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Abstract

Yield farming is a decentralized finance strategy in which liquidity is provided in exchange for
rewards in the form of transaction fees paid by liquidity takers. This article analyzes transaction
costs, returns, and risks using on-chain data from major decentralized exchanges. To understand
the economic mechanisms of yield farming, we present a mathematical model that incorporates
stochastic returns, impermanent loss as a source of risk, and transaction costs. By calibrating the
model to the data, we gain insights into the trade-off between future benefits and transaction costs,
offering a valuable understanding of yield farming’s economic dynamics.
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1 Introduction

Yield farming provides access to many who need financial services but whom traditional finance
leaves behind. It provides users with inflationary or contract-funded rewards for staking capital or
using a protocol, which are then payable in the same underlying asset the user holds. Any user can
participate, staking an amount of any size — regardless of how small — and receiving a proportional
reward.

— Harvey et al. (2021)

Decentralized finance (DeFi), is a fast-growing emerging financial technology that aims to open
new avenues for investment by removing intermediaries in security transactions. DeFi uses smart
contracts to create protocols that replicate existing financial services in a more open, interoperable,
and transparent way.1 Yield farming is a passive DeFi investment strategy, and is currently one of the
most significant growth drivers of the DeFi domain, with a market capital expansion from 500 million
United States dollars (USD) to 15 billion USD in 2020 alone, peaking in November 2021 with over 170
billion USD total value locked (TVL).2

While there are many forms of yield farming (see Appendix A.1), this article focuses on yield farming
for liquidity provision, which is the practice of depositing tokens into a liquidity pool on a decentralized
exchange (DEX). As a reward, liquidity providers receive a share of the trading fees paid by traders
who use the pool. In contrast to traditional finance, yield farming is different from traditional liquidity
provision because it occurs in the absence of a central market maker (intermediary). Figure 1.1 provides
a high-level overview: A liquidity provider (yield farmer) deposits tokens, which is called staking, into
a liquidity pool. Liquidity pool transactions are recorded and maintained on a blockchain, and the
liquidity provider’s deposits adhere to the terms of a smart contract. If a liquidity taker (trader) enters
the liquidity pool, he can buy and sell tokens by swapping them in the pool according to a known
pricing rule (pricing rules will be discussed in detail later in this paper). Swapping tokens incurs a
trading fee, and in exchange for providing liquidity, the yield farmer earns a share of these trading fees.
Thus, cryptocurrency savings can be used to “passively” generate yield, and hence, liquidity provision
is somewhat similar to earning interest in a bank account, with the main difference being that yield
farming is a high-risk, high-reward venture in which double-digit percentage annual return rates are
not unusual. In addition, yield farming can be viewed as a way to increase the returns on existing
cryptocurrency holdings. It is important to emphasize that yield farming is different from simply
holding cryptocurrencies, and admittedly, it is more complicated than simply earning interest from a
bank account.

Our main contributions in this article are as follows: i) We differentiate yield farming by liquidity
provision from traditional finance and explain its essential concepts in simple language for the general
audience. ii) Empirically, we quantify returns, risks, and transaction costs using on-chain data from
the two major decentralized exchanges, Curve and Uniswap. iii) We investigate yield farming by
incorporating all its relevant and particular features into a tractable mathematical framework. iv)
To shed light on the economic mechanism and trade-offs, we characterize optimal liquidity-provider

1A smart contract is a code that lives on a blockchain. It can both control and define interactions between assets, the
blockchain, and network participants.

2Source: https://www.defillama.com/.
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Figure 1.1: Simplified Mechanics of Yield Farming by Liquidity Provision: Liquidity Providers, Traders, and
DEX/AMM.

behavior through the lens of our model after calibrating to the data.
We start with the discussion of the different functioning of liquidity provision within DeFi and

traditional financial markets, building on Härdle et al. (2020), Harvey et al. (2021), Cong et al. (2021),
Makarov and Schoar (2022), and Aquilina et al. (2023). In general, yield farming can be seen as an
over-the-counter (OTC) market but with a known counterparty on a decentralized exchange (DEX)
(Lehar and Parlour (2022)), that is governed by an automated market maker (AMM) (Capponi and
Jia (2022) and Mohan (2022)), behaving according to some known pricing rules.3 In yield farming,
tokens are lent (to a protocol) that resembles security lending; see D’Avolio (2002) and Duffie et al.
(2002). Once the tokens are lent (staked) to the liquidity pool, the lender or liquidity provider receives
a variable coupon, which is governed by the annual percentage rate (APR), similar to a bond, with
the additional option to compound the coupon in order to increase its nominal and therefore future
coupon payments. The main difference to security lending being that at the end of the term, the
protocol most likely will not return the same quantities of individual tokens to the lender, due to the
so called impermanent loss, which occurs when the price of the deposited tokens changes from when
one deposited them. It therefore defines the opportunity-cost dynamic between offering tokens for
liquidity provision and simply holding the tokens.4

The option to compound the coupon in order to increase future payments seems trivial in traditional
finance because when depositing money into a savings account, interest is credited continuously (e.g.,
monthly), resulting in the well-known concept of interest-on-interest (compounded interest). To con-
trast, in DeFi, every action must be verified by the decentralized consensus mechanism, which incurs
transaction costs each time it is invoked; see Donmez and Karaivanov (2022). The interest-on-interest
mechanism does not apply automatically, meaning that the yield farming agent (hereafter referred to
as “the agent”) needs to manually recompound, and therefore has to claim rewards (interest payments)
and deposit them back into the account in order to increase the nominal upon which interest is paid.
Hence, the agent faces a trade-off between increasing the nominal and paying the transaction costs
for this increase. Among the growing community of yield farming practitioners, the optimal recom-

3Building on these concepts, in order to understand the complexity of yield farming, we provide a deeper investigation
and description of surrounding concepts, such as Liquidity Provider token (LP) staking, as explored in Augustin et al.
(2022), as well as reward tokens, boosting, and concentrated liquidity, as studied in Heimbach et al. (2022) in Appendix
A.2.

4Example: Consider two tokens, A and B, each initially worth 1 USD. The AMM holds identical quantities of 100 of
each asset and offers both at a fixed exchange rate of 1:1. Suppose asset B’s price appreciates to 2 USD in the wider
market. Arbitrageurs exchange all of asset B in the pool for asset A because asset B is more valuable. The pool then
holds 200 of asset A worth 200 USD. If, however, the LP did not participate in liquidity provision and held only A and
B, his portfolio value would be 300 USD. Therefore, the impermanent loss equals 100 USD (the difference between 300
USD and 200 USD).
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pounding is continually debated on various online platforms, where conventional wisdom on optimal
recompounding remains fragmented. As this debate has unfolded in the past three to five years, there
has been no rigorous academic research on optimal recompounding.5

Next, we analyze on-chain data (which refers to data that is stored on a blockchain) to quantify
transaction costs for providing liquidity (gas fees), the relevant risks such as the impermanent loss,
and returns (APRs). We focus on Curve and Uniswap, which are major (decentralized) exchanges
on the Ethereum blockchain that were designed for efficient token trading.6 The stablecoin pools on
Curve show an average transaction cost when providing liquidity of 25 USD, although there have been
instances of it surpassing a few hundred USD. In addition, when comparing exchanges specializing in
stablecoins to those specializing in Ethereum tokens, we see differences in their respective returns and
risks. In our sample, the liquidity provision of stablecoins appears to have lower risk (impermanent
loss) but also lower average rewards (3%, with the occasional possibility of reaching 20%). In contrast,
for non-stablecoin pairs, the risk of liquidity provision can exceed the returns from the earned trading
fees, resulting in a negative net APR. On average, the liquidity pools on Uniswap for non-stablecoin
pairs exhibit considerable impermanent loss with extreme values near -30% and reduced rewards of
less than 10% when accounting for net APRs. Furthermore, the large cross-section of available tokens
on Uniswap allows us to analyze the diversification benefits among the different liquidity pools. Not
surprisingly, the cross-correlation between the APRs of pairs of pools is, on average, positive but
displays some extreme values in the tails of the distribution.

In the second part of the paper we build a continuous-time stochastic model of token prices in
the liquidity pool and formulate a control problem for optimal yield farming. Our framework reveals
the fundamental mechanics for cost-effective liquidity provision in DeFi. Specifically, high transaction
costs motivate the investigation of the agent’s optimal policy for recompounding (and withdrawing),
which can be reduced to the trade-off between i) increasing the nominal and earning more APR in the
future and ii) the high gas fees associated with this action. Overall, our results show that transaction
costs are of major consideration to DeFi market participants and in line with Grossman and Miller
(1988): They lower the costs to liquidity providers.

The construction of our model starts with a mathematical formulation of the AMM’s constant
product rule for governing prices in the pool. We then derive and characterize the impermanent loss
as the major source of risk for the agent who has invested in the pool. For a single pool with a single
pair of tokens, our calculations show that the impermanent loss is a function of the respective token
return volatilities and the correlation between them. We build further on this model by incorporating a
time-varying stochastic APR for a single liquidity pool, a feature that mimics the real-life stochasticity
of rewards in yield farming. The presence of fixed transaction costs and manual recompounding faced
in DeFi (frictions) motivate us to extend the existing models of Davis and Norman (1990) and Dumas
and Luciano (1991), including fixed transaction costs tailored to the yield-farmer’s optimal investment
problem, and to optimize recompounding so that the portfolio always maintains closeness to an ideal
proportion of staked and un-staked tokens; this ideal proportion is similar to the aim portfolio in the
transaction costs framework of Garleanu and Pedersen (2013). The fact that the agent faces fixed

5See, for example, https://www.reddit.com/r/UniSwap/comments/sv5uu7/v3_compounding_and_reinvest/.
6Launched in January 2020, Curve’s low-fee algorithm was designed specifically for stablecoins. Stablecoins are

cryptocurrencies whose value is pegged, or tied, to that of another currency, for example, the USD, a commodity, or a
financial instrument; see Arner et al. (2020). Uniswap was created in November 2018 and is estimated to be the largest
decentralized exchange allowing users to trade any Ethereum-based tokens.
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transaction costs regardless of deposit amount makes the model in-line with actual fees for blockchain
verification. Next, we generalize this framework for multiple pools to show how investment can change
with additional diversification choices. To our knowledge, this is the first article to propose a normative
model with the purpose of characterizing yield farming by liquidity provision in terms of its fundamental
elements for risk and return.

Our framework reveals that the optimal recompounding (withdrawal) amount follows a bang-bang
type of control, which means recompounding (withdrawal) either nothing or everything. Moreover, the
results associated with our stochastic control problem point to different recompounding (withdrawal)
regions, where it is optimal to recompound or not, depending on the region. These regions are the
analog of the buy-sell-hold regions identified in the optimal investment problem of Davis and Norman
(1990), where here the regions depend on the staked amount, the APR, the impermanent loss, and
the transaction costs. Hence, the model is capable of precisely describing the previously discussed
trade-off.

We demonstrate the flexibility of our proposed model for different token types. We use data from
Curve to create the model to resemble yield farming for stablecoins, and Uniswap data to resemble
yield farming for non-stablecoins, with the underlying exogenous stochastic APR process modeled as
an exponential Ornstein–Uhlenbeck (OU) process. In order to consider the different magnitudes of
risk, the parameters for the impermanent loss are estimated from their respective exchange’s token
data. In general, we observe that the recompounding regions are increasing in the APR and decreasing
in the transaction costs. At the initial time, the recompounding (withdrawal) regions are large (small),
and if time passes, they become smaller (larger). A direct comparison of the two token types reveals
that a larger impermanent loss leads to a smaller recompounding area and a larger withdrawal area.
To better understand how the agent’s decision-making is affected by a changing market environment,
we conduct a sensitivity analysis by adjusting the transaction cost and the risk tolerance parameters.
As expected, lower transaction costs and a larger risk tolerance increase the recompounding region and
vice versa.

