with one 
natural spline term (ns) with two internal knots; region encodes asso-
ciation and sensorimotor cortices; channel encodes region-specific 
channels nested under the random intercept of participant; and 
participant is the random intercept term of participant ID. To test 
hypothesis (c), we used the following model equation on a region-by- 
region basis:

EEGi = β0 + β1conditioni ∗ β2agei + channel/subject0i + task0i + ϵ,

where EEG is the aperiodic slope; condition encodes task-based and 
task-free recordings; age is age in years modelled as a linear predictor; 
channel encodes region-specific channels nested under participant; 
and participant is participant ID, while task is a random intercept encod-
ing whether the recording is derived from the blocked or single-trial 
memory task.

Our exploratory analyses focused on relationships between GMV, 
behavioural performance and aperiodic slopes derived from task-based 
and task-free recordings. Here, our primary exploratory research ques-
tions were whether

(1) regional age-related variability in aperiodic slopes predicts vari-
ability in memory performance, and;

(2) regional age-related variability in GMV predicts variability in 
aperiodic slopes.

These exploratory analyses were examined with general linear 
models with the following formulae:

(a)memoryi = β0 + β1agei ∗ β2EEGi + ϵ,

where memory is performance on the visual memory task(s); age 
is age in years modelled as a linear predictor; and EEG is the aperiodic 
slope from each ROI.

(b) EEGi = β0 + β1agei ∗ β2volumei + channel/subject0i + task0i + ϵ,
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where EEG is the aperiodic slope; age is age in years modelled as 
a linear predictor; volume is regional GMV in mm3; channel encodes 
ROI-specific channels; participant is the participant ID; and task 
encodes whether the task recording was from the blocked or single-trial 
memory task. As with the other models, each ROI was applied to the 
model equation described above. Participant was modelled as a random 
effect on the intercept, while channel was nested under participant. 
Task was also specified as a random effect on the intercept. Note that, 
in our preregistration, we stated that we would include task (task-based, 
task-free) in all models examining the interaction between GMV and age 
on aperiodic activity. However, all models indicated non-convergence 
or singular fits. To reduce model complexity, we examined aperiodic 
activity during task-based states only.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data and code are available at https://tinyurl.com/m5yfc9ny.
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