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The ability to quickly learn and generalize is one of the brain’s most impressive
feats and recreating it remains a major challenge for modern artificial intelli-
gence research. One of the most mysterious one-shot learning abilities dis-
played by humans is one-shot perceptual learning, whereby a single viewing
experience drastically alters visual perception in a long-lasting manner. Where
in the brain one-shot perceptual learning occurs and what mechanisms sup-
port it remain enigmatic. Combining psychophysics, 7 T fMRI, and intracranial
recordings, we identify the high-level visual cortex as the most likely neural
substrate wherein neural plasticity supports one-shot perceptual learning. We
further develop a deep neural network model incorporating top-down feed-
back into a vision transformer, which recapitulates and predicts human
behavior. The prior knowledge learnt by this model is highly similar to the
neural code in the human high-level visual cortex. These results reveal the
neurocomputational mechanisms underlying one-shot perceptual learning in
humans.

The human perceptual system is incredibly malleable even in adult-
hood. Visual perceptual abilities, from low-level contrast and color

paradigm, wherein degraded images are difficult to recognize initially,
but effortlessly recognized once the subject views the corresponding

sensitivity to high-level expertise in recognizing clinical features in
radiological images, can improve dramatically with repeated
training’—“practice makes perfect”. While perceptual learning is often
studied in the context of slow, laborious training, it can also occur with
a single experience in a drastic, long-lasting manner (an “aha!”
moment), a phenomenon termed “one-shot perceptual learning”>.
This phenomenon is famously illustrated by the Dalmatian Dog
picture® and studied in the laboratory using the “Mooney image”

original, clear images, and the learning effect lasts many months**’.
Thus, the visual system possesses very fast learning mechanisms
without sacrificing stability or suffering from catastrophic inter-
ference. To date, the neural mechanisms underlying this rapid per-
ceptual learning ability remain elusive.

Although artificial intelligence (Al) has shown tremendous pro-
gress in basic object recognition over the past decade, one- or few-shot
learning remains an unmet need and has emerged as an active area of
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research in recent years. These research efforts have focused on tasks
belonging to concept learning, such as the classification or detection of
a novel object based on a few or no training examples® 2. Approaches
broadly involve learning representations that can be used to distin-
guish novel cases”, learning parameters that can be easily adapted to
novel tasks, or learning models of the generating process behind
potential novel cases”. However, there are several reasons to consider
one-shot perceptual learning and one-shot concept learning as fun-
damentally different phenomena. First, one-shot perceptual learning
relies on existing concepts, without the need to form or handle new
concepts. Second, existing evidence suggests that they likely rely on
different brain structures: the hippocampus and associated medial-
temporal lobe structures for concept learning"**, and hippocampus-
independent cortical mechanisms for one-shot perceptual learning®.
Third, very young children can learn and generalize new concepts
quickly’®®, while one-shot perceptual learning has a protracted
developmental time course, reaching adult-level in adolescence'**.

What neural and computational mechanisms support one-shot
perceptual learning in humans? Conventional wisdom holds that one-
shot, fast learning requires the hippocampus, but a recent study* ruled
out this possibility for one-shot perceptual learning: memory-impaired
patients with bilateral hippocampal lesions were intact at one-shot
perceptual learning. This study also demonstrated a clear dissociation
between one-shot perceptual learning and episodic memory—both are
fast, one-shot learning, but only episodic memory (about whether a
picture was previously encountered) is impaired after damage to the
hippocampus and associated medial temporal lobe structures.

However, this still leaves a vast hypothesis space for where the
learning-related plasticity subserving one-shot perceptual learning
might occur in the brain. Previous neuroimaging studies have shown
widespread cortical activity changes before vs. after one-shot per-
ceptual learning, from early visual cortex and high-level visual regions
to frontoparietal (FPN) and default-mode (DMN) networks* . In all of
these regions, after one-shot learning, neural activity patterns trig-
gered by Mooney images contain more information about the image
content and become more similar to the activity patterns triggered by
the matching original images (which induced learning). However, not
all of these brain regions are necessarily involved in the learning pro-
cess, and it would be uneconomical for the brain to store multiple
copies of prior knowledge (i.e., the knowledge learnt by viewing the
corresponding original clear image). A more efficient solution would
be to store the learnt prior knowledge in a particular site or a few
interconnected sites, and, once reactivated by a matching visual input
(degraded image post learning), it could exert widespread influences
on neural processing. In this paper, we aim to investigate where priors
are stored, their representational format, and potential computational
mechanisms.

Because learning-induced plasticity from synaptic changes is not
directly measurable by neuroimaging techniques, the site of prior
storage (i.e., where learning/plasticity occurs) has remained unre-
solved. Previous neuroimaging work hypothesized that either FPN or
DMN might encode the prior knowledge learnt in one-shot perceptual
learning and send this prior information to visual regions>*. However,
this hypothesis was based on observations comparing neural activity
driven by the same degraded image input before and after viewing the
corresponding original clear image, and the activity differences might
reflect a region’s involvement in perceptual processing, which can be
influenced by priors stored elsewhere.

In other lines of work, previous studies using slow, laborious
training paradigms to induce perceptual learning have emphasized
plasticity within the visual system'”. And a recent study showed that
monkey inferotemporal (IT) cortical neurons are equipped with a
multiplexed neural code for object perception and long-term memory,
such that familiarity (a form of episodic memory) can be read out from
the same neuronal population as perception”. However, these studies

did not specifically address neural plasticity involved in one-shot
perceptual learning, which is distinct from episodic memory* and
likely differs from slow, laborious perceptual learning®. In sum, the
exact brain mechanisms supporting one-shot perceptual learning,
including the site of learning-related plasticity, remain unknown.

To pinpoint the site of cortical plasticity and the involved com-
putational mechanisms underlying one-shot perceptual learning in
humans, we used several convergent approaches in this study: First,
using psychophysics, we manipulated the prior-inducing image and
assessed its effect on learning. This revealed what kind of information
is stored in the prior knowledge encoded in the brain, which was then
compared with neural coding properties assayed by 7 T fMRI to iden-
tify which brain regions have neural coding properties compatible with
the information content of prior knowledge. Second, using intracranial
recordings in neurosurgical patients, we assessed the timing latencies
of neural activity changes in different brain regions; brain regions with
the earliest prior-driven activity changes are more likely to be the site
of prior knowledge storage. Third, we built a deep neural network
(DNN) capable of one-shot perceptual learning, which both captured
the overall magnitude of learning effects and predicted image-specific
learning outcomes in humans. We then asked which brain region’s
neural code is similar to the prior information learnt by the DNN. The
convergent results from these three lines of inquiry point to the high-
level visual cortex (HLVC) as the site of learning-induced plasticity. Our
work further reveals potential computational mechanisms involved in
one-shot perceptual learning by developing a DNN model capable of
capturing human behavior in this task.

Results

Invariance properties of perceptual priors

We first replicated previously observed behavioral effects****** using
a well-established one-shot perceptual learning paradigm (Fig. 1a).
Subjects were instructed to verbally identify the content depicted in
the Mooney or grayscale image. In “original” trials, the Mooney images
and their matching original grayscale images were presented at the
same size, retinal location, and orientation (Fig. 1b, top). In “catch”
trials, the grayscale image did not match the corresponding Mooney
image, which controlled for repetition effects (Fig. 1b, middle). Similar
to previous studies, we found robust learning effects in “original” but
not “catch” trials. A two-way repeated-measures ANOVA on image
recognition rate revealed significant main effects ([Pre vs. Post]:
F120=115.5, p<0.001; [Original vs. Catch]: F;,0=12.9, p=0.001) and,
critically, a significant interaction effect (Fy »o = 39.6, p=7 x 1077; for full
statistics, see Supplementary Table 1) (Fig. 1d).

To investigate the information content of prior knowledge
acquired during one-shot perceptual learning, we manipulated the
matching grayscale image (Fig. 1b, bottom) in multiple ways across two
experiments (Fig. 1c). We reasoned that if a particular manipulation did
not impair learning as compared to the “original” trials (Fig. 1e, H1), it
would suggest that the stored perceptual priors are invariant to this
manipulation (i.e., did not encode the specific information altered by
this manipulation). By contrast, if a particular manipulation abolished
the learning effect (Fig. 1e, H3), it would suggest that the perceptual
priors are stored in a specific format that the manipulation disrupted.
Finally, if a particular manipulation significantly reduced learning but
did not abolish it (Fig. 1e, H2), it would suggest that the perceptual
priors are partially invariant to that manipulation. Then, the invariance
properties of the perceptual priors will indirectly point to where in the
brain they are stored, given known neural coding properties in dif-
ferent brain regions, which we will further validate via an fMRI
experiment. We note that our experimental logic is similar to previous
psychophysics studies on slow, gradual visual perceptual learning,
investigating whether the learning effect is specific to the trained
condition or transfers to other conditions as a way to shed light on the
potential brain loci of learning and plasticity*>*.
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Fig. 1| Paradigm and hypotheses for the psychophysics experiment.

a Paradigm. Top: Trial-level timing; images were presented for 2 s, followed by a
verbal response. Bottom: Block structure; pre- and post Mooney images were
shuffled to prevent low-level priming effects. Border colors reflect paired Mooney-
grayscale images and were not shown to subjects. b For each subject, a given
Mooney image and its paired grayscale image are presented in one of three con-
ditions (original, catch, manipulated). ¢ Grayscale image manipulation conditions
in each experiment. d Image identification accuracy for pre- and post-Mooney
images in original and catch trials. Data from Experiment 1 (n =30 subjects),

reproduced from Fig. 2a. Asterisks denote statistically significant interaction effects
in a two-way repeated measures ANOVA, **: p <0.001. The central white dot of
each violin plot represents the median, the gray vertical bar represents the inter-
quartile range (25th to 75th percentiles), the violin plot bounds represent the
minima and maxima, and the plot curvature represents the density estimate of the
data distribution. Source data are provided as a Source Data file in Fig. 2.

e Hypotheses. Grayscale image manipulation may have no effect on learning (H1),
degrade learning without abolishing it (H2), or abolish learning (H3). All images
adapted from the Caltech 101”° and Pascal VOC”' databases.

Importantly, to test for one-shot perceptual learning, each
Mooney image (presented in both pre and post stages) and its asso-
ciated grayscale image were presented to a given subject only once
under a particular grayscale image condition (original, catch, or a
specific manipulation condition; see Fig. 1b). Different images and
conditions were presented to different subjects in a counterbalanced
design and the results were pooled across unique images and subjects
(for details, see “Methods”, “Behavioral Experiment 1”).