To obtain additional insight on diversification benefits and the interaction among optimal recom-
pounding controls when facing multiple liquidity pools, we apply our multi-pool framework to a selec-
tion of two Uniswap pools. Inspecting the optimal actions for the individual pool in isolation reveals a
similar and consistent behavior as that of the previous single pool setting: The recompounding areas
are increasing in the APR and the agent recompounds more often (less often) at the initial (terminal)
time. In the next step, we analyze the optimal controls for both pools simultaneously and applying
a sensitivity analysis. In line with prior intuition, the agent prefers to recompound more frequently
in the liquidity pool with the greater APR. When the APRs of the two pools move in the opposite
direction, the investor uses the diversification benefits by moving resources from the pool with the
lower APR to the pool with the higher APR.

The rest of this article is organized as follows: Section 2 discusses the literature. Section 3 explains
the general concepts of yield farming, Section 4 discusses the data, Section 5 introduces the stochastic
model, Section 6 presents the numerical output, Section 7 contains parameter sensitivity analysis, and
Section 8 concludes.

4



2 Literature Review

The literature on DeFi is growing and divides itself into various parts: One strand of the literature
is represented by the literature on tokens, such as platform adaption, token valuation (pricing), and
token financing (Prat et al. (2019), Gryglewicz et al. (2021), Goldstein et al. (2022) and Sockin and
Xiong (2023)). In addition, yield farming encourages the early adoption of productive platforms (Cong
et al. (2021)). Cong et al. (2022) provide informative insights into the economics of “staking” by
building a continuous-time model of a token-based economy to study various utility-based functions
tokens provide to users. We contribute to this literature by investigating the main quantities (risks,
returns, and transaction costs) and the optimal agent’s behavior on one particular application of such
a platform, that is, yield farming by liquidity provision.

The literature on DeFi describes the differences between decentralized and centralized exchanges
in terms of market quality (Barbon and Ranaldo (2021)), and arbitrage rents and order-processing
mechanisms (Capponi and Jia (2022) and Lehar and Parlour (2022)). Krishnamachari et al. (2021)
and Xu et al. (2023) provide a thorough review on the different AMM protocols and their functioning.
To date, the literature on yield farming is relatively undeveloped, with a few exceptions: Cousaert et al.
(2022) study the general framework of yield farming by focusing on the protocols and tokens used by
aggregators. Heimbach et al. (2022) analyze in detail the risks and returns of Uniswap V3 liquidity
providers. In continuous-time framework prices following geometric Brownian motion, Milionis et al.
(2022) have identified loss-verses-rebalancing as the primary risk for DeFi liquidity providers, and
further decompose this risk into adverse selection cost and an information cost. Cartea et al. (2022)
introduce a new comprehensive metric of predictable loss for liquidity providers and derive an optimal
liquidity provision strategy. Augustin et al. (2022) study LP token staking and the return chasing
behavior of investors on PancakeSwap. We contribute to this literature by developing the general
mathematical framework in continuous time that models returns, transaction costs, and risks and
that reveals the explicit recompounding mechanism and the optimal (re)allocation within and among
different liquidity pools.

There have been many papers that focus on transaction costs models for portfolio management and
derivatives pricing. The extension of the Merton optimal investment problem to include proportional
transaction costs was first formulated in Magill and Constantinides (1976) and Constantinides (1986),
where it was shown that there would be a no-sell region and that small transaction costs would
remain as a higher-order effect. Davis and Norman (1990) showed the no-trade region to be wedge-
shaped, expressed the optimal strategy as a bang-bang control, and demonstrated that the Hamilton-
Jacobi-Bellman equation could be reduced to an equation with a free boundary. Egriboyun and Soner
(2010) extended the study of Davis and Norman (1990) with an interpretation of bounded controls as
drawdown and reallocation constraints. Dumas and Luciano (1991) considered a version of the problem
with no consumption, which led to an exact solution. Duffie and sheng Sun (1990) considered fixed,
proportional transaction costs in discrete time lump-sum amounts. A general reference is Kabanov
and Safarian (2010), who include an exposition of modified delta hedging strategies for options under
proportional transaction costs. Mean reversion toward an aim portfolio is the prototypical behavior
that is identified in Garleanu and Pedersen (2013). This phenomenon stems from transaction costs,
which restrict the investor’s ability to immediately modify their portfolio. As a result, the investor must
carefully assess his optimal portfolio not only in the present but also in the future. The contribution
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that we make is the extension of these transaction cost techniques to yield farming, but rather than
proportional fees, we specifically address how to manage the constant fees that occur when writing to
the blockchain.

We also contribute to the literature on liquidity provision in decentralized markets by outlining their
differences to both centralized cryptocurrency and traditional financial markets where the assumption
of a central market maker or intermediary is crucial (Logue (1975), Glosten and Milgrom (1985), O’Hara
and Oldfield (1986), Allen and Gale (2004), and Huang and Wang (2010)). Bianchi et al. (2022) provide
empirical evidence that the returns from liquidity provision on centralized cryptocurrency exchanges
are primarily concentrated in trading pairs with lower levels of market activity.

3 General Concepts of Yield Farming

Yield farming via liquidity provision is the depositing of tokens into a liquidity pool. Traders who
need liquidity can swap tokens within these liquidity pools – paying explicit fees to do so. Liquidity
providers earn these fees by facilitating two-way liquidity, but they also bear the risk of capital losses
if the fundamental exchange rate changes (impermanent loss). In the following, we explain in more
detail the necessary concepts and vocabulary that are involved in yield farming via liquidity provision.

3.1 Decentralized Exchanges, Automated Market-Making, and Liquidity Pools

The liquidity provision occurs through smart contracts without any middleman or intermediator
on a DEX, which is a peer-to-peer token trading and swapping platform running on a blockchain that
allows participants to exchange tokens in a decentralized manner without a centralized limit order book
(unlike a centralized exchange). A DEX permits the self-custody of the assets, namely, the “digital
wallet” (wallet) of the participant that is recorded on the assets. The fees for lending and borrowing
are transparent and do not have to be shared with any broker. The liquidity provider can freely choose
the assets on which liquidity is provided (as opposed to on a CEX). In addition, the liquidity provision
is done permissionless, without superfluous or time-consuming application processes.

The decentralized trading mechanism is typically executed by an AMM mechanism, which denotes
the underlying protocol that powers a DEX by enabling assets to be traded by using liquidity pools
as counterparties rather than a traditional market of buyers and sellers. This is done via matching
liquidity providers and liquidity takers where the price of the assets in the pool is determined by a
mathematical relationship, for example, the constant product rule, which commands that the total
amount of liquidity in the pool remains constant. For two tokens, this rule can be described as
L “

?
N1N2, where L denotes the total liquidity and N1 and N2 denote the amounts of the respective

tokens 1 and 2. Hence, as the amount N1 increases, the amount N2 must decrease, and vice versa.7

The major benefits of an AMM are that it is always available and that a traditional counterparty is
not necessary to execute a trade.8

Liquidity pools are an essential part of the DeFi ecosystem and make up a collection of tokens or
7It seems natural that the constant product rule can be extended to more than two tokens; in addition, some platforms

also apply other AMM rules, such as the constant sum rule or an 80/20 rule (Balancer Protocol).
8Curve uses a special StableSwap invariant that represents a combination of the constant product rule and the constant

sum rule; see https://classic.curve.fi/files/stableswap-paper.pdf. Uniswap uses a modified product AMM. See
https://uniswap.org/whitepaper-v3.pdf.
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digital assets stored in a smart contract that help to facilitate decentralized trading and that enable
essentially anyone with funds to become a liquidity provider and earn trading fees.9 Users depositing
their tokens into a liquidity pool are called liquidity providers (LPs). Typically, to pool liquidity,
the amounts that a user supplies must be equally divided between the two tokens. In exchange for
providing their liquidity (funds), they earn trading fees from the trades that occur in the liquidity pool
according to their share of the liquidity pool. In addition, liquidity pools can solve the problem of new
token-based projects with a low user base, by providing a reason for people to hold these tokens – to
provide liquidity for a fee.

The estimated returns in the yield farming process are quoted in terms of APRs, which denotes the
annualized fraction of earning fees occurred from trading activity (feest) in the respective pool (over
some period) divided by the total volume of the pool (measured in TVL),

APRt “
feest
TV Lt

.

In the following, we explain and delve into the various sources of returns and transaction costs one
receives or faces when participating in yield farming.

3.2 LP Tokens, Reward Tokens, Boosting, and Concentrated Liquidity

Understanding yield farming in all its facets is a complicated matter. The liquidity provider can
increase the returns from yield farming by a significant amount when additionally considering i) LP
token staking, ii) the collection of reward tokens, iii) boosting, and iv) managing the impermanent loss
through the concentrated liquidity feature. In Appendix A.2, we discuss the concepts in more detail,
especially for Curve and Uniswap.

3.3 Quantifying Transactions Costs

An important part and determinant of yield farming are transaction costs, which occur for each
action that causes a write transaction on the respective blockchain. In the following, we explain in
more detail the fee schedule of the Ethereum blockchain.10 The simplest transactions, in the context
of yield farming, are depositing and withdrawing the tokens to and from the liquidity pool. The major
difference between the transaction costs occurring in yield farming and transaction costs occurring in
the classical financial system is the fact that these do not increase in volume. Hence, the fee of a
transaction on the Ethereum blockchain is not related to the size of the transferred or traded amount.
All that matters are i) how much computation a transaction needs (units of gas) and ii) how much the
sender is willing to pay for each unit of computation (gas price). In our sample, the average gas fee
for a standard Ethereum transfer was 3.35 USD, with extreme values of more than 17.5 USD.11 In the
empirical analysis presented later, we report the transaction costs for adding and removing liquidity
for various liquidity pools that, due to their computational complexity, greatly exceed the transaction
costs of a simple Ethereum payment.12

9On Curve, the standard trading fee on all pools is 0.04%. Uniswap charges 0.05%, 0.3%, or 1.0% fee for each trade.
10Ethereum’s ability to host smart contracts designates it as a smart contract platform, with more than 50% of the

DeFi market’s TVL; see the “State of Crypto Report” Matsuoka et al. (2022).
11In Appendix A.3, we discuss in more detail the calculation of a standard Ethereum transfer.
12There are other types of actions involved in yield farming that cause transaction costs: i) depositing (transfer of

funds to the liquidity pool), ii) withdrawing (transfer of funds from the liquidity pool to its token pair), iii) claiming
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3.4 Risks

Yield farming is a relatively new concept in DeFi, and while yield farming can be a profitable
endeavor, it is also risky. In the following, we introduce and provide an overview of some of the key
risk concepts to consider when engaging in yield farming.

