
Turning Code into Control:

The Path
to Secure IaC

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

TABLE OF CONTENTS

The IaC Maturity Model: Overview and Dimensions

DevSecOps Maturity and IaC: A Symbiotic Journey

Business Benefits of IaC Maturity

Common Blockers and How to Overcome Them

Gomboc in Action: Accelerating Maturity with
Automated Remediation

About Gomboc

Level 1: Emergent

Level 2: Reactive

Level 3: Proactive

Level 4: Adaptive

Level 5: Resilient

04

05

06

07

08

10

09

12

10

14

15

03

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

With its ability to turn infrastructure
into repeatable, version-controlled,
and testable code, IaC empowers
teams to move faster, deploy more
reliably, and scale with confidence.
As businesses embrace digital
transformation and cloud-native
development, IaC adoption is no
longer a luxury. It’s a necessity.

Security teams are stuck playing
catch-up, while developers are left to
interpret vague policy requirements,
often without the context, time, or
expertise to get it right. This
disconnect creates bottlenecks, slows
innovation, and accumulates risk
over time.

To navigate these challenges, organizations
need a framework that captures where
they are today and guides where they need
to go. The IaC Maturity Model offers exactly
that: a lens through which teams can
evaluate their current state of
infrastructure management, security
integration, and operational efficiency.

Yet, with this newfound
speed and flexibility comes a
hidden cost.

The very characteristics that make
IaC so powerful are its speed,
dynamism, and accessibility, which
also introduce new complexities and
risks. Cloud environments are
ephemeral by design, capable of
changing with a single line of code. In
such fluid ecosystems, a single
misconfiguration can lead to
exposure, compliance violations, or
worse, a costly breach. Traditional
approaches to securing
infrastructure are too slow and
manual to keep up. Relying on
downstream audits or ticket-based
remediation simply can’t scale in
environments where infrastructure
changes hundreds of times daily.

The model helps organizations
benchmark their practices by defining
five progressive stages and charting a
realistic path toward secure, scalable,
and automated infrastructure.

Infrastructure as Code (IaC)
has rapidly become the
backbone of modern cloud
operations.

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

THE IAC MATURITY MODEL:
OVERVIEW AND DIMENSIONS

Infrastructure as Code is no longer
a niche practice.

It has become foundational
to how modern engineering
teams build, manage, and
scale cloud environments.

To help organizations understand
where they stand—and what progress
looks like—we introduce the IaC
Maturity Model.

However, not all IaC adoptions are
created equal. Some teams are just
beginning to define infrastructure
in code, while others have
embedded it deeply into secure,
automated workflows.

This model outlines five levels of
maturity, each representing a step
forward in how infrastructure is
defined, deployed, secured, and
improved over time. Rather than
focusing solely on tooling, it captures a
broader view of organizational
capability, including process, security
alignment, and automation.

04

Level 1:
Emergent

IAC MATURITY
MODEL

Level 2:
Reactive

Level 3:
Proactive

Level 4:
Adaptive

Level 5:
Resilient

Ad Hoc

Developing

Full Adoption

Drift
Detection

Version
Control (no CI)

Linting and
Review (no CD)

Full CI/CD

Developer
Enablement
via
Automation

SECURITY
POSTURE

None

Investigating

Basic Hygiene

Basic
Security

Enhanced
Security

TESTING

None

By Usage

Investigating

Developing

Automated

CONTINUOUS
IMPROVEMENT

None

Ad Hoc

Measuring
(Dora)

Reporting

Improvement

CI/CD

None

IAC
ADOPTION

Limited

Each dimension reflects a core aspect of operating cloud infrastructure at scale, providing
a lens for evaluating maturity and identifying the practices needed to advance.

IAC
ADOPTION

TESTING
PRACTICES

CULTURE OF
CONTINUOUS IMPROVEMENT

CI/CD
INTEGRATION

SECURITY
POSTURE

At the heart of the model are five key dimensions:

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

05

Every journey begins with a first step, and
for many organizations, that step into
Infrastructure as Code is informal and
experimental. At this Emergent stage,
teams are just beginning to explore IaC
and its potential. Cloud infrastructure is
provisioned manually, often through
scripts or command-line interfaces.
Changes are applied directly to cloud
environments without any version control
or deployment automation in place.