First, to test whether the learnt prior knowledge contains
orientation-specific or orientation-invariant information, we left-right
inverted the grayscale images or rotated them by 90° (Fig. 2b, c, top).
Previous work has shown that orientation-invariant object

representations emerge within the primate inferior temporal (IT)
cortex’*?, where posterior IT is orientation-specific and anterior IT is
orientation-invariant®’, with a similar trend in the human HLVC®*, We
found that both rotation and inversion significantly degraded the
learning effect without abolishing it (Fig. 2b, c). A two-way repeated-
measures ANOVA comparing each manipulation condition to the “ori-
ginal” trials showed a significant interaction effect ([pre vs. post] x
[original vs. manipulated]; inversion: Fi,9=7.4, p=0.011; rotation:
F129=11.2, p=0.002). Similarly, an ANOVA comparing each condition
to the “catch” trials also showed a significant interaction effect (inver-
sion: F110=>511, p=7x10"% rotation: Fy9=20.7, p=9x107). Thus,
perceptual priors are partially invariant to orientation manipulation.
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Fig. 2 | Mapping invariance properties of perceptual priors. Top row: Experi-
ment 1 (n=30 subjects). Bottom row: Experiment 2 (n =12 subjects). a and

f Learning effect in response to the original grayscale images and catch images in
Experiments 1 and 2, respectively. Data underlying (a) are identical to those plotted
in Fig. 1d. b-e Learning effects in response to left-right inverted grayscale images
(b), 90° rotated grayscale images (c), size-manipulated grayscale images (d), and
left/right visual-field shifted grayscale images (e). g-j Learning effects in response
to a different grayscale image from the same category (g), high-contrast line
drawings (h), magnocellular pathway-biasing low-contrast images (i), and

parvocellular pathway-biasing red-green iso-luminant images (j). In (i), image
contrast is artificially increased for visualization purposes. Asterisks denote statis-
tically significant interaction effects in a two-way repeated measures ANOVA
compared to original (green), high-contrast line drawing (blue), or catch (orange)
trials. The central white dot of each violin plot represents the median, the gray
vertical bar represents the interquartile range (25th to 75th percentiles), the violin
plot bounds represent the minima and maxima, and the plot curvature represents
the density estimate of the data distribution. Source data are provided as a Source
Data file. All images adapted from the Caltech 101° and Pascal VOC” databases.

Next, we tested for size and positional invariance of the per-
ceptual priors. Given the increasing receptive field size along the
visual hierarchy, a given position or size change of the image input
may completely alter neuronal encoding in a low-level region while
having a modest influence on a higher-level region. Based on pre-
vious reports of RF sizes in the ventral visual stream®**’, we chose
the following size and position manipulations. The original images
were presented at central fixation with 12 degrees of visual angle
(dva). For the size manipulation, we decreased the image size to 6
dva or increased it to 24 dva (Fig. 2d, top). For the position
manipulation, we shifted the image 6 dva to the left or 6 dva to the
right (Fig. 2e, top). A control analysis investigated these manipula-
tions’ impacts on neural coding based on published population
receptive field (pRF) data from the human ventral visual stream*,
A voxel’s pRF measures the center and size of its receptive field
based on measured fMRI BOLD signal, reflecting an average prop-
erty across neurons sampled within that voxel. This analysis showed
that in anterior HLVC, our chosen size and orientation manipula-
tions have relatively small impacts on neural coding (70-100% pRFs
retain diagnostic feature), while position shifts had relatively large
impacts (20-40% pRFs) (see Supplementary Fig. 1 and Supplemen-
tary Result). In early visual regions, all manipulations have larger
impacts on neural encoding (Supplementary Fig. 1).

Strikingly, we found that presenting the grayscale image at double
or half the original size had no impact on the learning effect, as shown
by non-significant interaction effects compared to the “original” trials
(reduced size: F1 29 =1.8, p = 0.189, BFo = 0.7; increased size: F; 20 = 0.9;
p=0.354, BF;o=0.4) and significant interaction effects compared to
the “catch” trials (reduced size: Fj,9=31.5, p=>5e-6; increased size:
Fi20=454; p=2x107). Given that size manipulation significantly
alters neural coding in early visual cortex (Supplementary Fig. 1c, V1-
hv4), these results suggest that the perceptual priors are likely not
encoded in the early visual cortex.

We found that position shifts significantly degraded the learning
effect, yet without completely abolishing it (Fig. 2e), as evidenced by a
significant interaction effect as compared to the original trials
(F120=8.4, p=0.007) as well as a significant interaction effect com-
pared to the catch trials (F;0=312, p=5x10"%). In a control analysis,
we excluded trials where subjects shifted their gaze more than 3 dva
away from central fixation. The results were unchanged with both
interaction effects remaining significant (p=0.031 and p=0.015;
Supplementary Fig. 2).

In sum, orientation manipulations and position shifts significantly
impaired learning, yet without abolishing it (following H2, Fig. 1e),
while size manipulations had no impact on learning (following H1).
These results are inconsistent with early visual cortex being a principal
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site for storing perceptual priors and instead point to HLVC as a likely
candidate region. In particular, since orientation invariance emerges
within HLVC®, if both posterior and anterior HLVC regions are
involved in storing the perceptual priors, it would explain the observed
pattern of partial invariance to orientation manipulations.

Perceptual priors are encoded in a perceptual, not

conceptual, space

The above experiment used orientation, size, and position manipula-
tions to probe invariance properties of the perceptual priors. These
can be compared to known neural coding properties along the ventral
visual stream, where invariance to these manipulations gradually
increases across successive stages of neural processing. In a second
experiment, we broadened our investigation along two additional
lines. First, we probed whether the prior is stored in the perceptual
space or at an abstract, conceptual level. To this end, we replaced the
grayscale image with another image exemplar from the same object
category (Fig. 2g). This manipulation completely abolished learning
(following H3, Fig. 1e), as evidenced by a significant interaction effect
compared to the original trials (Fyj; =34.4, p=1x107*, BF;o=3311.7),
and a non-significant interaction effect compared to the catch trials
(FL11=4.29, p=0.063, BF;x=2.2). This suggests that the perceptual
priors are stored in the perceptual space rather than at the conceptual
knowledge level, compatible with our hypothesis that it is stored in
HLVC, since IT neurons encode category information in a primarily
perceptual space with explicit representation of many perceptual
features®*°,

We further probed whether the magnocellular or parvocellular
visual pathway could each support the acquisition of perceptual
priors. These two pathways originate from different populations of
retinal ganglion cells and have stronger contributions to the dorsal and
ventral visual pathways, respectively, but this separation is not
absolute*"*2, Following previous studies**™*, we created line drawings
that are either low contrast or red-green iso-luminant, based on the
original grayscale images. The low contrast images bias visual pro-
cessing toward the magnocellular pathway (M-bias); the red-green iso-
luminant images bias visual processing toward the parvocellular
pathway (P-bias). As a control, we created high-contrast line drawings
to substitute for the original grayscale images. The high-contrast line
drawings induced a significant learning effect that was lower than the
original grayscale images (compared to catch: F;;;=17.0, p=0.002;
compared to original: F; 1; = 9.9, p = 0.009), presumably due to the loss
of texture and other detailed information. Interestingly, compared to
the high-contrast line drawings, neither the M-bias nor the P-bias
images caused a significant reduction in the learning effect (M-bias:
F11=0.1, p=0.79, BF;o=0.4; P-bias: F;1;=0.01, p=0.91, BF;n=0.4),
and both sets of images induced robust learning effects (interaction
effect compared to catch, M-bias: F,;;=24.6, p=4x10"* P-bias:
Fi11=35.5, p=1x107°). These results suggest that either the magno- or
the parvo-cellular pathway alone can support one-shot perceptual
learning. Although the magnocellular pathway has a stronger con-
tribution to the dorsal visual stream, it has collaterals reaching the IT
cortex™. Therefore, these findings are compatible with our overall
hypothesis that the perceptual priors are stored in HLVC.

Finally, a control analysis excluding any trials in which the prior-
inducing image was not correctly identified yielded similar results in all
conditions of both experiments (Supplementary Fig. 3).

Neural code in the HLVC matches the invariance properties of
perceptual priors. To confirm that HLVC indeed has neural coding
properties compatible with the information content of the perceptual
priors uncovered in our behavioral experiments, we conducted a 7 T
fMRI experiment using a subset of the grayscale images (Fig. 3a)
employed in the behavioral experiments. On each trial, subjects
(N=10) viewed a grayscale image presented in the original condition

or one of the manipulation conditions employed in Experiment 1 for
500 ms, followed by a 1.5-3 s inter-trial interval.

For each subject and region of interest (ROI), we computed a
neural representational dissimilarity matrix (RDM) comprising cross-
validated (c.v.) Euclidean distances between every pair of image-
condition combination computed from voxel-wise fMRI activity pat-
terns. Given 10 unique images and 7 image conditions, this generated a
70 x 70 matrix (Fig. 3b and Supplementary Fig. 5a). ROIs covered early
visual cortex (EVC, including V1-V4), HLVC (including LO1, LO2, and
FC), as well as FPN and DMN previously shown to be involved in this
task®?*® (Fig. 3c; for ROI details, see Supplementary Fig. 4 and
“Methods”).

We first tested which ROIs exhibited significant neural invariance
to image manipulations. To this end, we averaged within-image,
between-condition neural distances (green squares in the RDM shown
in Supplementary Fig. 5a; values shown as green bars in Fig. S5b), which
were compared against between-image neural distances (sampled
from the yellow region of the RDM in Fig. S5a; values shown as yellow
ribbon in Fig. S5b; for details, see SI Methods). A significant difference
in this test would suggest that the neural representation has significant
invariance to image manipulation, since different conditions of the
same image are represented more similarly than different images.
Significant neural invariance was found in HLVC regions (LO1, LO2, FC)
and V4 (all p < 0.01, permutation test, FDR-corrected; black asterisks in
Fig. S5b; for full statistics see Supplementary Table 2). A whole-brain
searchlight analysis yielded convergent results, with a single significant
cluster located within the FC ROI (p < 0.03, cluster-based permutation
test; center-of-mass MNI coordinates: [-38, —54, —14], 66 voxels).

To directly probe neural representations that have similar invar-
iance properties as those identified in our psychophysical experiment
for the perceptual priors, we conducted a model-based representa-
tional similarity analysis (RSA). We created a model RDM based on the
psychophysical results showing that size manipulation had no impact
on learning, while orientation and position-shift manipulations sig-
nificantly degraded the learning effect (Fig. 3b, bottom). Thus, the
model RDM contains three levels of neural distance—low (between size
manipulation and original), medium (between orientation/position
manipulations and original), and high (between different exemplar
images). Across all ROIs, model RDM only correlated significantly with
neural RDM from HLVC (LO2: p=0.03, FDR-corrected; Fig. 3c). A
searchlight analysis across the whole-brain also identified a significant
cluster within the HLVC (Fig. 3d, p=0.02, cluster-based permutation
test; MNI=[-44, -78, 0], 580 voxels). This result is consistent with
previous work showing that invariant object representation emerges
within the IT cortex®.

Together, these results show that neural representations within
the HLVC are uniquely endowed with similar invariance properties as
those of the perceptual priors identified by our psychophysical
experiment, supporting the notion that HLVC is the prime candidate
region for storing the priors in one-shot perceptual learning.

Learning-induced neural activity changes onset first in the HLVC
The above results show that HLVC is a plausible region for imple-
menting learning-induced plasticity and storing the priors. To further
test this hypothesis, we probed the timing properties of neural activity
changes induced by one-shot perceptual learning using intracranial
EEG (iEEG) recordings in 19 patients undergoing neurosurgical treat-
ment of epilepsy. We reasoned that perceptual priors are stored in
latent synaptic connectivity (since one-shot perceptual learning’s
effect is long-lasting*’) and, once reactivated by a matching sensory
input (e.g., a Mooney image), can trigger widespread shifts in neural
activity towards the prior knowledge such as those observed in non-
invasive neuroimaging® ¢ Therefore, the brain region with the earliest
shift in neural activity toward the relevant prior knowledge is the most
likely region for storing the perceptual prior.
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provided as a Source Data file.

In total, 1886 electrodes were recorded in 19 patients (Fig. 4a; see
Supplementary Tables 3 and 4 for demographic, clinical, and electrode
information) while patients performed the classic Mooney image task
involving “original” and “catch” conditions. Careful screening of
patients and collected iEEG data was performed to minimize the
potential contribution of pathological activity to the analyzed data
(see SI Methods). In all patients, the iEEG electrodes had extensive
coverage (Supplementary Fig. 6a) outside the seizure focus (Supple-
mentary Table 4).