3.4.1 DeFi Smart Contract Risk, Bugs in the Code, and Risks of Scam

Yield farming and DeFi are a collection of smart contracts, and, hence, one bug in the software
can be exploited by a malicious actor to manipulate the project, causing yield farmers to experience a
loss.13 To mitigate this risk, the investor should confirm that the smart contract has been audited by
a well-recognized blockchain audit firm.14 In addition, investors should ensure that they are not using
an application that is not properly vetted and whose owners are known.15 Trust is of importance since
one of the most popular types of scam in DeFi is called a rug pull or being rugged, which refers to a
scam in which the creators of a project suddenly and without warning withdraw the funds from their
smart contract, leaving investors with worthless tokens.16

3.4.2 Impermanent Loss

Yield farming also comes with risks due to the liquidity provision channel of the AMM. The
impermanent loss is the difference between the value the crypto assets would have been held and the
value of assets in a liquidity pool instead. It occurs when the price of the deposited assets changes
compared to when one deposited them. The bigger this change is, the more one is exposed to the
impermanent loss. Hence, LPs are subject to the impermanent loss when the prices of tokens in a pool
diverge (no matter in which direction the price changes), causing them to underperform a standard
buy-and-hold strategy. It is important to mention that the impermanent loss does not necessarily
mean that the LP experiences a negative return on the investment: It simply means that the gains
from a buy-and-hold strategy outperformed the returns obtained for the liquidity provision.17 It seems
plausible that the more volatile and less positively correlated the assets in the pool are, the more likely
it is that one can be exposed to the impermanent loss. In the empirical analysis, we calculate the
impermanent loss by comparing the portfolio value of the tokens locked in the pool (VPool), assuming a
constant product pricing rule, to the portfolio value when simply holding the tokens (VHold), as follows:

IL ptq :“
VPool ptq ´ VHold ptq

VHold ptq
. (3.1)

(requesting the rewards obtained from liquidity provision and LP token staking), iv) staking (depositing the LP token
into a staking pool).

13Source: https://decrypt.co/82499/compound-exploit-drains-21m-from-lending-protocol.
14The failure of FTX and Genesis shows that some blockchain auditing companies registered in the Metaverse did not

properly audited the smart contracts that they were reviewing; see https://medium.com/@observer1/ftx-auditor-ha
s-an-office-in-the-metaverse-e3273710738b.

15A comprehensive overview of past rekts describing severe financial losses within DeFi can be found here https://r
ekt.news/

16Source: https://cointelegraph.com/news/certik-identifies-arbix-finance-as-a-rug-pull-warns-users-t
o-steer-clear.

17We provide more details about the impermanent loss in Appendix A.4.
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3.4.3 Price Risks, (Failed) Stablecoins, and APR Instability

As long as investors hold cryptocurrencies, they expose themselves to the encapsulated price risk
of them. In addition, the yield farmer’s rewards are paid in tokens, and, as a consequence, if the value
of the token declines, so does the overall return on the yield farm investments.

As outlined, a crucial shortcoming of many cryptocurrencies is their excessive volatility. To avoid
this, an entire class of cryptocurrencies called stablecoins has emerged, intending to maintain price
parity with some target assets such as the USD or the euro (EUR); see Arner et al. (2020). The
mechanism by which the stablecoin maintains its peg varies by implementation.18 The failure of
TerraUSD (UST) proves that even stablecoins cannot be considered safe assets either; see Liu et al.
(2023).

APRs represent the share of earned transaction fees with respect to the TVL. They are therefore
dependent on demand (earned transaction fees) and supply (measured in TVL). As demonstrated later
in the empirical section, APRs are volatile, with extreme maximal and minimal values. In addition, as
a liquidity pool gains popularity, the APR decreases. This occurs because if a pool offers high returns,
more tokens will be added to it, causing a rise in supply, which, in turn, leads to a decrease in the
APR.

3.5 The Investment Procedure

This subsection describes the individual actions on a generic yield farming platform. In addition to
the generation of the potential yield, we also emphasize the role of the transaction costs in each step.

Initial Step (t “ 0). Initially, the agent transfers a particular amount of the Assets Under
Management (AUM), from the wallet to a given liquidity pool (i.e., locks tokens into a smart contract),
which generates returns (earned trading fees) for the provided service. This initial depositing operation
results in transaction costs.

Rebalancing Step (t ą 0). In this step, the agent selects from the following set of choices: i)
The earnings from the liquidity pool are reinvested into the liquidity pool (earnings are credited in
the wallet and paid in the platform token, which we can reinvest directly). It is important to mention
that earnings are not reinvested automatically. We call the operation of reinvesting earnings into
the liquidity pool recompounding. This depositing operation results in transaction costs. ii) The agent
undertakes no action: This neither increases the interest-bearing nominal nor results in any transaction
costs.

Figure 3.1 provides visual support for the trade-off. Let us assume an agent with an initial capital
of 500 USD invests in a liquidity pool with a yearly fixed APR of 15% (which corresponds to a daily
APR of 0.00038). The solid line displays the well-known traditional concept of interest on interest. The

18The three primary mechanisms are fiat-collateralized, crypto-collateralized, and non-collateralized stablecoins. Fiat-
collateralized stablecoins, the largest category, are backed by off-chain reserves of a specific asset like USD. Off-chain
reserves have faced intense scrutiny due to their lack of adherence to the same reserve ratios required of traditional finan-
cial institutions. The Commodity Futures Trading Commission (CFTC) and U.S. Securities and Exchange Commission
(SEC) have resolved their jurisdiction disputes and focus on more rigorous auditing of these reserves, making them more
meaningful than they were from 2016 to 2022. See, https://www.strausstroy.com/articles/crypto-sec-vs-cft
c/. The second-largest category is crypto-collateralized stablecoins, which are backed by an over-collateralized amount
of another cryptocurrency like Bitcoin or Ethereum. Non-collateralized (algorithmic) stablecoins are not backed by any
underlying asset and use algorithmic expansion and supply contraction (mint-burn mechanisms) to shift the price to the
peg.
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dotted line corresponds to the situation the agent is facing when yield farming, that is, interest is not
compounded automatically and therefore the wealth only grows arithmetically (namely, by 15% ˆ 500
USD = 75 USD per year). The dashed line corresponds to the wealth of an agent who recompounds
at t “ 5. As visible, the portfolio value drops by the transaction costs (here, 50 USD) but then grows
faster due to the fact that the APR is now calculated on the increased base value. Hence, the optimal
recompounding area and frequency are dependent on the stacked amount and the transaction costs
and are therefore difficult to determine. In the mathematical framework outlined in the later sections,
we analyze exactly the described trade-off between increasing the interest-bearing nominal and paying
the associated transaction costs considering optimality criteria.

0 1 2 3 4 5 6 7 8 9

600

800

1000

1200

1400

1600

1800

2000

Compounded Not Compounded Recompounded

Figure 3.1: Motivation – Recompounding. The figure shows the wealth for an agent in different scenarios.
The invested initial amount is set to 500 USD, and the APR is 15%. Thereby, “Compounded” (“Not Compounded”)
represents the geometric (arithmetic) accumulation of interests. “Recompounded” represents the scenario where the
investor recompounds at t “ 5, paying the transaction costs of 50 USD.

4 Empirical Analysis

In this section, we carry out the empirical analysis to reveal and display the previously discussed
quantities of Section 3, and we pay careful attention to transaction costs, risk from the impermanent
loss, and stochasticity of APR. We first analyze the liquidity pools and their respective token pairs for
stablecoins on Curve. In the next step, we infer additional insight by inspecting a large cross-section
of liquidity pools (of any Ethereum-based tokens) on Uniswap.

4.1 Curve Stablecoins Pools

We obtain daily historical data on six liquidity pools for USD stablecoins directly from the Curve
website.19 Table 4.1 reports the pools and their respective token pairs, including the total pool market
capitalization. The deepest pool is by far the 3pool, where liquidity is provided for the triple DAI,
USDC, and USDT.20

19Source: https://classic.curve.fi/dailystats.
20To provide a better understanding of the tokens within a liquidity pool, a more detailed description of them can be

found in Table I.1. It is important to mention that the tokens within the pools differ from their collateralization (crypto
versus fiat).
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Liquidity Pool Pairs Market Capitalization

compound DAI, USDC 252.679m
y DAI, USDC, USDT, TUSD 171.667m
busd DAI, USDC, USDT, BUSD 19.618m
susdv2 DAI, USDC, USDT, sUSD 122.298m
pax DAI, USDC, USDT, USDPAX 11.092m
3pool DAI, USDC, USDT 3.984b
All Curve — 17.169b

Table 4.1: Overview – Curve Pools. The table reports the depositable token pair and the overall market capitaliz-
ation of the six pools from Curve (as of May 12, 2022). Details about the token pairs are provided in Table I.1.

Furthermore, Table 4.2 presents the summary statistics of the respective tokens. The token prices
are denoted in USD. It is immediately visible that the respective mean of the token prices circles
around 1, with a small standard deviation. Nevertheless, some tokens deviated downward from their
fundamental, for example, sUSD.21

Token Mean Standard Deviation Minimum Maximum

DAI 1.004 0.007 0.993 1.034
USDC 1.000 0.000 0.999 1.001
USDT 1.000 0.001 0.995 1.004
TUSD 1.000 0.000 0.997 1.002
BUSD 1.000 0.000 0.998 1.002
sUSD 1.001 0.017 0.807 1.057
USDPAX 1.000 0.002 0.961 1.005

Table 4.2: Summary Statistics – Tokens on Curve Pools. The table reports the summary statistics (mean,
standard deviation, and the minimum and maximum observations) of token prices of tokens in the six liquidity pools
from Curve. The tokens are quoted in USD. The data is sampled daily, and the sample period is from 04-2021 to 04-2022.

After describing the pools and used tokens on the Curve platform the transaction costs, we discuss
risks and returns (APRs). For the sake of exposition, we create an artificial liquidity pool, which we
denote as C̄urve pool, where we simply average the quantities (transaction costs, risk measures, and
APRs) of the six individual pools on Curve.

4.1.1 Transaction Costs

As outlined previously, transaction costs are relevant determinants of yield farming. To obtain
realistic quantities, we analyze the transactions for each of the six Curve pools on etherscan.io, using
the respective pool address.22 We then subset the transaction for the methods add liquidity and remove
liquidity to estimate the transaction costs for depositing and withdrawing liquidity to the respective
pool. Although the average transaction cost for removing liquidity is 23 USD, it is slightly more
expensive to deposit liquidity amount (34 USD).23 Transaction costs are highly volatile, displaying
volatility in the range of the transaction costs themselves. The peak reveals that paid transaction
costs can be easily more than five times as high as the average, exceeding a hundred USD. A graphical

21Time-series plots for the individual tokens for each pool are displayed in Figure I.1, which shows a clear deviation
from the underlying.

22For example, the 3pool transactions can be inferred here: https://etherscan.io/address/0xbEbc44782C7dB0a1A6
0Cb6fe97d0b483032FF1C7.

23The transaction costs summary statistics are presented in Table I.2.
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representation of the transaction costs is given in Figure 4.1, which displays the average transaction
costs for the C̄urve pool.

Transaction Costs for the C̄urve Pool
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Figure 4.1: Transaction Costs – C̄urve Pool. The figure shows the time-series plot of average (withdrawal and
remove liquidity) transaction costs (in USD) of the C̄urve pool (calculated as the average transaction costs from the six
Curve pools, as described in Table 4.1). The data is obtained from etherscan.io and sampled daily. The sample period
is from 05-2020 to 04-2022. The data is winzorized at the 1% quantile. In the plots, the five-day moving average is
depicted.