There may be isolated attempts to define
resources in code, but practices are
inconsistent and ungoverned. Infrastructure
lives in the cloud rather than repositories,
making it difficult to track changes, enforce
standards, or even know what exists at any
given time. As a result, environments are
prone to drift, duplication, and shadow
infrastructure that slips out of view.

LEVEL 1: EMERGENT

Security, if considered at all, is reactive.
Teams might respond to alerts or incidents
as they arise, but there are no guardrails to
prevent misconfigurations before they
happen. Without visibility or a formal
process, risk accumulates quietly in the
background.

This stage is not inherently negative, though
it may initially sound like it. It reflects a
phase of discovery. Organizations are testing
tools, learning how cloud infrastructure
works, and beginning to understand the
benefits of codifying their environment. The
key challenge is that without structure, the
pace of change can quickly outstrip the
ability to manage it safely.

LEVEL 2: REACTIVE

The move from experimentation to
early structure marks a turning point
in an organization’s Infrastructure as
Code journey. At the Reactive stage,
teams have embraced defining
infrastructure in code and taken
foundational steps to improve visibility
and control. Most notably, they have
introduced version control for IaC,
typically using Git, to track changes
and collaborate more effectively.

This shift introduces consistency and
accountability, which were missing in
the Emergent phase. Infrastructure can
now be reviewed, reverted, and shared
across teams. However, deployments
are still largely manual. While the
infrastructure is written as code, it is not
yet connected to continuous delivery
pipelines. Teams may apply changes
through one-off commands or scripts,
but automation is limited or absent.

Security considerations begin to enter
the conversation but are usually
addressed after the fact. Reviews may
catch obvious misconfigurations, or
alerts may prompt teams to investigate
issues in production. Still, there is no
consistent or proactive mechanism to
ensure security is built into
infrastructure before deployment.
Compliance, too, is often seen as a
checkbox to revisit during audits rather
than a continuous responsibility.

06

This stage reflects a growing
awareness of what is possible but also
reveals the limitations of partial
adoption. Teams are working toward
better practices, but progress remains
uneven without automation,
enforcement, or shared standards.
The groundwork is there, but the
tools and processes have not yet
matured into systems supporting
scale, speed, and security.

Organizations at the Reactive level are
poised for transformation. They have the
building blocks in place and are beginning
to recognize the need for automation,
security integration, and more efficient
ways to manage change. The next step is
turning good intentions into repeatable,
enforceable practices.

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

07

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

LEVEL 3: PROACTIVE

At the Proactive stage, Infrastructure
as Code is no longer an experiment. It
has become the standard for
managing cloud infrastructure across
teams. Most environments have been
migrated from manual setups to
code-based definitions, bringing
greater consistency and control.

With broader adoption comes a stronger
emphasis on quality and security. Static
analysis tools, such as linters and basic
scanners, are introduced to catch errors
and misconfigurations early.
Infrastructure code is now reviewed
more systematically, following patterns
similar to application development.

Security starts to shift from reactive to
preventive. Teams begin referencing
frameworks like CIS and NIST to shape how
infrastructure is written and validated.
While adoption may still be uneven, there
is a growing awareness that security
should be built into the development
process, not bolted on afterward.

Basic CI integration supports this
evolution. Infrastructure code is
automatically tested and validated
before deployment, reducing the risk of
changes breaking environments. Though
full delivery automation may still be
developing, CI lays the groundwork for
more mature practices ahead.

This stage marks a clear turning point. Organizations begin to move beyond manual
safeguards and toward structured, scalable processes. The focus shifts from writing
code to managing it well, with security in mind.

LEVEL 4: ADAPTIVE

At the Adaptive stage, infrastructure
management becomes deliberate and
scalable. CI/CD pipelines are fully
established, enabling infrastructure changes
to flow through automated, testable, and
repeatable processes. Teams no longer rely
on manual gates as deployment is governed
by well-defined workflows.

Security shifts from guidance to
enforcement. Policy-as-code introduces
automated guardrails that evaluate every
change against defined rules. If a proposed
configuration violates policy, it’s flagged
before reaching production. This ensures
consistent adherence to security standards
without slowing development.

Security shifts from guidance to
enforcement. Policy-as-code introduces
automated guardrails that evaluate every
change against defined rules. If a
proposed configuration violates policy, it’s
flagged before reaching production. This
ensures consistent adherence to security
standards without slowing development.

