mMagix

Business Logic Vulnerabilities in
Applications and Their
Implications for Cybersecurity

H. Shondlani (Primary)
T. Butler (Co-author)
F. Tshoma (Co-author)

magix

Business Logic Vulnerabilities in
Applications and Their Implications
for Cybersecurity

The Magix R&D Lab

Authors

H. Shondlani (Primary)
T. Butler (Co-author)
F. Tshoma (Co-author)

Abstract

Despite increasing reliance on advanced security technologies such as Endpoint Detection
and Response (EDR), Web Application Firewalls (WAF), and automated vulnerability
scanners, organisations remain susceptible to a critical and often overlooked category of
weaknesses: business logic vulnerabilities (BLVs). These vulnerabilities exploit flaws in
application workflows and design assumptions, rather than technical bugs or
misconfigurations.

Automated tools are inherently ill-suited to detect such flaws, as they lack the capacity to
interpret intent, contextual misuse, or deviations in logical workflows that still appear valid
to machines. This paper examines the nature of business logic vulnerabilities, their real-
world impact, and why human-led penetration testing remains indispensable in identifying
and mitigating them.

Www.magix.co.za mcgix

Introduction

Contemporary cybersecurity practice is dominated by the use of automated tools,
machine learning algorithms, and signature-based detection systems. These instruments
excel at identifying technical flaws—such as buffer overflows, misconfigurations, and
known vulnerabilities catalogued in the Common Vulnerabilities and Exposures (CVE)
database. However, their effectiveness diminishes when addressing vulnerabilities that are
not rooted in code, but in logic.

Business logic vulnerabilities (BLVs) arise when applications function exactly as
programmed, but in ways that can be manipulated to achieve unintended, often malicious,
outcomes. In other words, BLVs exploit the intended design of applications, rather than
errors in implementation. As a result, they remain largely invisible to automated defences,
creating a blind spot that adversaries can exploit.

Defining Business Logic Vulnerabilities

Business logic vulnerabilities occur when an application’s workflow, rules, or assumptions
can be manipulated by an attacker to perform unintended actions, without triggering
technical errors.

Unlike technical vulnerabilities (e.g., SQL injection or cross-site scripting), BLVs are deeply
contextual. They exploit flawed assumptions about user behaviour or overlooked
conditions in process flows. Common manifestations include:

» Transaction Reversal: Manipulating payment values (e.g., converting a debit of R100 to
-R100).

» API Abuse: Repeating or modifying legitimate API calls to gain unauthorised credits or
rewards.

» Bypassing ldentity Verification: Skipping or reordering steps in multi-stage verification
processes.

o Authorisation Gaps: Exploiting inconsistencies between front-end and back-end access
controls.

Case Study: Wallet Balance Manipulation
During a penetration test of a digital wallet application, a business logic flaw was identified

that permitted the purchase of goods worth R5,000 despite the test account holding only
R10.

magix

Checkout

Order Summary
Order 1atal RS,000

Winllat badang e R0

rsufficient funds. Pia fof gt
el

Frontend User Interface

Intended Workflow:

The application’s front-end validation prevented transactions exceeding the wallet
balance.

Manipulated Workflow:

By intercepting the request with Burp Suite and bypassing client-side validation, the tester
submitted the request directly to the back-end, which failed to re-validate the balance.

Outcome: The system confirmed the order, exposing a fundamental flaw in server-side
enforcement.

Direct Call to Backend API:

POST /api/checkout
{

Response Indicating Success of API Call:

magix

Frontend Logic

- client_balance »= purchase_amount:

proceed with _order()

Verification that the Backend should have performed:

f user.wallet balance »= item.price:
user.wallet balance -= item.price

approve_order()

error(’

Business Impact:

e Users can purchase any item without paying, leading to massive financial losses.
o Attackers can automate high-value purchases using bots or scripts.

o Fraudulent users might resell expensive digital goods or gift cards.

o The platform could face chargebacks, fraud complaints, and reputational damage.

This case demonstrates that BLVs often originate not in insecure coding, but in misplaced
trust between application layers.

Limitations of Automated Security Tools

Many security tools excel at detecting known patterns, such as malware signatures,
vulnerabilities (CVEs), traffic anomalies and even malicious code. Thus, we can say that
tools detect what is technically wrong, not what is strategically exploitable.

EDRs and scanners are great at detecting:

Malware patterns

Known CVEs

Suspicious system behavior
Signature-based attacks

But BLVs:

e Don’t crash the app.
o Don’t trigger alerts.
o Don’t show up in logs as “suspicious.”
o Are completely invisible to machines.

Business Logic Vulnerabilities are not self-evident, they require an understanding of the
business purpose of a particular feature and evaluating this logic against real-world
misuse. Traditional cybersecurity tools cannot anticipate this abuse as it isn’t technically
“broken”.

magix

Due to the inherent limitations of security tools, organizations need a penetration tester
who can think like a fraudster, not a tool that thinks like a regex engine.

Red Teaming Logic, Not Just Systems

Mitigating BLVs requires a shift from conventional vulnerability scanning to misuse case
exploration. This involves:

Testing how value flows through the application; can it be reversed? Reused? Abused?
Explore user journeys as a fraudster might; the application wants to flow from A to B to
C, can we skip B?

Evaluate intentional edge abuse, not just edge cases.

Include product owners and QA in tabletop exercises; letting them see first-hand how
the system can be subverted can inspire stronger security practices.