Patients exhibited similar learning effects as healthy subjects
(Supplementary Fig. 6b, c; [pre vs. post]x[original vs. catch]:
Fi18=34.2, p=15x107). In addition to the five networks used in the
fMRI analysis (Fig. 3b), we also assessed the limbic network, which
included the cingulate, insular, and orbitofrontal cortices, given recent
results showing the limbic network’s involvement in conscious visual
perception*®*s, Between 32 and 479 electrodes were recorded in each
network. In order to maximize the number of trials collected, image
presentation ended when a response was given, with a maximal
duration of 2 sec (see “Methods” and Supplementary Fig. 7). For each

subject, only images that triggered the classic disambiguation effect—
recognized in the post stage and not recognized in the pre stage—
entered into the following analysis unless otherwise stated (see
“Methods” for details).

We first assessed neural activation time courses, as indexed by
high gamma (50-120 Hz) power (HGP)***°, for each perceptual stage
(Pre, Grayscale, Post). Both early visual cortex (EVC) and HLVC acti-
vated early (p<0.05, cluster-based permutation test), at approxi-
mately 50 ms after image onset for both pre- and post-Mooney images
(Fig. 4c, blue and orange bars, p <0.001). Importantly, post-Mooney
images elicited significantly higher neural activity than pre-Mooney
images (Fig. 4c, black bars) in the HLVC at approximately 430-623 ms
(p=0.036, onset time 95% confidence interval [CI]: 191-551 ms), fol-
lowed by FPN at approximately 668-1143 ms (p <0.001, onset time
95% CI: 609-943 ms), and later in EVC at approximately 844-1045 ms
(p=0.01, onset time 95% Cl: 744-893 ms).

Dorsal stream, FPN, and DMN all had a relatively early and tran-
sient neural activation for pre-Mooney images (significant clusters
found at 92-250 ms, p =0.032; 57-234 ms, p = 0.028; and 49-186 ms,
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for Image Preference analysis, showing time courses for the neural tuning similarity
of pre- and post-images as compared to Grayscale images. Significance bars:

p <0.05, cluster-based permutation test (based on one-sided Wilcoxon signed-rank
test), see Supplementary Table 5 for exact p-values. Shaded areas for the Pre and
Post time courses denote SEM corresponding to the paired tests (Post > Pre)’®”.
See Supplementary Fig. 7 for electrodes included across the time course of each
ROL. Source data are provided as a Source Data file.

p=0.048, respectively; Fig. 4c and Supplementary Fig. 8a, blue bars).
This early and transient neural activation to pre-Mooney images
(<250 ms) was likely triggered by bottom-up visual activation that
subsided quickly when recognition was unsuccessful. In addition, FPN
had higher neural activity to post- than pre-Mooney images at
approximately 668-1143 ms, which may be related to recognition-
triggered decision-related activity. We did not observe significant
neural activation to pre- or post-Mooney images in limbic regions.

To pinpoint neural activity specifically related to prior-guided
perceptual processing, we followed an earlier approach® to identify
time points at which the pre- or post-Mooney image-elicited activity
has a similar neural tuning profile as neural activity triggered by the
grayscale image (i.e., if an electrode is tuned towards a certain grays-
cale image, it also exhibits high activity to the matching Mooney
image; for analysis schematic, see Fig. 4b). A shift in neural activity
toward the relevant prior knowledge would manifest as higher neural
similarity between post and grayscale images than between pre and
grayscale images. The brain region with the earliest such activity would
be the most likely candidate for storing the prior knowledge.

In HLVC, we found that post-Mooney images elicited similar
neural tuning profiles as grayscale images at approximately
225-516 ms (Fig. 4d, orange bar, p<0.0001; onset time 95% CI:
152-420 ms), and this similarity is significantly higher than the pre-
grayscale similarity (black bar, p=0.047). Importantly, this effect in
HLVC preceded that in EVC (at 365-483 ms; Fig. 4d, orange bar,
p=0.018; onset time 95% CI: 242-455 ms), and EVC did not exhibit a
significant post vs. pre difference. This result, showing earlier and
stronger prior-guided neural activity in HLVC, suggests that feedback
from HLVC to EVC could have carried prior-related information. EVC
also had two time clusters in which pre-Mooney images had similar
neural tuning as grayscale images (Fig. 4d, blue bars, p=0.047,
p=0.036), which can be explained by similar visual features between
Mooney images and their matching grayscale images, such as co-
localized contours. We did not observe similar neural tuning between
pre/post-Mooney images and grayscale images in any other networks
(Fig. 4d and Supplementary Fig. 8b).

To further test the idea that the similar neural tuning in HLVC
between disambiguated post-Mooney images and their matching
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grayscale images reflects the influence of one-shot perceptual learn-
ing, we performed a control analysis using pre-Mooney images that
were spontaneously and correctly recognized before seeing the
matching grayscale images. Recognizing the Mooney image prior to
viewing the greyscale original version occurs in a minority of trials
(Supplementary Fig. 6¢) and indicates an alternative source of prior
knowledge derived from lifelong experiences, distinct from the one-
shot priors acquired by viewing the original greyscale images. We
found that spontaneously recognized pre-Mooney images did elicit
similar neural tuning profiles as greyscale images, but with a distinct
temporal profile to that of the disambiguated post-Mooney images
described above (Supplementary Fig. 9). Recognized pre-Mooney
images exhibited similarity for two short-lived periods at approxi-
mately 262-345ms (p=0.032) and 641-740 ms (p = 0.024)—possibly
related to a feedforward and a feedback wave™; by contrast, dis-
ambiguated post-Mooney images exhibited similarity in one cluster at
approximately 225-516 ms. The broader temporal cluster with a later
peak for disambiguated post-Mooney images (at 355 ms as compared
to 301 ms) suggests that additional processing is required in HLVC to
bring the recently learned prior knowledge to bear as compared to
basic object recognition guided by lifelong knowledge.

Together, these results show that a shift in neural activity towards
prior knowledge onsets first in HLVC (at approximately 225 ms), pre-
ceding that in EVC. Strikingly, we did not find a similar shift in neural
activity in the dorsal visual stream, FPN, DMN, or limbic network. This
result, obtained from extensive iEEG sampling across cortical net-
works, provides strong evidence that the perceptual priors are stored
and reactivated in HLVC.

A top-down transformer captures human behavior during the
one-shot perceptual learning task

To shed light on potential computational mechanisms underlying one-
shot perceptual learning in humans, we sought to develop an image-
computable DNN model that can recapitulate human behavior on this
task. Instead of modeling specific brain regions, we optimized the
model to match human performance, thus avoiding circularity when
using the model to localize prior representations in the brain. To
preview, we constructed a DNN model which, given a sequence of
images, stores accumulated information in a prior module and uses it
to modulate visual information processing. We show that our DNN
model achieves one-shot perceptual learning capability similar to that
of humans, has similar error patterns as human subjects and can be
used to predict human learning outcomes for a specific image, thereby
proving its efficacy to approximate perceptual priors learnt by human
subjects. We further show that the prior information learnt by the
model has the highest correspondence to neural representation in the
human HLVC.

We converted the Mooney image learning task to a computational
benchmark to recreate our experimental setup in silico. Using this
benchmark, we developed a top-down transformer architecture engi-
neered to solely rely on top-down signaling for one-shot learning™
(Fig. 5a, see “Methods” and Supplementary Fig. 10 for details). There
are two main components in our model. The first component is a vision
backbone (using the transformer architecture), which is pre-trained
using self-supervised learning. The second component, key to recapi-
tulating the one-shot learning behavior, is a prior storage module that
is responsible for storing prior knowledge about the images seen.
Using these two components, we designed two pathways for com-
puting the visual representations suitable for the one-shot perceptual
learning task: the bottom-up pathway and the top-down pathway.
When an image is first presented to the bottom-up pathway, the vision
backbone produces visual representations that are unmodified by
previous experiences. The output of the bottom-up pathway is not
directly involved in the decision-making process but is used as a query
to retrieve relevant representations from the prior storage module.

The relevant context from the prior storage module is then used as
top-down conditioning to modulate the model in the top-down path-
way. Here, the same vision backbone computes image features of the
currently shown image again, but this time with the conditioning
provided by the prior storage module. Finally, the output of the
modulated computation is used to obtain a classification label and
update the prior module to incorporate the current information.

We first evaluated the model’s performance and perceptual
learning effect on 1000 image sequences generated from randomly
chosen grayscale images from the ImageNet 1k dataset and their
Mooney image counterparts (automatically generated, see “Meth-
ods”), following the same task structure as the human psychophysics
study (see block structure in Fig. 1a, without any manipulated grayscale
images). We define one-shot perceptual learning effect here as the
increase in accuracy in the post-Mooney phase compared to the pre-
Mooney phase. Our top-down transformer model displayed an average
perceptual learning effect of 16.62% (post-pre; Fig. 5b; pre vs. post,
Mann-Whitney U test: p<0.005, N=1000). This increase is much
higher than the mere repetition-induced learning effect of 3.11%
(Fig. 5b; post vs. repetition, Mann-Whitney U test: p<0.005,
N=1000), indicating that the model exhibits genuine one-shot per-
ceptual learning.

To further evaluate the model’s ability for one-shot perceptual
learning against humans, we conducted an online behavioral study
(N=12) using a larger set of Mooney images (n = 219) (see SI Methods).
The 90 images on which human subjects showed the greatest degree
of perceptual learning were chosen for the in-person human psycho-
physics experiments described earlier. We exposed the model to the
identical task and image sequences as the human subjects, and plotted
model performance against human performance for the top 90 ima-
ges. Overall, evaluated on the identical task, the model exhibited a
similar perceptual learning effect as human subjects (Fig. 5¢), with the
absolute post-phase human accuracy at 72% compared to the model’s
at 66%.

We compared our top-down transformer model with existing
well-known neurobiologically motivated DNNs (henceforth “baseline
models”), including BLT** and CORnet**. Our model significantly out-
performed these baseline models on the one-shot perceptual learning
task, as shown by model performance in the evaluation phase (Sup-
plementary Fig. 11a). In addition, when exposed to the image sequen-
ces used in the human online psychophysics experiment, CORnet and
BLT had sharply degraded performance and failed to maintain the
learning effect (Supplementary Fig. 11b). This drop in performance for
baseline models was likely due to their inability to maintain the long-
term storage of visual priors (the psychophysics task had much longer
image sequences than those used in the model training/evalua-
tion phase).

To confirm that the top-down conditioning from the prior storage
module is key to our model’s success, we corrupted this conditioning
signal by using a weighted average of the conditioning tokens and
norm-matched Gaussian noise. As the weight of the noise increases
from 0.05 to 0.8, the model’s performance improvement from the pre
to post stage drops sharply (Supplementary Fig. 13), confirming that
the conditioning by the prior storage module is key to the model’'s
success at one-shot perceptual learning.