4.1.2 Risks

In order to shed light on the risks that an agent faces when yield farming, we calculate the im-
permanent loss the investor faces following equation (3.1).24 The daily annualized impermanent loss
among stablecoins is on average small and ranges from 2 basis points (bps) to 45bps. Inspecting
the minimum, it turns out that the impermanent loss can nevertheless reach extreme values of about
80bps.25 The average impermanent loss of the C̄urve pool is around 10bps, as displayed in Figure 4.2.

4.2 Rewards (APRs)

Next, we discuss the dynamics of the rewards of the yield farmers within the six Curve pools. Aver-
age APRs range from almost 0.1% to 5%, with volatility exhibiting a similar magnitude. Particularly
interesting are the maximum APRs obtainable, often displaying more than 20% per year, where some
pools show a range from 7% to more than 35%.26 The C̄urve pool, which can be seen as an equally
weighted portfolio across the six pools, would have generated an average of 3.1%, with a maximum
APR of 24%. The APR dynamics for the C̄urve pool are displayed in Figure 4.3.27

To investigate potential diversification benefits, we analyze the APR correlation dynamics across the
pools. It turns out that the unconditional correlation among all pool APRs is positive. The correlation
dynamics are similar, with the lowest average correlation for pax (0.54) and the 3pool (0.54) and a

24We calculate the average correlation of the stablecoin pairs returns within the respective pools to provide further
insights and to explain the potential impermanent loss. A high correlation among the tokens is favorable to avoid
impermanent loss. As seen in Figure I.2, the unconditional average correlation among the token pairs is always positive
and ranges between 0.3 and 0.7. In contrast, the conditional average correlation among the token pairs calculated over
a rolling window of 30 days ranges from 0.2 to almost 0.9.

25Summary statistics of the impermanent loss are provided in Table I.3.
26The summary statistics for the historical APRs are presented in Table I.4.
27The APR behavior of the six pools over time can be inferred from Figure B.2.

12



Impermanent Loss of the C̄urve Pool
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Figure 4.2: Impermanent Loss – C̄urve Pool. The figure shows the time-series plot of the impermanent loss
(annualized) of the C̄urve pool as the average impermanent loss from the six Curve pools, as described in Table 4.1. The
data is sampled daily, and the sample period is from 02-2020 to 05-2022. The data is winzorized at the 1% quantile. In
the plots, the five-day moving average is depicted.

APR of the C̄urve Pool
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Figure 4.3: APR – C̄urve Pool. The figure shows the time-series plot of the APR of the C̄urve pool as the average
APRs from the six Curve pools, as described in Table 4.1. The dotted line represents the average APR. The data is
sampled daily, and the sample period ranges from 02-2020 to 10-2022. The data is winzorized at the 1% quantile. In the
plots, the five-day moving average is depicted.

larger average correlation for busd (0.61). Hence, one can conclude that the diversification benefits are
limited across the analyzed stablecoin pools.28

Analyzing the stablecoin pools on Curve reveals various insights about transaction costs (on average
25 USD, with extreme historical values exceeding a few hundred USD), risks (10bps on average but
with a minimum of almost –8%), and rewards (on average 3% but easily exceeding 20% on good days).
To complement the insights (not only covering stablecoins), in the next section we extend our analysis
to pools where any Ethereum-based token can be swapped.

4.3 Uniswap

To reveal additional yield farming insights that do not only provide liquidity for stablecoin pairs,
we analyze data from Uniswap V3, which is is the third version of the Uniswap decentralized exchange

28The correlation dynamics for the historical APRs are presented in Table I.4.
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protocol. We source data from the 100 Uniswap pools with the largest TVLs, using the methodology
provided by The Graph. The Graph is a protocol that helps in accessing information on the Ethereum
blockchain by allowing users to use a query language called GraphQL. We then calculate the transaction
costs, the impermanent loss, and historical APRs for each pool for the period of 5-2021 to 1-2023. The
data is aggregated daily.

4.3.1 Transaction Costs

Transaction costs are relevant determinants of yield farming. We therefore analyze the transactions
for the largest Uniswap pools. We then subset the transaction for the Mints and Burns methods to
estimate the transaction costs for depositing and withdrawing liquidity to the respective pool. The
average transaction cost for removing liquidity is almost 64 USD; it is slightly more expensive to
deposit liquidity (83 USD). Transaction costs are highly volatile, displaying volatility in the range of
the transaction costs themselves. A graphical representation of the transaction costs is given in Figure
4.4, which displays the average transaction costs for the Ūniswap pools. As visible, the transaction
costs are decreasing over time.

(a) Ūniswap: Mints
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(b) Ūniswap: Burns
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Figure 4.4: Transaction Costs – Ūniswap Pools. The figure shows the time-series plot of average (withdrawal and
remove liquidity) transaction costs (in USD) of the Ūniswap pools (calculated as the average transaction costs from the
largest Uniswap pools. The data is obtained from The Graph resampled daily. The sample is from 05-2021 to 01-2023.
The data is winzorized at the 5% quantile. In the plots, the five-day moving average is depicted.

4.3.2 Risks

The risks for the liquidity pools on Uniswap differ tremendously from those of Curve. Figure 4.5
displays the histogram of the impermanent loss time-series means for individual Uniswap pools. The
annualized impermanent loss across the pools is on average –8.3%, with extreme values up to –30%.
Therefore, in contrast to the stablecoin liquidity provision, the impermanent loss can be treated as a
nonnegligible risk.

4.3.3 Rewards (APRs)

Next, we report the average APRs for the Uniswap pools. Figure 4.6 displays the histogram of
the time-series average gross (Panel a) and net APRs (gross APR - impermanent loss) (Panel b). As
shown, the mean gross APR is around 13%, with extreme values up to almost 50%. Due to the large
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Histogram of the Impermanent Loss – Uniswap Pools
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Figure 4.5: Histogram: Impermanent Loss – Uniswap Pools. The figure shows the histogram of the (average)
impermanent loss (annualized) of the Uniswap pools. The dotted line represents the average impermanent loss. The
data is sampled daily, and the sample period ranges from 05-2021 to 12-2022. The data is winzorized at the 5% quantile.

impermanent loss, the average net APR decreases to only 5% and displays some extremely negative
net APRs up to –30%.

(a) Uniswap: APRs
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(b) Uniswap: Net APRs
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Figure 4.6: Histogram: Uniswap Pool APRs. The figure shows the histogram of the (average) APRs of the
Uniswap pools. In Panel a) the gross APRs are displayed, and in Panel b), the net APRs (gross APR - impermanent
loss). The dotted line represents the average. The data is sampled daily, and the sample period is from 05-2021 to
12-2022. The data is winzorized at the 1% quantile.

Figure 4.7 displays the gross and net APRs for the Ūniswap pool (as the cross-sectional average
across the 100 individual pools) over time. As shown, both the gross and the net APRs are volatile.
While the gross APR decreased steadily, the net APR has been moving at approximately 5% since
06-2022.

Next, we analyze the correlation dynamics among the different pool APRs on Uniswap. To do
this, we calculate the unconditional pool APR correlations. We then display the 2.5%, the median,
and the 97.5% quantile for each pool (the row of the correlation matrix) in Figure 4.8 Panel a). The
median correlation is centered at approximately 15%, while the 97.5% reaches values up to almost
80%. Different from the stablecoin pools on Curve, the 2.5% quantile deflects negative values for
some of the pools centered at around –20%. Therefore, an agent could potentially use the negative
correlation and the accompanying diversification benefits. Figure 4.8 Panel b) plots the quantiles of the
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(a) Uniswap: APRs
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(b) Uniswap: Net APRs
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Figure 4.7: Uniswap Pool APRs. The figure shows the cross-sectional average of the APRs of the Uniswap pools
(Ūniswap). In Panel a), the gross APRs are displayed and in Panel b) the net APRs (gross APR - impermanent loss).
The dotted line represents the average. The data is sampled daily, and the sample period is from 05-2021 to 12-2022.
The data is winzorized at the 1% quantile. In the plots, the five-day moving average is depicted.

APR correlation over time, where the correlation is calculated over a rolling window of two weeks. As
visible, the quintiles are fairly stable. Nevertheless, they display some increases, especially in months
where returns on cryptocurrencies suffered: For example, Bitcoin had its worst months in 05-2021,
06-2012, 05-2022, 06-2022, and November 2022.

(a) Histogram (unconditionally)
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(b) Quantiles over time
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Figure 4.8: Quantiles of the Uniswap Pool APRs Correlation. The figure shows the 2.5% (blue), the median
(orange), and the 97.5% (green) quantiles of the correlation among the Uniswap pool APRs: In Panel a), the histogram
of the unconditional correlation is displayed, while in Panel b) the quantiles of the correlation are shown over time
(calculated over a rolling window of two weeks). The dotted lines represent the respective averages. The data is sampled
daily, and the sample period ranges from 05-2021 to 12-2022. The data is winzorized at the 5% quantile.

4.3.4 Risk Return Trade-off

As with any investment, yield farming involves a risk-return trade-off. Higher returns often come
with higher risks, and lower risks generally come with lower returns. In the case of yield farming, the
risks includes the APR instability and the impermanent loss. In the following, we report the Sharp
Ratios (SR) for the Uniswap pools. Figure 4.9 displays the histogram of the gross Sharpe Ratios
(Panel a) and the net Sharpe Ratios (Panel b). We calculate the SR for the individual pools as the
arithmetic mean return (gross or net APRs) divided by the volatility of the respective APR time-series.
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As shown, the mean gross SR is around 87%, with extreme values up to almost 225%. Due to the large
impermanent loss, the average net SR decreases to only 30% and displays some extremely negative net
SRs up to –50%.

(a) Uniswap: Sharpe Ratios

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Uniswap Sharpe Ratios

0

5

10

15

20

25

fre
qu

en
cy

(b) Uniswap: Sharpe Ratios (Net)
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Figure 4.9: Histogram: Sharpe Ratios of the Uniswap Pools. The figure shows the histogram of the Sharpe
Ratios (SRs) for the Uniswap pools. In Panel a), the gross SRs are displayed, and in Panel b), the net SRs (gross APR
- impermanent loss). The dotted line represents the average. The data is sampled daily, and the sample period is from
05-2021 to 12-2022. The data is winzorized at the 1% quantile.

Analyzing the liquidity pools on Uniswap reveals interesting additional insights about risks (–
8.3% on average, with extreme values of almost –30%) and rewards (on average 16% gross and easily
exceeding 40% but reduced to less than 10% considering net APRs). As a consequence, yield farming
does not necessarily displays an advantageous risk return trade-off represented by the SR. In sharp
contrast to the stablecoin pools on Curve, there exist large diversification benefits across liquidity pools
on Uniswap, where correlations can reach up to –40%.

5 Stochastic Model for Yield Farming

In this section we formulate the mathematical model of an agent. We start by assuming a pool with
a constant product AMM rule,29 and also that the underlying token prices follow a geometric Brownian
motion. These assumptions lead to a characterization of the impermanent loss in terms of the volatility
of the tokens’ relative price. We then formulate a stochastic control problem to determine an optimal
recompounding policy for the agent. To solve this optimization, we take a dynamic programming
approach; that is, we derive a Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE),
and then from the solution, we obtain a policy that optimizes the trade-off between adjusting the
reward-bearing staked amount and paying the associated transaction costs. As examples, we show the
cases of optimal compounding when there are one and two liquidity pools available for staking.