Motivation for Continued Manual Cybersecurity Testing

Business logic vulnerabilities are the invisible killer in modern apps. Human-led testing
remains crucial because only skilled penetration testers can approach applications with
the creativity, curiosity, and intent of adversaries.

Defence Strategies Against BLVs

To address business logic vulnerabilities effectively, organisations must adopt a multi-
layered strategy:

« Include business logic in every pentest scope

o Demand your testers explore misuse cases, edge flows, and race conditions.

e Red team your workflows, not just your code

» Look for value flows that can be manipulated or reversed.

» Stop trusting green dashboards

¢ A clean scan doesn’t mean a secure app

o Educate your software developers and product teams

» Most logic bugs start with unverified assumptions in the design phase.

o Shift-Left on process abuse

o Catch flaws early by including security in the design phase of feature development.
o Use threat modeling frameworks

» Apply models like STRIDE, PASTA or kill-chain analysis to business workflows.
o Track abuse cases as First-Class Bugs

o Assign CVSS-like severity levels to logic flaws, even if no official CVE is issued.

magix

Real-World Incidents of Business Logic Exploitation

Several high-profile incidents illustrate the critical risks posed by BLVs:

e HealthEngine

» Progress’
MOVEIt

Fannie Mae

venmo

WWww.magix.co.za

HealthEngine Data Breach (Australia)

Over 59,000 patients' personally identifiable
information was exposed due to excessive data
exposure. Attackers exploited a business logic flaw
that allowed unauthorized access to sensitive data.
HealthEngine faced a $2.9 million fine for violating
privacy and consumer laws.

MOVEit Data Breach (2023)

A critical vulnerability in MOVEit Transfer software
was exploited, compromising over 2,700
organizations and exposing data of approximately
93.3 million individuals. Attackers leveraged a flaw in
the business logic of the file transfer process,
bypassing authentication mechanisms. Affected
sectors included healthcare, finance, and
government, with significant data losses and
operational disruptions.

Fannie Mae Logic Bomb Incident

An IT contractor planted a logic bomb set to delete all
data on Fannie Mae's servers. Exploited trust and
access within business processes to introduce
malicious code. Had it not been discovered, it could
have wiped data from 4,000 servers, causing massive
operational disruption.

Venmo Data Breach

In 2019, the PayPal owned money transfer site
became a victim of a data breach, where
approximately 200 million transactions were revealed.
The transactions included users’ details, recipient
details, the amount of money sent and the purpose of
the transactions. This leak was obtained through an
unsecured or poorly configured API call, leaving it
open to unauthenticated requests.

magix

Symantec Data Breach

Also occurring in 2019, the well-known cybersecurity

Symantec company Symantec found itself on the receiving end
of data breach. Caused by a broken access control in
the business logic, an API call failed to properly
validate whether a given user was allowed to access
sensitive data. This allowed man-in-the-middle
attacks to intercept and capture thousands of private
keys, totalling roughly 23000 SSL certificates
becoming null and void.

Conclusion

Logic is a security perimeter. While Al and automation continue to evolve, no machine
understands intent the way a human does. That’s why you should build defence strategies
that prioritise intent, context, and misuse predictions.

Green dashboards don’'t mean a company is secure, they mean the attacker hasn’'t shown
their hand yet.

Additional Information

Warning signs you may have a BLV exposure

Your app allows value manipulation without consistent audit logging
No checks on transaction state transitions

Feature workflows are complex and rarely retested

You assume “users will never try that”

Same API behaves differently depending on the client type

Automated Tooling Flow

Security Tool What it Sees What it Misses

EDRs System-level activity, malware Workflow abuse

WAFs Injection attacks, XSS, rate limits Intentional misuse of logic
Scanners CVEs, insecure components Abusing legitimate functionality

magix

Comparison Table

Attack Type Detected by Detected by
Automation Human Testing

SQL Injection

CVE in third party library

BLV: Reverse transaction logic (X

BLV: Reuse of loyalty points

BLV: Broken business rules

Business Logic vs Traditional Vulnerabilities

Category Traditional Vuln BLV

Discovery Automated tools (SAST, DAST) Manual testing

Nature Technical misconfigurations or Process or design flaws

bugs
Intent Unintentional error Often exploited intended
behaviour
Detection Relatively easy Highly contextual
Examples XSS, SQLi, SSRF Reward abuse, race conditions,

logic bombs

Business logic vulnerabilities represent one of the most persistent blind spots in modern
cybersecurity. Unlike traditional vulnerabilities, they exploit intent, context, and

assumptions rather than technical flaws. Automated tools—however advanced—remain
blind to these issues.

Defending against BLVs requires human-led security assessments, red teaming, and

proactive integration of threat modelling at the design stage. In a world increasingly reliant

on automation, it is essential to remember that true resilience still depends on human

ingenuity, critical thinking, and adversarial creativity.

magix

References

OWASP. Business Logic Vulnerability. https://owasp.org/www-community/vulnerabilities/
Business_logic_vulnerability

PortSwigger. Logic Flaws. https://portswigger.net/web-security/logic-flaws

APlsec.ai. 5 Real-World Examples of Business Logic Vulnerabilities. https://www.apisec.ai/
blog/5-real-world-examples-of-business-logic-vulnerabilities-that-resulted-in-data-
breaches

Wikipedia. MOVEit Data Breach. https://en.wikipedia.org/wiki/2023_MOVEit_data_breach
Lockheed Martin. Cyber Kill Chain. https://www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html

Threat Modeling. STRIDE & PASTA Frameworks. https://threat-modeling.com

magix

This white paper was compiled
by the Magix Lab team

Www.magix.co.za magix