To examine whether our DNN model exhibits any behavioral
alignment to humans beyond mimicking the overall accuracy, we
analyzed the error patterns of human subjects and our model. The
twelve human subjects were each presented with a unique image
sequence (consisting of the same set of Mooney and grayscale images).
We thus tested our model with the same 12 image sequences presented
to human subjects. This resulted in 12 error sequences for humans and
the model, respectively. We then asked whether there is similarity
between these error patterns, as measured by AUROC (Fig. 5d). We
found that the model showed a high but imperfect self-agreement at
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trial within the long image sequence. ¢ Model learning performance as compared to
human subjects, where the model was presented with identical image sequences as

Color ImageNet 1k accuracy

84% === =—=mmmm e m e e e e e D - —— - -
3 70% A
©
5 -
[9)
Q
< [ 16.62% (krkk)

50%7 R Y

pre post gray repetition
d Image phase

Subject/model error in pre, gray, and post
(1: Correct / 0: Incorrect)

su[ofr[t]1]r]o] - ]
za [0Jo1]of1]1] ~ ]

AUROC(z1,z2) = Recognition error alignment

kkk

Behavioral alignment (AUROC)

M->M

H->H M->H M->H

(matching) (non-matching)

human subjects. Whiskers show min and max of accuracy, box sides show 25 and 75
percentile, center line shows median accuracy (n =219 images). d Image recogni-
tion error pattern alignment between human subjects (H- > H), between model fed
with difference sequences of the same images (M- > M), and between model and
human subjects with matching image presentation (M- > H matching) and non-
matching image presentation order (M-H non-matching), measured by AUROC. Bar
height shows median value across measurements and error bars indicate 95% CI of
AUROC. Dashed line indicates chance level AUROC. *** indicates statistical sig-
nificance above chance (p < 0.0005, one-sided t-test). e Human learning outcome
prediction. On the x-axis, numbers refer to model layer and CLS, Logits refer to
model’s representation following its last layer. Black horizontal bar at the top
indicates significant difference in prediction when using model features from pre-
vs. post-phase (p < 0.05, two-sided ¢ test with FWE correction, n =12 subjects). Blue,
orange, and gray horizontal bars show significant prediction as compared to the
chance level (p < 0.05, two-sided t test with FWE correction, n =12 subjects). Indi-
vidual image learning outcomes are significantly predicted using the model's
grayscale image representation starting from the second layer onward. Center line
shows mean AUROC across subjects, with shaded areas show 95% Cl across subjects
(n=12 subjects).

Nature Communications | (2026)17:1204


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-026-68711-x

AUROC=0.89 (p<0.0005 above chance, Mann-Whitney U test,
n =66, pairwise between the 12 model instantiations). Human subjects
also showed a significant agreement between each other at AUROC =
0.71 (p<0.0005 above chance, Mann-Whitney U test, n=66).
Importantly, the model showed significant error pattern similarity to
humans at AUROC = 0.65 (p < 0.0005 above chance, Mann-Whitney U
test, n =12) with the matching image presentation order. When shown
non-matching image sequences, the model shows an AUROC = 0.65
(p<0.0005 above chance, Mann-Whitney U test, n=132) that is not
significantly different from when the matching sequences are shown to
humans and the model (p = 0.769, Mann-Whitney U test).

These results suggest that our DNN exhibits behavioral align-
ment to human subjects and largely recognizes the same images as
humans do; moreover, the strength of this behavioral alignment is
largely invariant to the order of the presented images. The fact that
the specific image sequence has little effect on model-human error
alignment (Fig. 5d, rightmost two bars) suggests that the model
uses the specific matching grayscale image—instead of all pre-
viously seen images or only recently seen images—to disambiguate
a given Mooney image, similar to the one-shot perceptual learning
phenomenon in humans. Specifically, a mechanism that uses all
previously seen images would be similar to life-long priors™ instead
of priors obtained from one-shot learning, and a mechanism that
uses only the most recently viewed images would be similar to
working memory in humans, which is known to be distinct from
one-shot perceptual learning®.

To evaluate whether the internal representations of the model
contain information relevant to how human subjects recognize the
Mooney images, we used model internal features (from the vision
transformer and its outputs after top-down conditioning; for details
see “Methods”) to predict human subjects’ learning outcomes for
individual images (learned vs. not learned). Accurate prediction of
human learning outcomes would suggest that the model extracts
features that are relevant to humans’ learning success. Using the
model’s representation features for grayscale images, prediction
accuracy for human subjects’ Mooney image learning outcomes was
significant from the 2nd layer onward (Fig. Se, gray; the 1st layer has
index 0), and increased monotonically from early to late layers with a
peak AUROC of 66%. The visual features extracted from pre- or post-
Mooney images are also significantly predictive of human learning
outcome in certain layers, but not as predictive, with post features
reaching 59% and pre features reaching 56%. In addition, from layer 8
onwards, model features from the post-phase predict human learning
outcome significantly better than model features from the pre-phase
(Fig. 5e, black bar), suggesting that the incorporation of pertinent prior
information improves the prediction of human learning outcome.
Overall, these results show that the features extracted by the model
from the prior-inducing grayscale image are highly predictive of
humans’ learning success rate.

Finally, we tested whether the model shows similar invariance
properties as human subjects (Fig. 2a-e). To this end, we fed shuffled
blocks of image to the model (see Fig. 1a), with random manipulation
applied to the grayscale image, and recorded the model’s recognition
performance. The model’s performance in the grayscale-manipulated
condition was then compared to the original condition or the catch
condition, similar to the human experiment. The results are shown in
Supplementary Fig. 12. Similar to human subjects, the model exhibits
invariance to orientation, size, and position manipulations of the
grayscale image, as evidenced by a significant interaction effect when
comparing each manipulation condition to the catch condition (all
p<0.001). Because our model was never designed to capture the
invariance properties directly, the emergence of invariance in the
model’s one-shot perceptual learning ability is nontrivial and adds to
the evidence that our model captures the human one-shot perceptual
learning phenomenon behaviorally.

The model suggests that prior-related information is con-
centrated in HLVC
Armed with a DNN model that recapitulates one-shot perceptual
learning ability of humans, has human-aligned error patterns, and
predicts human learning success at an image-to-image level, we next
used the model to shed light on the computational mechanisms
implemented in the human brain. Because the model contains
an explicit representation of the prior information, we asked which
brain region contains neural code similar to the prior information
learnt by the model. To this end, we compared the prior information
accumulated in our DNN model, which guides the model’s learning
behavior, with human brain activity recorded during the Mooney
image task performance measured by 7T fMRI (n=19; data from
ref. 24), and assessed the ability of prior information encoded in the
model to predict voxel-level neural activity in each brain region.
Given the same sequence of images presented to the human
subjects, we predicted each subject’s neural activity using the model’s
internal features representing accumulated visual information (state
component; see Supplementary Fig. 10 for details), and compared this
to a set of baseline predictions. These baselines were obtained from
counterfactual catch trials—image sequences that mimic the task for-
mat but offer no stimuli for encoded priors, similar to “catch” trials in
the psychophysics experiment (Fig. 6a, left; see “Methods” for details).
Since the model’s state component encodes information related to the
visual prior information, the improvement in brain prediction score
(see “Methods” for details) as compared to the catch image sequence
(shown in orange in Fig. 6a, pooled across all images) indicates the
utilization of information related to perceptual priors. We found
that the fusiform cortex (FC), a region that is part of HLVC, contained
the highest proportion of voxels containing prior-related information
(29.7%), followed by DMN (13.9%) and FPN (11.2%) (Fig. 6a, right).
Outside of FC, we observed a steadily increasing trend from early visual
regions (<5%) to higher-level regions like DMN.

Fusiform cortex information strength assessed by the model
predicts the learning effect in humans
Lastly, we evaluated whether successful perceptual learning in humans
is related to the strength of learning-related information as measured
by the model in each ROI. To measure this information strength, for
each image, we quantified the proportion of decrease in brain activity
prediction error for a typical image sequence compared to the catch
image sequence (which induced no learning). We then pooled these
results across images at the ROI level. Following earlier work?, we
defined successful learning in human subjects as 4 or more (out of 6)
presentations reported as recognized in the post phase of a Mooney
image. We found that the learning-related information strength in the
dorsal visual stream is negatively related to the subject’s successful
perceptual learning (Fig. 6b), with an increase in dorsal stream infor-
mation strength from the 50th percentile to 100th percentile reducing
the average subject perceptual learning success rate from 81% to 61%.
This suggests that prior-related information in the dorsal visual stream
is inversely related to learning success, a surprising result that hints ata
potential competition between the dorsal and ventral visual stream.
We also evaluated whether the reliability of successful perceptual
learning in humans is related to the learning-related information
strength in an ROI. Taking only the successfully learnt images as
defined above, we measured reliability as the proportion of post-phase
images that are reported as recognized (varying from 4/6 to 6/6), with
100% being always recognized in the post-phase (hence, most reliable).
We found that the fusiform cortex (FC)’s information strength was
positively associated with the reliability of the perceptual learning
effect (Fig. 6¢), with an increase in FC information strength from the
50th percentile to 100th percentile increasing the average subject
perceptual learning reliability from 84% to 95%. No other ROI's infor-
mation strength was associated with success rate or learning reliability,
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Fig. 6 | Brain prediction contrast reveals FC’s strong involvement in learning.
a Average percentage of voxels in each ROI that show significant improvement over
baseline in prediction score at the group level (Pearson’s r, TFCE 10 k permutation,
p<0.05, n=19 subjects for each individual point). Baseline brain prediction is
obtained by feeding alternative sequences of images into the model, where no
learning happens. FC shows the highest percentage of significant voxels. Each point
shows the individual ROI within group. The center line shows the average of that
ROI group, error bars show the 95% CI across individual ROIs. b Higher dorsal
stream median information strength is associated with lower learning success. The

center line shows the estimated parameter value, error bars show 95% Cl of para-
meter estimate. *: significant parameter (logit link Binomial family GEE parameter ¢-
test, p < 0.05, FDR-corrected). ¢ Higher FC median information strength is asso-
ciated with higher learning reliability. The center line shows the estimated para-
meter value, error bars show 95% CI of the parameter estimate. *: significant
parameter (log link gamma family GEE, parameter t-test, p < 0.0S5, FDR-corrected).
d Information strength connectivity pattern associated with successful perceptual
learning effect (Spearman’s rho parameter estimate using GEE, t-test p < 0.05, FDR-
corrected).

suggesting that the perceptual learning effect is specifically related to
information present in FC.

We also evaluated whether the perceptual learning effect is
associated with interactions across ROIs by investigating pairwise
connectivity between ROIls, where connections are defined by
the correlation of learning-induced information strength across
different images. We found that when an image is successfully
learned, there is significant information connectivity across the
entire brain network, with the fusiform cortex being a central node.
Specifically, FC is connected with both EVC and FPN, with FPN fur-
ther connected to DMN. LOC occupies a more peripheral location in
the network graph, being connected only to other visual regions
(Fig. 6d, p<0.05, FDR-corrected). An alternative but weaker path
exists from EVC to FPN through the dorsal stream. By contrast,
when the image is not learned, we only observed significant con-
nectivity between the dorsal stream and FPN, and no other con-
nections were significant (not shown).

Together, these DNN-informed results demonstrate a central role
of the fusiform cortex in representing prior visual information and
predicting human subjects’ learning success for a specific image.

Discussion

“Aha” moments, flashes of insight, and other phenomena of one-shot
perceptual learning are mysterious and impressive feats of the human
brain. Despite decades of research, the site of plasticity and learning
underpinning one-shot perceptual learning—fast, long-lasting learning
effects in the perceptual domain—remained unknown, in large part
due to the learnt prior knowledge being encoded in latent synaptic
connectivity (so as to be robust and long-lasting) and difficult to

measure using neuroimaging approaches that only capture active
neural dynamics.