29For the sake of simplicity, we do not consider pools with concentrated liquidity, a concept that is explained in
Appendix A.2.
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5.1 Dynamics under a Constant Product Rule

As to what we do in Section 3.1, let N1
t and N2

t denote the amounts of two respective tokens that
are paired for trading in a liquidity pool. The constant product rule for this liquidity pool is as follows:

L :“
b

N1
t N

2
t , (5.1)

where L ą 0 is a constant. From constant product rule (5.1) a relative price of token emerges,

Rt “
N2

t

N1
t

“ token 2 per token 1, (5.2)

from which we can deduce the amount of each token in the liquidity pool,

N1
t “

L
?
Rt

, N2
t “ L

a

Rt. (5.3)

We make the following assumption about the market prices and the relative price for tokens in the
liquidity pool.

Assumption 5.1. The relative token price in a liquidity pool is equal to the ratio of the market prices
of tokens,

Rt “
P 1
t

P 2
t

“
dollar per token 1
dollar per token 2

“ token 2 per token 1, (5.4)

where P i
t for i “ 1, 2 are the market prices of tokens outside of the liquidity pool.

The rationale for equation (5.4) is that if it were not true, then arbitrageurs would enter the
liquidity pool and exploit the price discrepancy until it would correct itself. Thus, arbitrageurs will
ensure that the ratio of N1

t to N2
t in the pool maintains a relative price equal to the relative price of

the greater market external of the pool.
Our model takes token prices to be given by geometric Brownian motions (GBMs),

dP i
t “ µiP

i
t dt ` σiP

i
t dB

i
t, i “ 1, 2, (5.5)

where Bi
t for i “ 1, 2 are two correlated standard Brownian motions that are defined on a filtered

probability space
`

Ω, F , pFtqtě0 , P
˘

, dB1
t dB

2
t “ ρdt, ρ P r´1, 1s is the correlation between them, and

σi ą 0. We apply the Itô-Doeblin formula to the ratio of P 1
t and P 2

t to get the stochastic differential
equation (SDE) for the relative price Rt,

dRt “ d

ˆ

P 1
t

P 2
t

˙

“
`

µ1 ´ µ2 ` σ2
2 ´ σ1σ2ρ

˘

Rtdt ` σ1RtdB
1
t ´ σ2RtdB

2
t (5.6)

“ µ̃Rtdt ` σ̃RtdB̃t,

where µ̃ “ µ1 ´ µ2 ` σ2
2 ´ σ1σ2ρ, σ̃2 “ σ2

1 ´ 2ρσ1σ2 ` σ2
2, and B̃t “ σ1

σ̃ B1
t ´ σ2

σ̃ B2
t . By applying the

Itô-Doeblin formula to the ansatz lnRt, we can solve equation (5.6) and get the expression for Rt, as
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follows:

Rt “ R0 exp

ˆ

µ̃t ´
1

2
σ̃2t ` σ̃B̃t

˙

. (5.7)

Next, we can straightforwardly derive the expressions for the amounts of the tokens N1
t and N2

t by
using equation (5.3) and equation (5.7), as follows:

N1
t “

L
?
Rt

“
L

?
R0

exp

ˆ

´
1

2
µ̃t `

1

4
σ̃2t ´

σ̃2

2
B̃t

˙

, (5.8)

N2
t “ L

a

Rt “ L
a

R0 exp

ˆ

1

2
µ̃t ´

1

4
σ̃2t `

σ̃2

2
B̃t

˙

.

Then, by applying the Itô-Doeblin formula again to equation (5.8), we can get the following SDEs for
the amount of each token in the liquidity pool,

dN1
t “ d

ˆ

L
?
Rt

˙

“

ˆ

´
µ̃

2
`

3σ̃2

8

˙

N1
t dt ´

σ̃

2
N1

t dB̃t, (5.9)

dN2
t “ d

´

L
a

Rt

¯

“

ˆ

µ̃

2
´

σ̃2

8

˙

N2
t dt `

σ̃

2
N2

t dB̃t.

5.2 The Impermanent Loss

The fundamental risk faced by yield farmers is the impermanent loss. As described in Section 3.4.2
and Appendix A.4, the impermanent loss is the value of a position in staked tokens minus the value
of an unstaked position that initially had the equivalent value as the staked position, and then the
difference divided by the value of the unstaked position. At time t, let Vstaked

t,s denote the dollar value
staked in the pool at time s ě t, and let Vheld

t,s denote the value of an un-staked position that has an
equal dollar amount as time t; that is Vstaked

t,t “ Vheld
t,t . For a time increment ∆t ą 0, at time t ` ∆t

the impermanent loss is defined as follows.

Definition 5.1. For a time increment ∆t ą 0, the impermanent loss from time t to time t`∆t is the
staked value minus the held value, divided by the held value, as follows:

∆I∆t
t :“

Vstaked
t,t`∆t ´ Vheld

t,t`∆t

Vheld
t,t`∆t

“

`

N1
t`∆tP

1
t`∆t ` N2

t`∆tP
2
t`∆t

˘

´
`

N1
t P

1
t`∆t ` N2

t P
2
t`∆t

˘

N1
t P

1
t`∆t ` N2

t P
2
t`∆t

, (5.10)

where N i
t and P i

t for i “ 1, 2 are the amounts of tokens and the market prices of tokens, respectively,
as defined in Section 5.1.

In terms of ∆I∆t
t , which is defined by equation (5.10), the total impermanent loss up to time t is

the summation to time t,

I∆t
t :“

ÿ

tiăt

∆I∆t
ti ,

where ti “ i∆t for i “ 0, 1, 2, 3, ¨ ¨ ¨ , tt{∆tu´1. Total impermanent loss in continuous time is obtained
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by taking the limit as ∆t goes to zero,

It :“ lim
∆tÑ0

I∆t
t . (5.11)

In discrete time it is straightforward to show that ∆I∆t
t ď 0 (see Heimbach et al. (2022)), and in

continuous time it is also true that impermanent loss is always nonpositive.

Proposition 5.1. In continuous time, impermanent loss is the differential of total impermanent loss
It, which is defined in equation (5.11), and which is equal to ´1

8 times the variance of the relative price
times the length of time increment,

dIt “ ´
σ̃2

8
dt, (5.12)

where σ̃ “
a

σ2
1 ´ 2ρσ1σ2 ` σ2

2 is the volatility of the relative price Rt given by equation (5.6). From
equation (5.12) it is clear that dIt ď 0 for all t ě 0.

Proof. By the relative price that is defined in equation (5.2) and Assumption 5.1, we have N2
t

N1
t

“ Rt “

P 1
t

P 2
t
. From equation (5.6), we can calculate dB̃tdB

1
t “ 1

σ̃ pσ1 ´ σ2ρq dt and dB̃tdB
2
t “ 1

σ̃ pσ1ρ ´ σ2q dt.
Based on equation (5.5) and equation (5.9), by using the Itô-Doeblin formula, the limit as ∆t Ñ 0 of
the numerator in equation (5.10) is

d
`

N1
t P

1
t ` N2

t P
2
t

˘

´
`

N1
t dP

1
t ` N2

t dP
2
t

˘

“ N1
t dP

1
t ` P 1

t dN
1
t ` dN1

t dP
1
t ´ N1

t dP
1
t ` N2

t dP
2
t ` P 2

t dN
2
t ` dN2

t dP
2
t ´ N2

t dP
2
t

“ ´
σ̃2

4
N1

t P
1
t dt.

Because this numerator has only a dt term, we can forgo application of Ito-Doeblin for the reciprocal
term in equation (5.10) and instead simply take the limit of denominator as ∆t goes to zero, giving us

dIt “
d
`

N1
t P

1
t ` N2

t P
2
t

˘

´
`

N1
t dP

1
t ` N2

t dP
2
t

˘

N1
t P

1
t ` N2

t P
2
t

“
´ σ̃2

4 N1
t P

1
t dt

N1
t P

1
t ` N2

t P
2
t

. (5.13)

Then, by applying equation (5.2) and Assumption 5.1, equation (5.13) is reduced to equation (5.12).

Remark 5.1. Equation (5.12) is the continuous-time equivalent to the definition of the impermanent
loss given in Heimbach et al. (2022) that calculated returns in terms of relative price only. More details
on the equivalence of our definition with theirs are given in Appendix C.

Remark 5.2. Our continuous-time definition for impermanent loss has some similarities to loss-
verses-rebalancing (LVR) introduced in Milionis et al. (2022). LVR quantifies the liquidity provider’s
inability to keep an ideal ratio of token 1 to token 2. Using the notations of this article and the constant
product rule of equation (5.1), LVR is

LVRt “

ż t

0

`

N1
s dP

1
s ` N2

s dP
2
s

˘

´
`

N1
t P

1
t ` N2

t P
2
t

˘

,

and from calculations similar to those done in Proposition 5.1 we get dLVRt “ σ2

8

`

N1
t P

1
t ` N2

t P
2
t

˘

dt.
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LVR can also be used to express the difference of staked and held values in Definition 5.1,

Vstaked
t,t`∆t ´ Vheld

t,t`∆t “ ´

ż t`∆t

t
dLVRs `

ż t`∆t

t

`

N1
s ´ N1

t

˘

dP 1
s `

ż t`∆t

t

`

N2
s ´ N2

t

˘

dP 2
s ,

where we adhere to convention Vstaked
t,t “ Vheld

t,t “ N1
t P

1
t ` N2

t P
2
t . In the limit as ∆t tends to zero, it

can be shown that
ř

tiăt
1

Vheld
ti,ti

şti`1

ti

´

N j
s ´ N j

ti

¯

dP j
s Ñ 0 in mean square for j “ 1, 2, and thus the total

impermanent loss in equation (5.11) is It “ ´
şt
0

dLVRs
N1

sP
1
s `N2

sP
2
s

“ ´σ2t
8 .

5.3 Optimal Liquidity Provision

As explained in Section 3.5, yield farming means staking tokens and receiving earnings in the form
of trading fees. The earned trading fees are credited to the (digital) wallet (and not automatically to
the staked account). Hence, to increase the staked amount for (eventual) increased rewards, the yield
farmer must first manually recompound the interest by transferring it from the wallet to the pool,
an action that incurs transaction costs. Below, we build on the mathematical framework laid out in
Section 5.2 and Proposition 5.2 to formulate a stochastic control problem for the optimal yield farming
investment.

5.3.1 Portfolio Value with Zero Transaction Costs

In the setting of a single liquidity pool, a portfolio for liquidity provision consists of tokens staked
and tokens held in a wallet. Let us define the holdings in our portfolio as follows:

ht “ fraction of tokens of the liquidity pool that the agent stakes,

n1
t “ number of tokens held un-staked in coin 1,

n2
t “ number of tokens held un-staked in coin 2.

Let Πt denote the portfolio value for the yield farmer, and consider its increment of change,

dΠt “ atht
`

N1
t P

1
t ` N2

t P
2
t

˘

dt
loooooooooooooomoooooooooooooon

reward for staking tokens

`htd
`

N1
t P

1
t ` N2

t P
2
t

˘

loooooooooooomoooooooooooon

change in staked tokens

` n1
tdP

1
t ` n2

tdP
2
t

loooooooomoooooooon

change in un-staked tokens

(5.14)

` r
`

Πt ´
`

htN
1
t ` n1

t

˘

P 1
t ´

`

htN
2
t ` n2

t

˘

P 2
t

˘

dt
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

financing costs

,

where at ě 0 is the APR for staking tokens back into the liquidity pool, and r ě 0 is the rate
for borrowing/lending in these funds. As we can observe, the unit for each of the four parts in
equation (5.14) is dollar value. We next show that the return for yielding farming is a function of the
impermanent loss.