08

Uniform security baselines are applied
across teams, reducing inconsistency and
risk. Lab environments provide a safe space
to test changes before rollout, helping catch
issues early. Organizations at this level begin
tracking DORA metrics such as Mean Time to
Remediate and deployment frequency.
These insights highlight performance and
guide improvements across both
engineering and security practices.

The Adaptive stage reflects a balance
between speed and control.
Infrastructure is managed as a system,
with security built-in, not added later.

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

{

LEVEL 5: RESILIENT

Infrastructure as Code is no longer just a practice at the Resilient stage. It is an
operating model. Automation, security, and scalability are fully embedded across the
organization. Infrastructure is managed with the same rigor as software, governed by
policies, continuously validated, and designed to adapt to change without disruption.

Drift detection and remediation are now standard. The system can identify when
deployed infrastructure diverges from its intended state and automatically propose or
apply fixes. This ensures that environments remain secure and compliant over time,
even as cloud services evolve or external teams make changes.

Testing is no longer limited to syntax or security checks. Full end-to-end
validation ensures that infrastructure changes behave as expected before they
reach production. Fix verification becomes part of the feedback loop, giving
teams confidence in every deployment.

Developer enablement also takes center stage. Teams can provision and manage their
own infrastructure through self-service tools, with guardrails in place to prevent
misconfigurations. This balance of autonomy and control allows teams to move quickly
without compromising security or consistency.

Finally, infrastructure security becomes tightly integrated with broader operational
workflows. Connections with the Security Operations Center (SOC) and vulnerability
management processes ensure that infrastructure risks are monitored, prioritized, and
addressed as part of the larger security strategy.

Resilience at this level is not just about preventing failure but
building systems that adapt, recover, and improve over time. It
reflects an organization where infrastructure, development, and
security move together, guided by automation, trust, and
continuous feedback.

09

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

DEVSECOPS MATURITY AND IAC:
A SYMBIOTIC JOURNEY

As organizations progress in their
Infrastructure as Code practices,
they often advance along the
DevSecOps path.

These two journeys are
tightly linked. Improving one
tends to accelerate the other.

Policy-as-code adds the next layer. Instead
of relying on manual checks, security
requirements are codified and enforced
automatically. Developers get early
feedback when something falls outside
policy, enabling secure decisions without
extra back-and-forth. Security shifts from
a gatekeeper to a guide.

BUSINESS BENEFITS
OF IAC MATURITY

IaC maturity enables DevSecOps by
making infrastructure more
consistent, visible, and
collaborative. Once infrastructure
lives in code, it can be reviewed,
tested, and integrated into
pipelines like application code. This
shared workflow brings
development, security, and
operations onto the same page.

10

Automation is the necessary glue that
ties it all together, helping scale to
handle the size and complexity of the
problem as the organization matures. It
ensures that security standards are
applied consistently and that
environments stay aligned with
expectations. Remediation, compliance
checks, and testing become part of the
system rather than an afterthought.

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

Maturing IaC practice is not just a technical achievement. It delivers meaningful business
impact. As organizations climb the IaC maturity ladder, they unlock efficiencies that translate
directly into cost savings, reduced risk, and faster execution.

One of the most immediate benefits is cost and risk reduction. Mature IaC reduces the need
for time-consuming manual work, freeing engineers to focus on innovation rather than
troubleshooting or rework. At the same time, it lowers the likelihood of misconfigurations
that can lead to outages, data exposure, or compliance violations. Preventing these incidents
before they happen avoids the high financial and reputational costs of security failures.

From a compliance standpoint, mature
IaC makes proving that systems meet
required standards easier. Audit
readiness improves because
environments are built consistently,
governed by policy, and tracked
through code. This reduces the burden
on compliance teams and accelerates
responses to regulatory demands.

IaC maturity also supports faster time-to-market. When infrastructure is versioned,
tested, and deployed through automated pipelines, new environments can be provisioned
in minutes, not days. Teams can launch features, respond to customer needs, and scale
operations without waiting on infrastructure bottlenecks.

11

Finally, as automation and guardrails take
hold, teams become less dependent on
specialized security expertise. Security
best practices are enforced through code,
allowing generalist engineers to operate
safely within defined boundaries. This
eases hiring pressure in a tight talent
market and helps scale secure
development across more teams.