Here, using convergent approaches from psychophysics, neuroi-
maging, intracranial recordings, and deep learning, we pinpointed the
human HLVC as the seat of neural plasticity subserving one-shot per-
ceptual learning and revealed the potential involved computational
mechanisms. The information content of perceptual priors, assayed by
psychophysics, uniquely matched the neural coding properties of
HLVC, measured by fMRI. Using iEEG, we found that HLVC was the
brain region showing the earliest-onset neural signature of prior-
guided stimulus processing, suggesting that the latent priors may be
encoded and reactivated locally within HLVC. Finally, a vision
transformer-based DNN incorporating top-down feedback that shapes
visual processing with accumulated prior information was able to
recapitulate the one-shot perceptual learning phenomenon in humans
and predict the image-to-image human recognition outcome, and the
accumulated prior information in the model had the highest corre-
spondence to neural representations in the human HLVC. These mul-
tiple strands of converging evidence point to a crucial role of HLVC in
one-shot perceptual learning.

Our fMRI experiment was carried out under passive viewing of
grayscale images to investigate which brain region has neural coding
properties compatible with the invariance properties of perceptual
priors uncovered by the behavioral experiment. The logic here is that
viewing the grayscale image leaves a “trace” in the activated neural
populations, and if the corresponding Mooney image is presented a
while later, disambiguation of the post-Mooney image happens, which
thereafter becomes a long-lasting memory through consolidation
processes. The exact cellular mechanisms involved remain unclear and
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await future study (we conjecture that the activity trace might be
similar to activity-silent working memory*°). Nonetheless, the invar-
iance properties of neural activation during passive viewing of grays-
cale images should be equivalent to the invariance properties of priors
stored in the one-shot perceptual learning task, because the latter is
inherited from viewing of grayscale images during the one-shot per-
ceptual learning task. We note that the same logic was adopted in a
long line of research on visual perceptual learning (VPL)—slow, gradual
perceptual learning in the visual domain’.

Conventional wisdom holds that one-shot learning requires the
hippocampus, but a recent lesion study* ruled out this possibility for
one-shot perceptual learning and instead placed it under the phe-
nomenon of priming”. Our observation that one-shot perceptual
learning is invariant to size manipulation is reminiscent of earlier stu-
dies showing size-invariance in both priming®*** and VPL involving
object recognition®. Up until now, the relationship between priming,
VPL, and one-shot perceptual learning at a mechanistic level has been
unclear, with studies on priming focusing on changes in neural activity
magnitudes before and after exposure®®, and studies on VPL focusing
on delineating plasticity at different levels of the visual hierarchy>***',
Our results are compatible with the view that priming and perceptual
learning lie on a continuum®*®, with one-shot perceptual learning
being a special case of priming that has especially long-lasting effects,
and a special case of perceptual learning with an especially fast
acquisition phase. Interestingly, while three-year old children have
similar magnitudes of priming effects as college students, one-shot
perceptual learning ability does not reach adult level until
adolescence®?. This raises the intriguing possibility that one-shot
perceptual learning relies on a perceptual system already fine-tuned by
experience.

Previous neuroimaging studies found widespread changes in
stimulus-driven neural activity, including a shift in neural activity
toward prior knowledge, following one-shot perceptual
learning®****%¢, but could not pinpoint where learning takes place in
the brain. Using intracranial recordings sampling widespread cortical
networks, we observed that neural activity changes driven by prior
knowledge—manifesting as a shift in the neural activity toward the
relevant prior knowledge—emerged first in HLVC, prior to similar
changes in EVC (Fig. 4d), suggesting that top-down feedback from
HLVC to EVC could have carried prior-related information. An early
primate study using a similar task reported fast changes in IT neuronal
firing rates after learning, but did not reveal the time course of these
neural activity changes or assess other cortical regions. Interestingly,
we did not see a similar neural activity shift towards the relevant prior
in higher order brain regions, including FPN and DMN, where such
shifts were previously observed in fMRI**?°, This is likely due to dif-
ferences in the recording modalities—high-gamma power is well
known to reflect local population neuronal firing rates, whereas fMRI
signal can also reflect synaptic inputs and field potential changes
uncorrelated to firing rates®’. Importantly, combining evidence from
psychophysics, iEEG, and modeling, the present study underscores the
key role of HLVC in one-shot perceptual learning, and updates a pre-
vious proposal based on fMRI, suggesting that the prior knowledge
learnt from one-shot perceptual learning is encoded in FPN and DMN.

As part of this investigation, we derived a transformer archi-
tecture to model the one-shot perceptual learning phenomenon based
on top-down mechanisms that convey learnt prior information. We
showed that learnt prior information in the model is similar to that
contained in the human HLVC, and that the existence of this type of
information in the human HLVC predicts more reliable learning in
humans. Our network analysis offers a hypothetical mechanism as to
how priors shape the perceptual processing. We hypothesize that
higher order regions, such as FPN might serve as a controlling center
for the usage of prior information, which is stored and activated in

HLVC and then communicated to other visual areas, such as EVC,
through top-down feedback. The dorsal visual stream, on the other
hand, is associated with a lower learning success rate when its infor-
mation strength is high, suggesting a potential competitive role with
the ventral visual stream, consistent with our overall conclusion that
the HLVC is critical to one-shot perceptual learning.

Interestingly, while we were developing our model, several similar
architectures were described in the machine learning literature that
bear a strong resemblance to our model conceptually but were moti-
vated by purely computational considerations with regard to extend-
ing the sequence length of transformer-based models (RMT,
TransformerFAM, and infini-attention®!). We see this as a broadly
encouraging development in line with other work® " suggesting a
convergence between computational neuroscience research and deep
learning.

This work is not without its limitations. First, although our DNN
model can predict image-to-image human recognition outcomes, its
behavioral alignment with human subjects is still below the alignment
between two different human subjects (Fig. 6d), potentially due to the
absence of additional mechanisms (such as the separation between
dorsal and ventral pathways) that we do not account for. A more
accurate understanding of the one-shot perceptual learning phenom-
enon can inform the development of better computational models
that can explain individual human brain activity patterns and learning
effects. In addition, in our modeling efforts, we focused on the storage
and retrieval of content-specific priors purely based on activation
changes, rather than model weight changes. For improved modeling of
the long-term retention of learned perceptual priors, model weight
updates might be necessary.

Second, the circuit- and cellular-level mechanisms supporting
learning-related plasticity in HLVC remain to be uncovered. HLVC is
known to support slow, gradual visual perceptual learning (VPL) that
occurs at the object level"*. A recent study also revealed that IT neu-
rons encode familiarity—a form of long-term episodic memory?. An
open question for future investigation is whether the neural code in IT
cortex for slow VPL, one-shot perceptual learning, and long-term epi-
sodic memory rely on the same or overlapping group of neurons and,
if so, whether the neural subspaces representing these distinct types of
memories are orthogonal or correlated. In addition, one-shot per-
ceptual learning effects persist for months to years, and, therefore,
consolidation of the learnt prior knowledge is likely required, and its
detailed mechanisms remain to be investigated.

Finally, although we employed a wide range of grayscale image
manipulations to delineate the information content encoded in the
priors, additional manipulations are possible and can be investigated
in future studies. A related question is whether one-shot perceptual
learning of low-level visual features, which—although rare—exists in
special case scenarios®’, might rely on other visual regions such as EVC.

Human perceptual learning is a critical type of learning in humans,
allowing us to modify how we perceive the world without radically
shifting the underlying concepts used to perceive it. One-shot per-
ceptual learning is the crown jewel of this general ability. Our work,
localizing the underlying learning process to the HLVC and capturing
the learning phenomenon in a DNN with top-down feedback, sheds
light on this impressive human feat both biologically and computa-
tionally. We anticipate that our work will inspire further research into
these novel mechanisms of one-shot learning and support the devel-
opment of Al models with human-like perceptual mechanisms and
computational properties. Furthermore, since altered one-shot per-
ceptual learning reflecting an over-reliance of perception on prior
knowledge is observed in multiple neuropsychiatric illnesses involving
hallucinations®**’, our findings help to pave the knowledge foundation
to better understand the pathophysiological processes contributing to
these perceptual disorders.
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Table 1| Counterbalanced group design for the main experiment (Experiment 1)

Images 1-9 Images Images Images Images Images Images Images Images Images

10-18 19-27 28-36 37-45 46-54 55-63 64-72 73-81 82-90
M1 M2 M3 M4 M5 M6 M7 M8 Original Catch Group 1
Catch M1 M2 M3 M4 M5 M6 M7 M8 Original Group 2
Original Catch M1 M2 M3 M4 M5 M6 M7 M8 Group 3
M8 Original Catch M1 M2 M3 M4 M5 M6 M7 Group 4
M7 M8 Original Catch M1 M2 M3 M4 M5 M6 Group 5
M6 M7 M8 Original Catch M1 M2 M3 M4 M5 Group 6
M5 M6 M7 M8 Original Catch M1 M2 M3 M4 Group 7
M4 M5 M6 M7 M8 Original Catch M1 M2 M3 Group 8
M3 M4 M5 M6 M7 M8 Original Catch M1 M2 Group 9
M2 M3 M4 M5 M6 M7 M8 Original Catch M1 Group 10

M1-M8 denotes the image manipulation conditions: size-small (6 dva), size-large (24 dva), visual field shift (6 dva left/right shift), left-right inversion, 90° rotation (CW/CCW), as well as an additional
condition not relevant to the present study. Subsequently, all images were randomly shuffled across all manipulation groups, to prevent trial blocks of the same manipulation. See above text for

additional details.

Methods

Behavioral experiment 1

Subjects. Thirty-three participants were recruited from the greater
New York City area. Ages 20-70 (median age 28, std =13.7), 18 were
female. Sex/gender was based on self-report and not considered in the
study design, since sex or gender-based differences in perception were
not a focus of this study. Most of the participants (31 out of 33) were
right-handed, and their vision was normal or corrected-to-normal. All
participants were compensated $15/h for their time, and provided with
a written informed consent, and the experiment was approved by the
Institutional Review Board of New York University School of Medicine
(protocol #S15-01323).

Complete data from 3 participants were excluded due to poor
performance in the main task. 1 block was removed from 2 subjects
due to an experimental script error and a request to leave early,
respectively. Exclusion criteria was established prior to the beginning
of the study. Data from a total of 30 participants were used in the final
analysis.

Experimental stimuli. The task was created using PsychoPy 2020.1.3
and presented on a 1920 x 1080 monitor, placed 63 cm away from the
participant’s eyes. Participants placed their heads on a chin rest to
minimize head movements and ensure a consistent viewing angle. In
the original trials, the Mooney and grayscale images had the same
retinal location, size, and orientation (12 dva in size, presented at
central fixation). All images were taken from public databases: from
Caltech 101° (https://data.caltech.edu/records/mzrjq-6wc02) and
Pascal VOC” grayscale image (https://www.robots.ox.ac.uk/-vgg/
projects/pascal/VOC/voc2012/index.html) databases. All images used
in this study were selected for having a single object in a naturalistic
background.

Experimental procedure. Participants first completed two blocks of
practice trials, first without a time limit for task familiarity, and later
with time limits used in the main task. In each trial, a purple fixation dot
was presented for 1s, followed by an image presentation (Mooney or
grayscale) for 2 s. Subjects responded with a Yes/No recognition but-
ton press, followed by a verbal response (with an upper limit of 6 ),
which was recorded in real-time. Participants completed the task
inside a dimly lit, soundproof room designed for EEG studies; a
microphone was fed through the cable mount so that verbal responses
could be heard from outside the room. Eye-tracking data were recor-
ded using EyeLink 1000, in the binocular mode with a sampling rate of
1000 Hz.