Proposition 5.2. The increment of change for the portfolio Πt is the following differential:

dΠt “ ht

ˆ

at ´
σ̃2

8

˙

`

N1
t P

1
t ` N2

t P
2
t

˘

dt
looooooooooooooooooooomooooooooooooooooooooon

net return from staking tokens

`
`

htN
1
t ` n1

t

˘

dP 1
t `

`

htN
2
t ` n2

t

˘

dP 2
t

loooooooooooooooooooooooomoooooooooooooooooooooooon

profit and loss in tokens

(5.15)
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` r
`

Πt ´
`

htN
1
t ` n1

t

˘

P 1
t ´

`

htN
2
t ` n2

t

˘

P 2
t

˘

dt
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

financing costs

,

where ´ σ̃2

8 dt is the impermanent loss given by equation (5.12).

Remark 5.3. Equation (5.15) is a fairly typical equation for returns, containing three different terms:
a net rate at ´ σ̃2

8 on the value of staked tokens, a return on tokens both staked and un-staked, and the
costs for financing.

Proof. Rearranging the terms of equation (5.13), we have

d
`

N1
t P

1
t ` N2

t P
2
t

˘

“
`

N1
t P

1
t ` N2

t P
2
t

˘

dIt `
`

N1
t dP

1
t ` N2

t dP
2
t

˘

. (5.16)

Using equation (5.12) of Proposition 5.1, we plug formula (5.16) into equation (5.14) and get

dΠt “ ht
`

N1
t P

1
t ` N2

t P
2
t

˘

patdt ` dItq `
`

htN
1
t ` n1

t

˘

dP 1
t `

`

htN
2
t ` n2

t

˘

dP 2
t

` r
`

Πt ´
`

htN
1
t ` n1

t

˘

P 1
t ´

`

htN
2
t ` n2

t

˘

P 2
t

˘

dt,

“ ht

ˆ

at ´
σ̃2

8

˙

`

N1
t P

1
t ` N2

t P
2
t

˘

dt `
`

htN
1
t ` n1

t

˘

dP 1
t `

`

htN
2
t ` n2

t

˘

dP 2
t

` r
`

Πt ´
`

htN
1
t ` n1

t

˘

P 1
t ´

`

htN
2
t ` n2

t

˘

P 2
t

˘

dt.

Therefore, in terms of the impermanent loss ´ σ̃2

8 dt, the increment of change for portfolio Πt is given
by equation (5.15).

For simplicity and elegance of exposition and without losing too much generality, we assume that
µ1 “ µ2 “ 0 in equation (5.5) and r “ n1

t “ n2
t “ 0 in equation (5.15). We also assume that the APR

is stochastic and driven by a one-dimensional Ornstein-Uhlenbeck process Xt,

at “ a pXtq (5.17)

dXt “ ´κXtdt ` σdWt,

where Wt is an independent Ft-measurable one-dimensional standard Brownian motion, κ ą 0, and
σ ą 0. The APR function a pXtq will be specified according to different types of liquidity pools; the
choice of apXtq will be discussed further in Section 6.30

By the constant product rule (5.1), the relative price equation (5.2), Assumption 5.1, the various
results from Section 5.2 for token prices and their relative price, and plugging in equation (5.5), the
increment of change for the portfolio value Πt given by equation (5.15) becomes

dΠt “ ht

ˆ

a pXtq ´
σ̃2

8

˙

`

N1
t P

1
t ` N2

t P
2
t

˘

dt ` htN
1
t dP

1
t ` htN

2
t dP

2
t (5.18)

“

ˆ

a pXtq ´
σ̃2

8

˙

Stdt ` St

`

σ1dB
1
t ` σ2dB

2
t

˘

“

ˆ

a pXtq ´
σ̃2

8

˙

Stdt ` σ̂StdB̂t,

30In contrast to Cong et al. (2022), we assume that our APR is given as exogenous and hence, the rate of staking
rewards that an agent earns is not influenced by other agents’ behavior.
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where σ̂2 “ σ2
1 ` 2ρσ1σ2 ` σ2

2, and B̂ “ σ1
σ̂ B1

t ` σ2
σ̂ B2

t .

5.3.2 Single-Pool Optimization with Stochastic APR and Transaction Costs

Let Kt denote the dollar value held un-staked in a wallet, and St the dollar value staked in the
pool. The portfolio value is expressed as

Πt “ Kt ` St,

where Kt collects the rewards from staking and St “ ht
`

N1
t P

1
t ` N2

t P
2
t

˘

takes any impermanent loss.
Equation (5.18) is the change in portfolio value if a liquidity provider pays no transaction costs. If
there are transactions costs then the movement of tokens between the wallet and the liquidity pool
involves controls ωt and νt, with the following pair of differentials for changes in Kt and St,

dKt “ pa pXtqSt ´ ωt ` νtq dt, (5.19)

dSt “

ˆ

ωt ´ νt ´ c1tωt`νtą0u ´
σ̃2

8
St

˙

dt ` σ̂StdB̂t,

where B̂t is the Brownian motion defined below equation (5.18) and is independent from Wt in equation
(5.17), σ̂ is given by equation (5.18), ωt P r0, ω̄s, νt P r0, ν̄s, c ą 0 is the constant transaction cost,
and 1t¨u is an indicator function. The control variable ωt represents at each time t the amount of
the rewarded token that is recompounded back into the liquidity pool, and the control variable νt

represents the amount of the token that is taken out of the liquidity pool.
We can see from equation (5.19), the wallet Kt changes due to three terms: Credited rewards

a pXtqSt, the amount deposited into the liquidity pool ωt, and the amount withdrawn from the liquidity
pool νt. The dynamics of the staked amount St intertwines with the just-discussed dynamics of the
wallet: The ωt, which is withdrawn from Kt, is deposited into St, the νt, which is withdrawn from St,
is deposited into Kt, and these actions cause a fixed transaction cost. Therefore, the system (5.19) are
the dynamics for the yield farming process that was described in Section 3.5.

The control processes ωt and νt are progressively measurable processes with respect to the filtration
pFtqtě0 and are sought to maximize the expectation of a utility function U p¨q with respect to the wallet
Kt and the staking account St at terminal time t “ T . This maximization is posed as the following
stochastic control problem:

Q pt, x, k, sq “ sup
pω, νqPA

E rU pKT , ST q |Xt “ x, Kt “ k, St “ ss , (5.20)

where pXt, Kt, Stq follow equations (5.17) and (5.19), t P r0, T s is the time variable, px, k, sq P

R ˆ R` ˆ R`, and A is the following set of admissible controls:

A “
␣

pωt, νtq0ďtďT

ˇ

ˇ pωt, νtq is Ft-measurable with ωt P r0, ω̄s and νt P r0, ν̄s
(

,

where the control bounds ω̄ and ν̄ are parameters such that 0 ă ω̄ ă 8 and 0 ă ν̄ ă 8.
We take the utility function to be a mixture of power utilities of the wallet Kt and the staked
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amount St,

U pKt, Stq “
1

γk
Kγk

t `
η

γs
Sγs
t , (5.21)

where γk P p0, 1s and γs P p0, 1q are the risk tolerance coefficients, and the parameter η ą 0 weighs
the utility of St against the utility of Kt. For the yield farming problem under consideration, it makes
sense to consider γs ă γk because a staked position in the pool is riskier than an equal number of
tokens in the wallet, and at time T , we cannot instantaneously liquidate St to the wallet because
of transaction costs. In fact, in the utility function (5.21), we shall allow γk “ 1 because it will
simplify the stochastic control problem for numerical simulations, thereby allowing us to focus on the
risky behavior associated with the decision to recompound claimed rewards. Theoretically, γk “ 1 is
justifiable because the staked position St is considerably more risky than the Kt position. Moreover,
Kt can only be driven up very quickly by a large position in St; thus, because there are transaction
costs and we cannot instantaneously exit a staked position, an overly aggressive appetite for risk in
the wallet will be tempered by concave risk tolerance on staking.

For the optimization problem posed in equation (5.20), we can apply the dynamic programming
principle to obtain an HJB equation for the optimal value function

Qt ` LQ ` sup
ωPr0, ω̄s

νPr0, ν̄s

„

pa pxq s ´ pω ´ νqqQk `

ˆ

pω ´ νq ´ c1tω`νą0u ´
σ̃2

8
s

˙

Qs

ȷ

“ 0, (5.22)

where LQ “ σ2

2 Qxx ´ κxQx, and the terminal condition is Q pT, x, k, sq “ 1
γk
kγk `

η
γs
sγs . The

Hamiltonian in equation (5.22) is linear with respect to ω and ν, which leads to the optimal controls
being of a bang-bang type, as follows:

ω “

$

&

%

ω̄, if pω̄ ´ cqQs ą ω̄Qk,

0, otherwise.
and ν “

$

&

%

ν̄, if ´ pν̄ ` cqQs ą ´ν̄Qk,

0, otherwise.

The fact that the controls are of a bang-bang type represents the first important results of this section
and is in line with the intuition: If the agent faces fixed transaction costs c and it is optimal to either
recompound into St by taking out from Kt, which is ω ą 0, or to un-stake from St and deposit into Kt,
which is ν ą 0, then it is optimal to recompound or un-stake the largest amounts possible, respectively.

Case for γk “ 1.

When γk “ 1 in the utility function (5.21) for the single liquidity pool case, the variable k can be
factored out of the solution by using the following ansatz,

Q pt, x, k, sq “ k ` V pt, x, sq .

We define parameters λω P p0, 1q and λν P p0, 1q to be transaction cost coefficients such that
c “ λωω̄ and c “ λν ν̄. Then equation for the staked amount defined in formula (5.19) becomes
dSt “

´

p1 ´ λωqωt ´ p1 ` λνq νt ´ σ̃2

8 St

¯

dt ` σ̂StdB̂t. Consequently, equation (5.22) can be written
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succinctly as

Vt ` LV `
σ̂2s2

2
Vss (5.23)

` sup
ωPt0, ω̄u

νPt0, ν̄u

„

pa pxq s ´ pω ´ νqq `

ˆ

p1 ´ λωqω ´ p1 ` λνq ν ´
σ̃2

8
s

˙

Vs

ȷ

“ 0,

where the operator L is defined as it is in equation (5.22), and the terminal condition is V pT, x, sq “

η
γ s

γ . From the Hamiltonian in equation (5.23) we obtain the following optimal bang-bang controls:

ω “

$

&

%

ω̄, if p1 ´ λωq ω̄Vs ą ω̄,

0, otherwise.
and ν “

$

&

%

ν̄, if ´ p1 ` λνq ν̄Vs ą ´ν̄,

0, otherwise.
(5.24)

5.3.3 Two-Pool Optimization with Stochastic APR and Transaction Costs

We now generalize the single liquidity pool optimization of Section 5.3.2 to two liquidity pools.
However, please note that this case of two liquidity pools can be easily extended for the case of three
or more liquidity pools. Comparing this with the single liquidity pool, there are now four tokens P i

with four Brownian motions Bi for i “ 1, 2, 3, 4, and four sets of GBM parameters, etc., but the only
difference for the optimal yield farming problem is that the credited earning fees are represented by
the summation of the two earnings, which are generated from the APRs for of separate liquidity pools.
The stochastic system for the liquidity pools is a modification of that in equation (5.17) and equation
(5.19),

dKt “

2
ÿ

i“1

`

ai
`

Xi
t

˘

Si
t ´ wi

t ` νit
˘

dt, (5.25)

dSi
t “

ˆ

wi
t ´ νit ´ ci1twi

tą0u ´
σ̃2
i

8
Si
t

˙

dt ` σ̂iS
i
tdB̂

i
t, for i “ 1, 2

dXj
t “ ´κjX

j
t dt ` σjdW

j
t , for j “ 1, 2

where B̂i
t and W j

t for i, j “ 1, 2 are four mutually independent one-dimensional Brownian motions
that are defined on a filtered probability space

`

Ω, F , pFtqtě0 , P
˘

, ωi
t P r0, ω̄is, κj ą 0, σj ą 0,

ci ą 0 are the constant transaction costs for the two different liquidity pools, and 1t¨u is an indicator
function. The control variables ωi

t represent at each time t the amounts of the un-staked ith token
that are recompounded back into the ith liquidity pool. For simplicity and elegance of exposition, we
assume that investors do not take tokens out of the staking accounts for the case of two liquidity pools;
in other words νit ” 0 @t. Functions ai

`

Xi
t

˘

are the APRs for the two liquidity pools, which will be
specified in Section 6, when we implement numerical solutions of the HJB equations.