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

12

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

COMMON BLOCKERS AND
HOW TO OVERCOME THEM

As organizations work to mature their Infrastructure as Code practices, they often
encounter familiar challenges. These blockers don’t stem from a lack of motivation, but
from gaps in capacity, alignment, or tooling that slow progress and increase risk.
Recognizing these obstacles is the first step toward overcoming them.

Here are four of the most common blockers teams face on the road to IaC maturity:

Security tools often flood teams
with alerts, leaving engineers to
sort through hundreds—or
thousands—of issues without
clear prioritization or resolution
paths. This creates a backlog that
rarely gets cleared, leading to
burnout, missed risks, or both.

ALERT FATIGUE AND
TICKET OVERLOAD

Secure infrastructure requires a
deep understanding of cloud
provider configurations, best
practices, and evolving risks.
However, hiring and retaining cloud
security experts is increasingly
difficult, leaving generalist teams
unable to navigate complex issues
without enough support.

LACK OF CLOUD
SECURITY EXPERTISE

Collaboration breaks down when
security is viewed as a blocker
rather than a partner. Developers
are asked to fix issues they don’t
fully understand, while security
teams struggle to enforce
standards without disrupting
delivery timelines.

FRICTION BETWEEN
SECURITY AND ENGINEERING

Many teams define policies and
best practices but lack
mechanisms to ensure they are
actually followed. Even well-
documented standards can be
ignored or inconsistently applied
without enforcement across
teams and environments.

GOVERNANCE WITHOUT
ENFORCEMENT

13

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

These blockers are not unique to any one team or industry. They show up in nearly
every organization trying to scale IaC securely. Addressing them requires a combination
of automation, integration, and cultural alignment—solutions that move beyond
visibility and into action.

The good news is that these challenges can be resolved with the right systems. Automation,
particularly in policy-driven, code-based remediation, can turn these blockers into
opportunities for lasting improvement.

14

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

GOMBOC IN ACTION: ACCELERATING
MATURITY WITH AUTOMATED REMEDIATION

For many organizations, the biggest
gap in their Infrastructure as Code
journey is not visibility—it’s action.
Security tools may surface
misconfigurations, but turning
those alerts into safe, reviewable
code changes is where progress
often stalls. That’s where Gomboc
steps in Gomboc was built to
remove the friction between
security enforcement and
engineering velocity. Rather than
relying on manual tickets or vague
recommendations, it translates
policy violations into ready-to-
merge pull requests. These fixes
are context-aware, align with
existing infrastructure such as code
tooling, and fit directly into the
workflows engineers already use.

Gomboc also addresses the problem of
infrastructure drift. It continuously scans
both the intended state (in code) and the
deployed state (in the cloud) to identify
discrepancies. When drift is detected,
Gomboc generates a fix that realigns the
environment with defined policies,
helping organizations maintain
compliance without manual intervention.

This approach eliminates the
common tradeoff between security
and speed. Developers don’t need to
decipher alerts or write fixes from
scratch. Instead, they receive clear,
auditable changes within their
version control system—just like any
other code review. Remediation
becomes as simple as approving a PR.

Every change Gomboc proposes
includes audit-ready documentation.
This ensures teams can track what was
fixed, why it was necessary, and how it
aligns with organizational policies or
external frameworks. Over time, this
creates a living history of security
improvements embedded in the
codebase itself.

Every change Gomboc proposes
includes audit-ready documentation.
This ensures teams can track what was
fixed, why it was necessary, and how it
aligns with organizational policies or
external frameworks.

Over time, this creates a
living history of security
improvements embedded in
the codebase itself.

SCHEDULE
A DEMO TALK TO AN EXPERT

Got Questions?

Gomboc AI is a developer-first platform that helps teams fix cloud infrastructure
misconfigurations fast before they break production. Founded in 2022 and based in
New York, Gomboc replaces alert fatigue and manual security backlog triage with
automated, ready-to-merge pull requests that align with your infrastructure, policies,
and team conventions.

By integrating directly into Git workflows, Gomboc enables platform and DevOps teams
to reduce mean time to remediate from months to minutes, cut misconfiguration-
related costs by up to $100K per cloud workload, and resolve 20% of the CSPM backlog
in just two days, a process that traditionally takes DevOps teams 20 days. With
Gomboc, security becomes an integral part of the development process, enhancing
efficiency without compromising speed.

ABOUT GOMBOC AI

15

GOMBOC IS CERTIFIED AND COMPLIANT WITH

TURNING CODE INTO CONTROL: THE PATH TO SECURE IAC