The main task consisted of 3 blocks of 90 trials each. In total, 90
unique Mooney images were assessed. The following grayscale image
conditions were tested: original, catch, size-small (6 dva), size-large (24
dva), visual field shift (6 dva left/right shift), left-right inversion, 90°
rotation (CW/CCW). Each unique Mooney image was assigned to a
single condition for each subject (because each image can only be
tested once/participant), and this assignment, as well as the pre-
sentation order of conditions were counterbalanced across partici-
pants. The counter-balance structure is shown in the table below
(Table 1). M1-M8 denotes the 7 image manipulation conditions listed
above, plus an additional condition not relevant to the present study.
Thirty participants were included in this experiment, and were evenly
distributed across the 10 groups (i.e., each group contained 3 sub-
jects). All images were randomly shuffled across all manipulation
groups to prevent trial blocks of the same manipulation. Results were
pooled and averaged across all subjects to test learning outcomes for
each condition. This counter-balancing design was necessary because
each participant could only view each unique image in one condition,
given the one-shot perceptual learning task.

Experiment 1: counterbalanced groups

Following previous studies®*, images were presented in mini-blocks
that consisted of 3 grayscale images followed by 6 Mooney images.
The 6 Mooney images included 3 “Post” images that correspond to the
3 grayscale images shown just before, and 3 “Pre” images that corre-
spond to grayscale images that would be shown in the subsequent
block, and their order was randomly shuffled. Before the first block,
3 “Pre” images were shown before the start of this block structure.
For the last block, only 3 grayscale images and 3 “Post” images
were shown.

fMRI experiment

Subjects. Twelve participants were recruited from the greater New
York City area. Ages 21-42 (median age 23, std =6.2), 9 were female,
and all were right-handed with correct or corrected-to-normal vision.
Sex/gender was based on self-report and not considered in the study
design, since sex or gender-based differences in perception were not a
focus of this study. All participants were provided with a written
informed consent, and the experiment was approved by the Institu-
tional Review Board of New York University School of Medicine (pro-
tocol #S15-01323). Data from 2 participants were entirely excluded:
one immediately opted out due to nausea in the scanner, and the other
was excluded due to suboptimal scan quality. Lastly, 4 out of 16 blocks
from 1 participant were excluded due to scanner error.
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Experimental stimuli. The task was created using PsychoPy 2021.2.3
and stimuli were presented using an MRI-compatible LCD monitor
(BOLDScreen, Cambridge Research Systems) with a 120 Hz refresh
rate. The monitor was located 198 cm behind the center of the scanner
bore, and participants viewed the screen using an eye mirror that was
placed 5 cm away from the participant’s eyes, attached to the head coil.
To test for the emergence of invariant object recognition, a subset of
10 grayscale images from the psychophysics study was used. The
images were balanced between 5 animate and 5 inanimate objects. The
images were shown in the following conditions that matched the
psychophysics paradigm: Original image (11 dva), LR inversions,
Rotation (CW), Rotation (CCW), Size-small (5.5 dva), VF shift (5.5 dva
right), VF shift (5.5 dva left), and line drawings. Line drawings were not
further analyzed to constrain analysis to size, viewpoint, and position
invariance from Experiment 1. Size-big (24 dva) manipulations were
excluded due to monitor size and placement limitations inside the
scanner room. Also, the size and VF shift parameters had to be pre-
sented at a slightly smaller scale as compared to the behavioral
experiments (from 12 to 11 dva, and from 6 to 5.5 dva) to accommodate
the scanner screen size.

Task design. First, participants were shown all possible 80 images (10
exemplars x 8 conditions) before entering the scanner (on a gray
background, in a similar format as the main task), for familiarity and to
prevent any discrepancies in neural responses during the first and the
subsequent runs. Each session consisted of anatomical scans and 16
runs of fMRI BOLD runs that were 5 min each, for a total of ~90 min in
the scanner. During the task inside the scanner, participants were
asked to passively view the screen while maintaining visual fixation,
and to respond with a button press when the fixation cross changed
from white to red for a 200 ms duration. In each trial, the image was
presented for 500 ms, followed by a 1.5-3.5s jittered ITI. Each run
included 80 trials, in which each unique image was presented once in
shuffled order, with the constraint that two different manipulation
conditions of the same image cannot be presented in adjacent trials (to
avoid any repetition suppression/priming effects). The fixation cross
color change happened 16 times per run, at a random time after the
trial onset (during image presentation or the ITI). At the end of each
run, subjects were given visual feedback about the proportion of
successful button-presses in response to fixation cross color changes,
to maintain task engagement.

MRI data acquisition. Experiments were run in a Siemens 7T MRI
scanner using a 32-channel NOVA head coil at the NYU Center for
Biomedical Imaging. T1 weighted MPRAGE images were acquired with
1.0 mm isotropic voxels, FOV 256 mm, 192 sagittal slices, TR 3000 ms,
TE 4.49 ms, flip angle 6°, fat suppression on, bandwidth 130 Hz/Px.
Proton density images were acquired for intensity normalization, with
the following parameters: FOV 256 mm, 192 sagittal slices, 1.0 mm
isotropic voxels, TR 1760 ms, TE 2.61ms, flip angle 6°, bandwidth
280 Hz/Px. BOLD fMRI images were acquired using a GRE-EPI sequence
with the following parameters: FOV 192 mm, 66 oblique slices covering
all of cortex, voxel size 1.6 x 1.6 mm, slice thickness 1.6 mm with dis-
tance factor 10%, TR 1500 ms, TE 25 ms, multiband factor 2, GRAPPA
acceleration 2, phase encoding direction posterior to anterior, flip
angle 50°, bandwidth 1894 Hz/Px.

fMRI analysis

Preprocessing. Data preprocessing follows our published
procedures®*¢. All fMRI analyses were preprocessed using FSL’s
FEAT tool. Motion artifacts were corrected using MCFLIRT, which
aligned each volume to the volume acquired in the middle of the
run, and estimated 3 dimensions of head rotation and translation
across time, with 6 DOF. Slice-timing correction accounted for the
long whole-brain acquisition time of 1500 ms, which interpolated

the signals from each slice to the middle of each TR. Then, the brain
was extracted using BET, and spatial smoothing (3 mm FWHM) was
applied. Lastly, ICA cleaning was used to remove artifacts related
to the motion, arteries, or CSF pulsation. The data was initially
passed through AROMA ICA, an automatic artifact classification
method, and 60-70 components that explain ~-80% of variance in
the BOLD signal were manually inspected to select components that
corresponded to artifacts. Functional images were registered to the
individual subject’s MPRAGE (T1).

General linear model (GLM). A general linear model (GLM) was used
to extract stimulus-evoked activation, using the FEAT tool in FSL. For
each task run, the following regressors were created: one regressor for
each of the 80 unique images, as well as the button press events, for a
total of 81 regressors per run. For the button press regressor, a boxcar
function was applied for the duration between the onset of fixation
cross color change and the button press; in the event of missed trials,
the boxcar lasted 200 ms—the duration of color change. Then, beta
estimates for each regressor were obtained. ¢-values were computed
by dividing the beta estimate by its standard-error estimate (output
from FSL), and were used for the rest of the analysis to suppress the
contribution of noisy voxels in the beta estimate”. All analyses were
conducted within each subject, with t-values aligned to the subject
(T1) space.

fMRI-Definition of ROIs

For the ventral and dorsal visual streams (V1-V4, LO1-LO2, IPSO-IPSS5,
and SPL), ROIs were defined using anatomical masks from a prob-
abilistic atlas that used retinotopy to map ROIs’. All overlapping
voxels were removed using a winner-take-all approach. Fusiform
cortex (FC) was obtained from the “temporal occipital fusiform
cortex” partition defined by the Harvard-Oxford atlas. Only voxels
that had a > 3% probability of belonging in the ROI were included.
FPN and DMN ROIs were derived from task-driven activity patterns
(GLM and decoding results contrasting pre- and post-Mooney
images, respectively) from an independent dataset reported in a
previous paper?’. Specifically, FPN was defined using a binarized
statistical map from a whole-brain searchlight decoding analysis of
unrecognized pre-Mooney vs. recognized post-Mooney images.
DMN was defined using a GLM contrast of the learning effect
(unrecognized pre-Mooney vs. recognized post-Mooney) that has
been observed in multiple papers®***. Previous control analyses have
shown that the results obtained using these ROIs were similar to
those obtained using FPN and DMN ROIs from a resting-state
atlas?**°, For all ROIs, both hemispheres were combined for analysis.
The analyses were performed in each subject’s T1 space, with the
ROI transformed to this space.

fMRI-Neural distance analysis
Invariant object representation was quantified by the measure of
neural distances within the same unique image, across manipulations.
t-values from the GLM, aligned to the subject’s T1 space, were used in
this analysis’, and neural distance metrics were calculated using the
rsatoolbox in Python’. To increase the signal-to-noise ratio, randomly
chosen pairs of runs were binned into a single run, with t-values
averaged across them, creating 8 total “runs” for cross-validation. To
ensure robustness of the distance metric in RSA, we used cross-
validated (c.v.) Euclidean distances as the unbiased distance
estimator’7¢,

From each fMRI run, we construct one Q x P matrix for each ROI
(or voxel cluster, in the searchlight analysis), where each of the Q rows
is the activity pattern in response to a specific image input, and P
corresponds to the number of voxels. Here, Q = 80, corresponding to
10 image exemplars x 8 conditions. Then, we used a leave-one-run-out
cross-validation scheme to compute neural distances between k
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images across different folds, as follows:

1 M
di=" 64, ~/P,
Mm=1 ’

where 6y, =b; ;, — b; )
1 M
and 6,0; - —(M — l)n:LZr#m bi,n - bj,n

We define a distance metric (d,), where m indexes the left-out run,
and nindexes the rest of the runs. From the Q x P matrices, we have: for
the mth run, b; ,, is a 1x P vector for the ith image input and b; , is a
1x P vector for the jth image input. The first term, 6, ,,, is the difference
in activity patterns between them (b; ,,, b; ,,) in the left-out m™ run.
The second term, 5/(,% is the averaged difference in activity patterns
between the same two image inputs for the rest of the runs. The inner
product between 6, ,, and 6]”} are averaged across all M folds, nor-
malized by the number of voxels (P) in each ROI or voxel cluster.

Cross-validated Euclidean distances have been shown to be
unbiased distance estimators, such that they are not conflated with
noise’>’°, This is because we can assume noise to be independent
across partitions, so any measured noise between 6, ,, and 6, , should
point in random directions in the high-dimensional space, and there-
fore be near-orthogonal. Taking the dot product of §; ,, and 6; ,, noise
should cancel out.