In reality, the correlation between APRs might not be zero. In other words, dW 1
t dW

2
t “ ρxdt,

where ρx P r´1, 1s. Our reason for assuming dW 1
t K dW 2

t is that numerical methods for solving
these HJB equations are considerably more complicated if ρx ‰ 0. However, we still can model the
correlation between the APRs under the assumption dW 1

t K dW 2
t . Suppose κ1 “ κ2 “ κ, in which

case the summation of the two OU processes from equation (5.25) is also an OU process. Thus, to
model the correlation between the APRs of the two liquidity pools, we modify the equation for wallet
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Kt in equation (5.25), as follows:

dKt “

2
ÿ

i“1

`

ai
`

Y i
t

˘

Si
t ´ wi

t ` νit
˘

dt,

where Y 1
t “ X1

t and Y 2
t “ ρxX

1
t `

a

1 ´ ρ2xX
2
t , and thus, Y 1

t and Y 2
t are correlated OU processes.

Later in Section 6, when we calibrate the OU processes to data, we shall see that mean-reversion rates
are comparable, and so it will be reasonable for us to assume that κ1 “ κ2.

The control process ωi
t for i “ 1, 2 of each liquidity pool is a progressively measurable process with

respect to the filtration pFtqtě0, which is sought to maximize the expectation of a utility function U p¨q

that is a function of Kt and Si
t at terminal time t “ T . The value function for this stochastic control

problem is

Qpt, x1, x2, k, s1, s2q “

sup
pω1

t , ω
2
t qPA

E
“

U
`

KT , S
1
T , S

2
T

˘
ˇ

ˇX1
t “ x1, X

2
t “ x2, Kt “ k, S1

t “ s1, S
2
t “ s2

‰

, (5.26)

where
`

X1
t , X

2
t , Kt, S

1
t , S

2
t

˘

follow equation (5.25), t P r0, T s is the time variable, px1, x2, k, s1, s2q P

R ˆ R ˆ R` ˆ R` ˆ R`, and A is the set of admissible controls,

A “

!

`

ω1
t , ω

2
t

˘

0ďtďT

ˇ

ˇ

ˇ

`

ω1
t , ω

2
t

˘

is Ft-measurable with ωi
t P r0, ω̄is for i “ 1, 2

)

,

where the bounds of the control variables ω̄i for i “ 1, 2 are parameters such that 0 ă ω̄i ă 8.
Similar to the utility function (5.21) in the single liquidity pool model of Section 5.21, for two

liquidity pools we still choose the utility function to be a mixture of power utilities of the wallet Kt

and the staking amounts S1
t and S2

t ,

U
`

Kt, S
1
t , S

2
t

˘

“
1

γk
Kγk

t `
η

γs

`

S1
t ` S2

t

˘γs
, (5.27)

where γk P p0, 1s and γs P p0, 1q are the risk tolerance coefficients, and η ą 0 is the scaling parameter
that weighs the utility of S1

t ` S2
t against Kt. As in the single liquidity pool case, we assume that

γk “ 1.
The value function Q pt, x1, x2, k, s1, s2q in equation (5.26) has the following HJB equation:

Qt `
1

2

2
ÿ

i“1

`

σ2
iQxixi ` σ̂2

i s
2
iQsisi ´ 2κixiQxi

˘

(5.28)

` sup
ω1Pr0, ω̄1s

ω2Pr0, ω̄2s

«

2
ÿ

i“1

pai pxtq si ´ ωiqQk `

2
ÿ

i“1

ˆ

ωi ´ ci1tωią0u ´
σ̃2
i

8
si

˙

Qsi

ff

“ 0,

where the terminal condition is Q pT, x1, x2, k, s1, s2q “ 1
γk
kγk `

η
γs

ps1 ` s2q
γs . The Hamiltonian in

(5.28) is linear with respect to ωi for i “ 1, 2, which leads to the optimal controls being of a bang-bang
type

ωi “

$

&

%

w̄i, if pω̄i ´ ciqQsi ą ω̄iQk,

0, otherwise.
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For γk “ 1, in equation (5.27) for the two liquidity pools case, the variable k can be factored out
of the HJB solution by using the following ansatz:

Q pt, x1, x2, k, s1, s2q “ k ` V pt, x1, x2, s1, s2q .

Let λi P p0, 1q for i “ 1, 2 be transaction cost parameters such that ci “ λiω̄i. The SDEs for the staked
amount Si

t defined in the stochastic system (5.25) become dSi
t “

´

p1 ´ λiqw
i
t ´

σ̃2
i
8 Si

t

¯

dt ` σ̂iS
i
tdB̂

i
t

with wi
t P t0, w̄iu. Then equation (5.28) can be written succinctly as

Vt `
1

2

2
ÿ

i“1

`

σ2
i Vxixi ` σ̂2

i s
2
iVsisi ´ 2κixiVxi

˘

(5.29)

` sup
ω1Pt0, ω̄1u

ω2Pt0, ω̄2u

«

2
ÿ

i“1

pai pxtq si ´ ωiq `

2
ÿ

i“1

ˆ

p1 ´ λiqωi ´
σ̃2
i

8
si

˙

Vsi

ff

“ 0,

where the terminal condition is V pT, x1, x2, s1, s2q “
η
γs

ps1 ` s2q
γs , and with the optimal bang-bang

control is expressed as

ωi “

$

&

%

ω̄i, if p1 ´ λiq ω̄iVsi ą ω̄i,

0, otherwise.
(5.30)

6 Numerical Experiments

Similar to the bang-bang control regions shown in Davis and Norman (1990), the optimal controls
derived in Section 5 separate the state-space into regions of recompounding, no recompounding, and
withdrawing. HJB equations (5.23) and (5.29) are solved numerically with finite-difference methods (see
Appendix D) and from the solution, we obtain a bang-bang policy function that we plot in 2-d as an
illustration. These numerical solutions use model parameters estimated from the C̄urve and Ūniswap
data on APRs (recall Section 4). The examples in this section will demonstrate the optimal yield
farming policy for different DEXs, along with sensitivity analyses to show how the optimal controls
change in different market conditions.

6.1 Curve – Single Liquidity Pool with Stochastic APR

We assume the pool’s APR is of the form a pXtq :“ βepXtq, where Xt is the OU process defined in
equation (5.17). We can observe that ln apXtq “ lnβ ` Xt is also an OU process but with long-term
mean lnβ. We estimate parameters β, κ, and σ from C̄urve Pool time-series data, as presented in
Figure 4.3. Our method for estimating the parameters of the OU process is described in Appendix E.
From the Curve APR data, we obtain a volatility σ of 1.541, a speed of mean-reversion κ of 1.580,
and a β estimate of 0.022. However, to expand the range of the APR, we amplify the values of a pxq

by increasing the β to 0.6. We estimate the volatility parameters σ̃2 given in equation (5.6) and σ̂2

given in equation (5.18) from the variance of returns of the respective token time-series. We obtain
σ̃ “ 0.069 and σ̂ “ 0.070 as an annualized estimate for the six pools on Curve (as the average across
all token pairs across all six pools).

To solve the HJB equation (5.23) using the finite-difference scheme (D.10) in Appendix D, we set
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tmin “ 0, tmax “ 3, xmin “ ´2σ{
?
2κ, xmax “ 2σ{

?
2κ, smin “ 3000, smax “ 9000, N “ tmaxˆ365ˆ10,

I “ 100 and J “ 300. We also set the parameter values for the utility function (5.21) to γk “ 1,
γs “ 0.8, and η “ 4.95; the values for the upper bounds of the control variables to ω̄ “ 300, ν̄ “ 300;
and the value for the transaction cost coefficients such that c “ λωω̄ “ λν ν̄ “ 10. However, the
finite-difference scheme requires us to implement a numerical boundary condition (see Appendix D),
which distorts the solution near to the boundary, so we therefore discard the numerical solution for s

between 8000 and 9000; in other words we solve numerically for s up to 9000, but when displaying, we
crop the plots at s “ 8000. Figure 6.1 displays the solution V pt, x, sq for different values of t. As we
can see from the plots, the solution is smooth, stable, and concave in s for any time t P r0, T s.

Figure 6.1: The figure shows the value function V pt, x, sq of HJB equation (5.23) for different values t, with parameters
estimated from C̄urve liquidity pool data. The risk tolerance coefficient is γ “ 0.8, and the value for the transaction cost
c is set to 10 USD.

Figure 6.2 displays the plot of ω and ν on the two dimensions St and a pXtq, with the red, grey,
and blue area representing the regions where the agent is recompounding (ω “ ω̄), not recompounding
(ω “ ν “ 0), or withdrawing (ν “ ν̄). The plots are displayed ascending in time starting at t “ 0

until close to the terminal time T “ 3. In the figure, seen in the plot for t “ 0.000, an agent with
S0 P r3000, 8000s will invest in the pool for any given APR. In addition, as time goes by, the red
area becomes smaller, which means that for a given staked amount (or a given APR) the willingness
to recompound decreases. Intuitively, the reason is that the transaction costs for recompounding
outweighs the utility of future reward earned from increasing the staked amount. Near terminal time
T , for any APR, recompounding will not be optimal. The behavior of ν is complementary: At the
beginning (t “ 0) the agent will not withdraw, but as time gets closer to T , the withdrawing area
expands.
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Figure 6.2: The figure shows the evolution of the optimal recompounding strategy ω pt, Xt, Stq ´ ν pt, Xt, Stq at
different time t for the C̄urve liquidity pool. The risk tolerance coefficient is γ “ 0.8, and the value for the transaction
cost is c “ 10 USD. The horizontal axis is labeled by the values of APR for the C̄urve liquidity pool; in other words,
a pXtq “ βeXt .

To gain a sense of how transaction costs affect yield farming investment process, we compute
controls ω and ν for different levels of transaction costs. In Figure 6.3, the plot of ω and ν on the
two dimensions St and a pXtq, for one point in time t “ 1.5, is displayed for ascending values of the
transaction costs c, calculated as c “ λω̄ “ λν̄, and hence c ranges from 1 USD to 25 USD. Please note
that in the previous plots we set the transaction costs to 10 USD. In line with the intuition, higher
transaction costs reduce future rewards from staking, thereby making recompounding less frequent.
For example, in order to recompound when facing transaction costs of 25 USD, the agent requires
a large compensation of APR greater or equal to 10%. In addition, as visible from the plots, the
withdrawal area shrinks over time, and hence not only recompounding, but also withdrawing, becomes
less likely with increasing transaction costs.