Because this analysis aimed to identify neural invariance proper-
ties that matched the invariance properties of the perceptual priors
identified in Experiment 1, the line drawing condition was excluded
from the analysis, leaving 7 manipulation conditions in total, including
the original images (Fig. 3b). Using the 70 image inputs (10 image
exemplars x 7 conditions), a 70x 70 RDM is created using the c.v.
Euclidean distances computed for every pair of image inputs (Fig. 3b).
Then, to compute within-image, between-condition neural distances
(green bars in Supplementary Fig. 5b), the values were averaged across
all pairs of manipulation conditions for each image exemplar, then
averaged across the 10 image exemplars (green squares in the matrix
in Supplementary Fig. 5a). In total, for each subject, 210 values were
averaged within each green bar of Fig. 3¢, including 21 condition pairs x
10 image exemplars.

fMRI-Model-based RSA
A model RDM was created to capture the invariance properties of
perceptual priors identified in Experiment 1. To this end, we created a
70 x 70 model RDM, in the same layout as the neural RDM (Fig. 3b).
Because size manipulation did not significantly impact the learning
effect, while orientation and position shift manipulations significantly
degraded the learning effect, we assumed the distance between ori-
ginal and size-manipulated conditions to be low (distance = 0, in navy),
those between original and rotation/inversion/position shift condi-
tions to be intermediate (distance = 0.5, in teal), and distances between
different image exemplars to be high (distance=1, in yellow). The
model RDM was correlated with neural RDMs from each ROI using
Kendall’s Tau-B. For statistics, a null distribution was created by shuf-
fling image labels (across both exemplar image and condition labels).
For each ROI, the real correlation value was compared to the null
distribution to obtain an empirical p-value (right-tailed).

A whole-brain searchlight analysis was run in each subject’s
T1 space, using a 6-voxel radius sphere size. For each voxel cluster, the
neural RDM was correlated with the model RDM using Kendall’s Tau-B.
The correlation values were transformed into Fisher’s z, and normal-
ized into standard MNI space. For group-level analysis, the z-value
maps were spatially smoothed (12 mm FWHM) and submitted to a one-
sample t-test across subjects. Significance was assessed by permuta-
tion (using FSL randomize) and the threshold-free cluster enhance-
ment (TFCE) method”’, thresholded at a p < 0.05, FWE-corrected level.

iEEG experiment

Experimental setup. Participants performed the task while reclined in
their hospital beds with the use of a laptop and USB keyboard. The
laptop was placed on a hospital table, with the screen ~60 cm from the
participant’s eyes and in a position approximately level with their view.
All images were presented with sides equaling 8.5°x 8.5° of visual
angle. See additional details in SI Methods.

iEEG experimental paradigm. The task design was adapted from
previous work with Mooney images® for the iEEG setting. Each trial
started with a red fixation cross displayed for a pseudorandom amount
of time between 1s and 2s, followed by image presentation and
response collection (Supplementary Fig. 6b). Patients were instructed
to fixate on the red cross whenever visible, and to respond “Yes” or
“No” to the question “Can you name the object hidden in the image?”
as soon as possible upon presentation of an image. “Yes” and “No”
responses were collected from distinct hands on a USB keyboard. To
maximize the number of trials collected within a limited amount of
time, the trial concluded and the image was removed once the patient
provided a response. In the absence of a response, after the 2 s image
presentation, a response prompt was presented for up to 1s to allow
additional time for responding, after which the trial ended.

Similar to earlier neuroimaging work?**, trials were grouped into
blocks: three greyscale images were presented in a pseudorandom
order, followed by their three corresponding Mooney images (Post
images) and three novel Mooney images (Pre images), each presented
twice in pseudorandom order, totaling 15 trials per block. A block was
repeated to form a run of 30 trials. In total, each greyscale image was
presented twice, and each Mooney image was presented four times
before and four times after disambiguation. A minority of images were
presented more than four times in the Pre/Post phase and more than
twice for the Grayscale image due to experimenter error in a small
number of recordings. At the end of each run, six verbal response trials
were performed in which each Mooney image was presented for 2s,
and the patient was asked to verbally indicate the subject of the image
if they could. The verbal responses were used to correct for any
erroneous subjective recognition responses to screen out incorrect
identification of Mooney images. Thus, any “Yes” keyboard responses
to Mooney images during a run in which the corresponding
verbal response trial was incorrect were treated as a “No” in further
analyses.

iEEG-Data analyses

Electrodes were assigned to an ROI if their MNI coordinates lay within a
voxel in that ROL FPN and DMN ROIs were defined as above, from*.
EVC, HLVC, and Dorsal ROIs were defined as above, except no voxels
were excluded for low probability, and there is no prohibition that a
voxel be in only one ROI. The Limbic ROI was defined as the union of
the “Cingulate Gyrus, anterior division”, the “Frontal Orbital
Cortex”, and the “Insular Cortex” regions of the Harvard Oxford
Anatomical Atlas.

Only successfully disambiguated images were included in most
analyses. Images were deemed successfully disambiguated when at
least half the Pre trials were not recognized, at least half the Post trials
were recognized, and the Grayscale image was viewed at least once
(trials in which subjects were distracted away from the task were
excluded). Trials presenting successfully disambiguated images are
included for analysis if they are either an unrecognized Pre trial, a
recognized Post trial, a recognized Grayscale trial, or the final Grays-
cale trial for the image. For the control analysis in Supplementary
Fig. 9, recognized Pre trials were also used. Trials are clipped to end at
image offset and then smoothed with a 100-ms moving average win-
dow centered on each timepoint. Significance testing was only per-
formed on time points at least 50 ms after image onset to avoid mixing
pre- and post-stimulus signals.

Nature Communications | (2026)17:1204

15


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-026-68711-x

The electrode mean activation time course for each condition
(Pre, Post, Grayscale) was calculated as the mean across trials for that
condition and electrode. The mean time courses for each ROI (Fig. 4,
top) were calculated as the average across electrodes within the ROI,
for each condition. Shaded error bars were calculated as the paired
SEM’®7 across electrodes at each timepoint. Significance testing was
performed using a paired t-test at each timepoint (one-tailed, to
identify time points with higher HGP in the post than pre stage). We
focused on the post>pre effect here to exclude potential task
difficulty-related effects, since the pre phase is more difficult, whereas
the post phase has heightened prior- and recognition-related proces-
sing. To correct for multiple comparisons across time points, a cluster-
based permutation test was used (see below). Since trials terminated at
image offset when a response was given, the number of trials with data
varies across timepoints, especially towards the end of the trial. Once
all trials of one condition for an electrode have terminated, the elec-
trode is dropped from that and subsequent timepoints in the corre-
sponding mean ROI time courses. See Supplementary Fig. 7b for each
ROI's electrode survival time course.

The Image Preference Analysis quantifies how well each electro-
de’s image selectivity during Pre and Post conditions aligns with its
image selectivity during Grayscale image trials (Fig. 4, bottom). For
each electrode, the mean HGP time course for each image was calcu-
lated, separately for the grayscale, pre, and post phases. At each
timepoint, the relative values of each image’s mean HGP in the mean
Grayscale time courses defined an image sorting order. The Pre (/Post)
images’ mean HGP values at that timepoint were arranged in the same
image sorting order and a best fit linear regression line was calculated.
The best fit line’s slope was extracted, and this procedure was repeated
for every timepoint, producing a time course of slopes for the Pre
(/Post) condition at each electrode. Mean traces, paired SEM, and
significance were calculated similarly to that described above, except
that Wilcoxon signed-ranked tests were used in place of paired ¢-tests.
Timepoints at which there are not at least two images with trial data in
both the grey condition and the Pre (/Post) condition were dropped.
See Supplementary Fig. 7c for each ROI's electrode survival time
course.

We used an adapted cluster-based permutation test®® to accom-
modate the varying degrees of freedom (DOF) at different timepoints
due to the varying trial durations. We defined a cluster’s DOF to be the
mean DOF for the timepoints it spans, rounded to the nearest integer.
We calculated cluster summary statistics on our real data as the sum of
the test statistic for each cluster, and also noted the DOF for each
cluster. We then produced a permutation-derived null distribution for
each DOF using the following procedure. These null distributions were
defined so that all data points within one distribution were derived
from clusters with the same DOF. For each permutation, we identified
the largest cluster summary statistic and its DOF, and its summary
statistic was assigned to the corresponding null distribution. A count
of permutations that produce no significant clusters was maintained
and a corresponding number of zero-valued data points was added to
each null distribution proportionately to the number of data points it
has once permutation generation has ended. Permutations were gen-
erated and this process was repeated until there are 1000 data points
in all null distributions with DOFs matching the clusters from the real
data, or all possible permutations had been produced, or 1,000,000
permutations had been produced. P-values were then assigned to each
cluster by calculating the percentage of data points in the null dis-
tribution with the corresponding DOF that were greater than the
cluster’s summary statistic. This corresponded to a one-tailed cluster-
corrected test.

Since massive univariate analysis on individual timepoints (fol-
lowed by cluster-based permutation test to correct for multiple com-
parisons) does not statistically assess onset timing, we performed a
bootstrap analysis to compare the relevant timings between ROIs in

key conditions of interest®. For each condition of interest, we gener-

ated 2000 bootstrapped replications of the corresponding analysis
described above, yielding 2000 sets of significant clusters. An estimate
of the onset time distribution for each real cluster in a condition of
interest was generated by extracting from each replication the earliest
significant timepoint that was part of a cluster that overlapped with the
real cluster. Only replications with significant clusters that overlapped
with the real cluster contributed points to these distributions, and a
minimum of 800 points contributed to the estimated onset time dis-
tribution for all conditions of interest®. The points at the 2.5th and
97.5th percentiles were reported as the 95% confidence interval
(CI) onset.

DNN model architecture

Our model consists of two learnable components, a vision transformer
and a cross-attention module, and a memory state module that is
updated via a fixed rule. The vision transformer is initialized from the
base sized DinoV2 vision transformer, which has 768 hidden units and
12 layers of self-attention mechanisms for processing visual features.
The original vision transformer was pretrained using color images,
whereas our task used grayscale images. We handled this difference by
duplicating the grayscale intensity to the R, G, B channels so as to not
bring additional information into the model. This initial vision trans-
former was then trained on the Mooney image recognition task using
Mooney images and their matching grayscale images created from the
ImageNetlk dataset (see “DNN Model Training and Evaluation” below).
To keep training time reasonable, we use low-rank adaptation (LoRA)*
to finetune the key and query weight matrices of the self-attention
layers only. LoRA learns additional weights that are added to the
existing weights, which ensures the visual features already learned is
not lost. We use a matrix rank of r=64, and an alpha value of 16. The
cross-attention module is used to retrieve information from the state
module and is fully trainable.

The model operates in two stages, first a feedforward run to
produce retrieval queries, and then a conditioned run to generate an
object classification given past knowledge using this query. When
initially shown an image, the image is fed into the vision transformer
without any previous information. This produces a priming feedfor-
ward output that encodes visual representations in the input image.
The output of size (1+256 tokens, 768 hidden dimensions) is down-
sampled to (1+9 tokens, 768 hidden dimensions) using adaptive
down-sampling to reduce computation cost and generate a query.

This query is then used to compute the feedback conditioning for
the conditioned feedforward run. The previous state (1+10 +256
tokens, 768 hidden dimensions) is used as the key and value for the
cross attention, while the query generated from the feedforward run is
used as the query. This produces a feedback conditioning (1 + 9 tokens,
768 hidden dimensions) representation as the top-down signaling for
the next stage of computation.

The second conditioned feedforward pass then occurs with the
feedback conditioning providing conditional information from the
prior state to the same vision transformer from the prior stage to
generate an output. The conditioning tokens (10) are concatenated
with the image patch tokens. The second run produces top-down
informed outputs (1+10 +256 tokens). The first token corresponds to
the classification token (CLS token) from the model, a readout token
that is forwarded with the visual tokens and used for classification at
the end of the network. 10 tokens are from the conditioning tokens
and the 256 tokens correspond to image patches produced from the
current input image. Lastly, the state is updated with a moving average
with a fixed constant of 0.5 during training and evaluation.

Notable differences from existing models
There are a few architectural details that can explain the difference in
performance. Existing models such as BLT and CORnet rely on
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convolutional neural networks (CNN)-based layers to extract visual
features, whereas our model uses a vision transformer, which
encourages more complex interaction between parts of the
visual input.

A second crucial difference between our model and BLT and
CORnet is how the recurrence is implemented. In our model, the state
is a separate module that carries information about the past and gets
updated with a simple moving average mechanism. This protects the
priors from being overly affected by the current step of activations. On
the other hand, BLT and CORnet do not keep a separate state module;
all the prior information needs to be stored in the current activation,
which sacrifices the expressivity of current visual representation and
limits the storage capacity.

Another difference from existing models is that our model is
explicitly selective about how prior knowledge affects the current
visual processing. Our model achieves this selective retrieval by first
computing bottom-up visual features without the conditioning, fol-
lowed by the retrieval of relevant priors using cross attention. Existing
models simply merge the past state with the current activation, where
prior activations implicitly modulate current activations and lack fine-
grained selectivity of past prior information.

DNN model training and evaluation

We train the network on a computational adaptation of the Mooney
Task. To construct a sequence of images, we first obtain all unique
color images from the ImageNet dataset at random, convert them to
grayscale images, and apply random thresholding between pixel
intensity 50 and 205 to each image to produce the binarized version of
them (“Mooney image“). For each batch during training, we first obtain
3 pairs of grayscale and Mooney images. To encourage the reuse of
information across time and not discard information right after usage,
we repeat each constructed sequence 3 times. Finally, we shuffle the
entire sequence before feeding it into the model. This same image
sequence structure is used in the evaluation shown in Supplementary
Fig. 11a. Below, we give an example of a typical sequence used for
training the model. We first obtain 3 grayscale images, and notate them
as Gl1, G2, G3. We then binarize them with a random threshold and
obtain M1, M2, and M3. We construct a sequence wherein each M-G
image pair occurs 3 times: [M1, G1, M1, G1, M1, G1, M2, G2, M2, G2, M2,
G2, M3, G3, M3, G3, M3, G3]

Finally, we shuffle this sequence to encourage the model to be
able to handle an arbitrary sequence order. E.g., a shuffled sequence
produced from the procedure, as described, can be: [G2, G2, M3, G1,
M2, G3, M1, G3, G1, M2, G2, M1, M2, M3, M], G, G3, M3].

For training, we accumulate gradients for 16 steps with a batch
size of 32 sequences on 8x A100 GPUs with the PyTorch Lightning
framework. All images in the sequence are weighted equally in the cost
function. Supplementary Fig. 11a shows model performance during the
evaluation phase, using held-out image sequences following the same
shuffled structure. All image sequences used during the training and
evaluation phase had a length of 18. Any Mooney image presented
before (/after) the first corresponding Grayscale image is designated
“Pre” (/“Post”) in the results plot. Baseline models were trained and
evaluated using the same approach.

We next evaluated our model on 1000 longer synthesized image
sequences (sequence length: 630, using 210 unique Mooney images),
again created from grayscale images that were randomly selected from
ImageNet, and thresholded using a random threshold between 50 and
205 to generate the corresponding Mooney images. Repetition effect
was assessed by presenting two repetitions of the same 210 Mooney
image in the same sequence, without the corresponding grayscale
images (sequence length: 420). Sequences followed the same block-
shuffled structure as the human psychophysics experiment (Fig. 1a).
The results from this evaluation are shown in Fig. 5b and Supplemen-
tary Fig. 11c.

In an exploratory analysis, we found that image patches that
received a higher attention rank during the grayscale image input had
greater changes in attention score from pre phase to post phase
(Supplementary Fig. 11d). This suggests that the vision backbone’s
representation of a post-Mooney image shifts towards its representa-
tion of the corresponding grayscale image, similar to observations in
human fMRI data®*.

Model behavior comparison with humans

From an online study, behavioral data were obtained from 12 subjects
performing the Mooney Task (see SI Methods). The same 219 Mooney
images and their matching grayscale images were presented to each
subject in a unique order. We supplied each image sequence used in
the human experiment to the model and obtained 12 sets of model
behavioral data. When comparing model behavior to human behavior,
we first take the top 90 Mooney images on which human subjects
showed the strongest perceptual learning effect, measured by the
average pre-to-post accuracy increase (the same 90 images were used
in the in-person behavioral experiments). We then exclude any images
that are not in our model’s label space due to the model’s inability to
predict images outside of the label space. This resulted in 78 unique
Mooney images (and their corresponding grayscale images) used in
the model-human behavior comparison shown in Fig. 5c, d. Equivalent
results for baseline models are shown in Supplementary Fig. 11b.

To obtain the results in Fig. 5d, we first transformed each subject’s
behavioral output or model output into a binary 1x234 vector
denoting correct/incorrect identification of a specific image shown in
the pre/gray/post phase. We then calculated pairwise AUROCs
between human subjects and between the 12 sets of model outputs,
yielding 66 error pattern similarity measures for each. We further
obtained 144 (12 x 12) model-human error pattern similarity measures,
which can be separated into those with matching image sequences (12)
and those with non-matching image sequences (132).

Learning outcome prediction

Using the same behavioral data set mentioned above, for each subject
(n=12), we removed images that were already recognized in the pre
phase. We then obtained internal model features from the vision
transformer layers and their outputs including CLS token and logits
(from the 2nd pass after top-down conditioning), and used an SVM
classifier with a learnable linear kernel from the sklearn python pack-
age to predict whether the subject will recognize the image in the post
phase. To avoid data leakage, we applied a 12-fold cross-validation and
report the mean test performance over folds. AUROC was used to
measure the performance.

Statistical test for Fig. 5e uses two-sided t-tests with FWE correc-
tion. FWE correction is done by permuting the trial labels for 5000
repetitions and collecting maximum ¢ statistic over all layers as the null
distribution. Finally, the p-value of the real ¢ statistic is obtained by
finding its percentile in this null distribution.

Neural (fMRI) data prediction from DNN

To predict the post phase brain beta values (outputs from the GLM at
the individual image level, see ref. 24), we use a kernel ridge regression
model with sparsity alpha=1, using the latent visual portion of the
recurrent model state as features (see Supplementary Fig. 10). To
obtain a set of beta map predictions without overfitting, we use leave-
one-image-out cross validation for each subject. All predictions were
made after registering subject-level beta maps to the standard
MNI152 space, and predictions from 4 different model seeds were
averaged together.

The baseline predictions are obtained from constructing coun-
terfactual model representations, using catch images. The counter-
factual representation for an image I is obtained by replacing only the
corresponding grayscale image for I (i.e., replacing the correct learning
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material). The average counterfactual representation over all possible
alternative learning material (32 alternative images) is used as the
feature.

We first find the correlation between predicted betas and the true
betas. We then apply z-transform to the Pearson’s correlation of the
predictions. Repeating this process for the normal beta predictions
and the baseline beta predictions gives us two maps per subject.
Subtracting the baseline score map from the normal score map, we
obtain the map of score improvement.

To calculate the information strength of a region, we used the
following procedure.

Let’s denote the beta prediction for voxel j and image i as %, and

Ul

the true beta there %/;. We first calculate the relative error Zl/f”y/’
in| T

both the normal prediction and the baseline predictions. This provides
us one normalized error map per combination of subject and image.
Then we compare the error of baseline and normal predictions. This is
obtained with ee"a% — 1. This yields one map per subject and image,
with O indicating no difference between both performances and
a higher value indicating improvement in performance. In the follow-
ing experiments, we only consider maps with strictly non-negative
entries in this map. For the ROI level analyses in Fig. 6b-d, we find the
median information strength within the ROl The ROIs were as
described earlier; here, we thresholded the ROl masks from the
probabilistic atlases at 25% and assigned a voxel to the most likely ROL.
We chose a stringent threshold intentionally to highlight the differ-
ences between ROIs and minimize overlap between ROlIs.

To compare the prediction score with noise ceilings, after we
obtain the prediction score, we average the z-transformed scores
between 4 different model seeds. We obtain lower and upper noise
ceiling maps for each subject with the Representation Similarity Ana-
lysis (RSA) method®*. Specifically, to calculate the upper noise ceiling
estimate for a voxel center, we first find its average RDM across sub-
jects. The average similarity of this average RDM to all subject is the
upper noise ceiling. To calculate the lower noise ceiling, we use leave-
one-subject-out similarity. For each subject, we leave their RDM out,
take the average RDM across the remaining subjects, and calculate the
similarity between the held-out RDM and the average RDM. To com-
pare the score against either lower or upper noise ceiling, we use a
permutation-based 2-sample ¢-test in a whole-brain voxel-wise analysis,
with threshold-free cluster enhancement (TFCE) correction with
10,000 permutations. A one-sided comparison with the max statistic
was used to produce voxel-level significance values. The results were
summarized by ROIs.

To compare the prediction score with the baseline score, we first
average the z-transformed normal prediction scores between the 4
different model seeds. We use the same procedure to obtain scores for
the baseline predictions. Then we use a permutation based 2-sample ¢-
test with TFCE correction with 10,000 permutations. A one-sided
comparison with the max statistic is used to produce voxel-level sig-
nificance values.

To obtain the estimates for the analysis in Fig. 6b, we first obtain a
binary label of “learned” versus “not learned” based on the subjective
report of the subjects. We fit a binomial family generalized estimating
equations (GEE) model grouped by subjects with the logit link function
to predict whether the image is learned from information strength in
each ROI. The model can be expressed in the R-style formula: learning ~
FC+EVC+LOC +DMN + Dorsal. After fitting the model, the para-
meters corresponding to each ROI's contribution to learning is tested
using t-tests.

To obtain the estimates for the analysis in Fig. 6¢, like in Fig. 6b, we
first obtain the reliability score by excluding the images that are not
learned, followed by finding the proportion of post-phase images that
are reported as recognized (varying from 4/6 to 6/6 for each unique

image). We fit a gamma family GEE model grouped by subjects with
log link function to predict the reliability, which is between 0 and 1. The
model can be expressed in the R-style formula: reliability ~ FC+
EVC +LOC + DMN + Dorsal. After fitting the model, the parameters
corresponding to each ROI's contribution to learning is tested using
t-tests.

To obtain the estimates for the information connectivity between
ROIs, we first calculate the Spearman’s rho between the pairs of ROIs’
information strength for each image. This produces a connectivity
matrix between ROIs for each subject. To aggregate this connectivity
across subjects, we take the lower triangle of this connectivity matrix
and fit a GEE model grouped by subjects. This model can be written in
the R-style formula as: connectivity ~ C(ROI pair). After fitting the
model, the parameters corresponding to each unique pair of ROIs are
tested using t-tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Online human psychophysics data and previously published fMRI data
used for DNN development and testing, as well as model’s checkpoints
are uploaded to OSF and can be accessed at: https://osf.io/xphte.
Source data to reproduce figures related to in-person human beha-
vioral, fMRI, and iEEG analyses can be found at: https://github.com/
BiyuHeLab/Mooney2024. Stimuli from the psychophysics paradigm,
features used in the pRF analysis, and the full data set from the fMRI
experiment can be found at: https://osf.io/jh2kt.

Source data for all figures are provided with this paper. Source
data are provided with this paper.

Code availability

The code supporting this work is available in open Github repositories:
Code related to human experimental work, including psychophysics,
fMRI, and iEEG analyses: https://github.com/BiyuHeLab/Mooney2024.
Code related to DNN modeling: https://github.com/nyuolab/
MooneyComputationModeling2024.
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