6.2 Uniswap – Single Liquidity Pool with Stochastic APR

We can repeat the analysis of Section 6.1 for the liquidity pool dynamics of Uniswap, specifically
using the data from the UNI/WETH pool pair.31 As previously, to solve the HJB equation (5.23)
using the finite-difference scheme described in Appendix D, we discretize the computational domain,
where we set tmin “ 0, tmax “ 3, xmin “ ´6σ{

?
2κ, xmax “ 2σ{

?
2κ, smin “ 3000, smax “ 9000,

N “ tmax ˆ 365 ˆ 50, I “ 80, and J “ 125. We then calibrate the model parameters following the
procedure described in Appendix E. For the respective Uniswap APR dynamics, a pXtq “ βeXt , we
obtain a β “ 0.15, a volatility σ of 0.738, and a speed of mean-reversion κ of 1.26.32 As in Section
6.1, the finite-difference scheme requires a numerical boundary condition, which distorts the solution,
and therefore the displayed plots have been cropped. We assume a budget of 3000 ´ 8000 USD, and
ω̄ “ ν̄ “ 300 USD.As was done in Section 6.1, we set the parameter values for the utility function

31UNI represents the governance token from Uniswap, while WETH represents the wrapped form of Ethereum.
32We apply a moving average over the last 30 days to the average Uniswap APR time-series from 12-2021 to 12-2022

before estimating the coefficients of the OU process.
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Figure 6.3: The figure shows the optimal recompounding strategy ω pt, Xt, Stq ´ ν pt, Xt, Stq of the C̄urve liquidity
pool for different values of the transaction costs c “ λωω̄ “ λν ν̄: 1 USD, 2.5 USD, 5 USD, 10 USD, 15 USD, and 25
USD. The risk tolerance coefficient is γ “ 0.8, and the time point is t “ 1.5. The horizontal axis is labeled by the values
of APR for the C̄urve liquidity pool; in other words, a pXtq “ βeXt .

(5.21) to γk “ 1, γs “ 0.8, and η “ 4.95, and the transaction cost coefficients (λω and λν) are set such
that c “ λωω̄ “ λν ν̄ equals 10 USD. As done in Section 6.1, we estimate σ̃2 and σ̂2 from the returns
of the respective token dynamics, and we obtain σ̃ “ 0.254 and σ̂ “ 0.619 (both annualized). In line
with the intuition, the estimates on σ̃ and σ̂ are many times larger compared to those of Curve.

Figure 6.4 displays the recompounding dynamics for a given APR over time. Overall, the results
are qualitatively similar to the results of Section 6.1 for pools on Curve. As visible, for small t an
agent will invest in the pool for any given APR (red area). As aforementioned, the red area shrinking
over time means that the willingness to recompound decreases due to transaction costs outweighing
future benefits of increased interest. In addition, over time the recompounding area shrinks, while the
withdrawing area expands. Close to the terminal time, the agent performs either no action (grey area)
or withdrawals (blue area) at any APR.

Even though the parameters for the APR dynamics a pXq on Uniswap are comparable, the recom-
pounding regions have noticeable differences from their counterparts for the stablecoin pools on Curve.
The reason is the large estimates for the parameters related to the impermanent loss (σ̂2 and σ̃2),
which, not only leads to a smaller recompounding area (particularly for low APRs), but also we see
that the agent will start withdrawing the staked amount earlier than they will in the Curve pools; see
for example, t “ 0.6 in Figure 6.2 and Figure 6.4.

Next, we investigate the dynamics of the optimal controls ω and ν for different levels of transaction
costs. The plot of ω and ν on the two dimensions St and a pXtq, for one point in time t “ 1.5,
is displayed for ascending values of the transaction cost coefficient λ “ λω “ λν . The values of
transaction costs are calculated as c “ λω̄ “ λν̄, and hence, c ranges from 1 USD to 25 USD. In
the previous plots, we set the transaction costs to 10 USD. In line with intuition, higher transaction
costs reduce utility of future rewards from staking, and, therefore, recompounding becomes less likely.
Figure 6.5 shows how the willingness to recompound changes as transaction costs increase, using a
point in time t “ 1.5 and ascending values of c. As transaction costs c increase from 1 USD to 25
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Figure 6.4: The figure shows the evolution of the optimal recompounding strategy ω pt, Xt, Stq ´ ν pt, Xt, Stq at
different time t for the UNI/WETH liquidity pool. The risk tolerance coefficient is γ “ 0.8, and the value for the
transaction costs c is 10 USD. The horizontal axis is labeled by the values of APR for UNI/WETH; in other words,
a pXtq “ βeXt .

USD, recompounding becomes less likely. For example, when transaction costs are 25 USD, the agent
would require an APR of at least 20% to recompound.33
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Figure 6.5: The figure shows the optimal recompounding strategy ω pt, Xt, Stq of the Uniswap liquidity pool for
different values of the transaction cost c “ λω̄ “ λν̄: 1 USD, 2.5 USD, 5 USD, 10 USD, 15 USD, and 25 USD. The value
of risk tolerance coefficient is γ “ 0.8, and the time point, is t “ 1.5. The horizontal axis is labeled by the values of APR
for the respective pool; in other words a pXtq “ βeXt .

6.3 Uniswap – Multiple Liquidity Pools

The numerical analysis of Sections 6.1 and 6.2 is now applied to the two-pool model of Section 5.3.3.
In this example we remain in the Uniswap universe, investigating the agent’s behavior when investing in

33For earlier points in time (t ă 1.5) the recompounding area is larger for any given transaction costs.
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two pools. For this example we select UNI and Wrapped Ethereum (UNI/WETH) as the first pool and
AAVE and Wrapped Ethereum (AAVE/WETH) as the second pool.34 Empirically, the average APR
for the first pool (second pool) is around 17% (12%), and the unconditional correlation between the pool
APRs is around ρx “ 43% over the sample period. For these two liquidity pools, we assume that the
dynamics of APRs are aj

´

Xj
t

¯

:“ βje
Xj

t for j “ 1, 2, where Xj
t are the OU processes that are defined

in equation (5.25). We can observe that stochastic processes ln aj

´

Xj
t

¯

“ lnβj ` Xj
t are also OU

processes but with long-term mean lnβj . For parameter estimation, we follow Appendix E and obtain
σ1 “ 0.73, σ2 “ 1.09, β1 “ 0.15, β2 “ 0.11, κ1 “ 1.27, and κ2 “ 3.12; therefore, we set κ “ 1

2 pκ1 ` κ2q.
We estimate σ̃2 and σ̂2 from the returns of the respective token dynamics (UNI, WETH, and AAVE),
and we obtain σ̃1 “ 0.14, σ̃2 “ 0.12, σ̂1 “ 0.29, and σ̂2 “ 0.33 (all annualized).35 For the utility
function (5.27), we set the risk tolerance coefficients to γ1 “ γ2 “ 0.5 and the bound for the control
to ω̄1 “ ω̄2 “ 300. Similar to the single liquidity pool case, we use the finite-difference scheme (D.3)
to solve the HJB equation (5.29). Therefore, we discretize the computational domain, where we set
tmin “ 0, tmax “ 3, x1min “ ´5σ1{

?
2κ, x1max “ 2σ1{

?
2κ, x2min “ ´5σ2{

?
2κ, x2max “ 2σ2{

?
2κ,

s1min “ 3000, s1max “ 9000, s2min “ 3000, s2max “ 9000, N “ tmax ˆ 365 ˆ 2, M “ 20, H “ 20, I “ 40,
J “ 40, and η “ 80.51. As in Sections 6.1 and 6.2, the displayed plots have been cropped at s “ 8000.

Figures 6.6 and 6.7 display the optimal controls w1 and w2 for each of the individual pools. The
plots are in line with the single-pool case and show a large compounding region at the beginning, t “ 0,
and no-recompounding region close to terminal time t “ T , with a shrinking area for the intermediate
points in between.
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Figure 6.6: The figure shows the evolution of the optimal recompounding strategy w1
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at different
times t for the first liquidity pool AAVE/WETH. The transaction costs are set to c “ 10 USD. The horizontal axis is
labeled by the values of APR for the liquidity pool AAVE/WETH; in other words, a1 pXtq “ β1e

σ1Xt .

Figure 6.8 displays the projection of w1 and w2 on t0, ω̄1u ˆ t0, ω̄2u. In this plot, the dark red
(dark blue) color represents the area where the agent would optimally recompound (not recompound)

34UNI denotes the Uniswap native token. AAVE denotes the Aave native token.
35As in the single liquidity pool case, we apply a moving average over the last 30 days to the time-series from 12-2021

to 12-2022 before estimating the coefficients of the exponential OU processes.
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Figure 6.7: The figure shows the evolution of the optimal recompounding strategy ω2
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at different
times t for the second liquidity pool UNI/WETH. The transaction costs are set to c “ 10 USD. The horizontal axis is
labeled by the values of APR for the liquidity pool UNI/WETH; in other words, a2 pXtq “ β2e

σ2Xt .

in both pools simultaneously. The light red region represents the area where the agent will recompound
only the first pool. As visible from the plots at t “ 0, the agent will recompound almost always. In
contrast, close to the terminal time t “ T , the costs of recompounding exceed the future benefits (dark
blue area, no recompounding). Particularly interesting are the dynamics observed for the intermediate
points in time, where the area is clearly divided into the three previously discussed areas. As can be
seen in the plots, the area where recompounding is optimal in both pools is simultaneously shrinking.
In addition, the individual recompounding area for the second pool relocates from a concentration over
the entire corner (t “ 1.199) to a rectangular concentration toward lower values of the respective range
of St (t “ 1.199 and t “ 1.799).

To investigate the optimal recompounding behavior with respect to changing market conditions
(APRs), we conduct a comparative statics analysis. First, we fix the APR of the first liquidity pool,
UNI/WETH and assign increasing APRs for the second liquidity pool, AAVE/WETH. In addition, we
evaluate the results at a fixed point in time t “ 1.5. The plots are depicted in Figure 6.9 and display
dynamics of the two controls w1 and w2. Notice first that the light red recompounding region for w1

is decreasing in the realization of APR2. Second, the dark red recompounding region for ω1 “ ω̄1 and
ω2 “ ω̄2 is increasing in APR2, which means that the agent not only recompounds more often within
pool 1, but also makes use of the additional resources from pool 1 to more frequently recompound within
pool 2. As visible from the last plot, due to the high APR2, the agent also begins to recompound more
frequently and exclusively in the second pool.36 Second, we investigate the optimal recompounding
behavior when APRs are behaving as if they would be negatively correlated. We plot the optimal
controls in Figure 6.10 where APR1 (APR2) increase (decrease). As visible, for high (low) values of
APR2 (APR1) the agent recompounds mostly in both pools or in the second pool (light blue). Not
surprising, for increasing values of APR1 the light red (light blue) area becomes larger (smaller).

36Due to symmetry, the results for an increasing APR1 and a fix APR2 are qualitatively similar, and they are available
upon request.
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Figure 6.8: The figure shows the evolution of the optimal recompounding strategies ω1,2
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P t0, ω̄1uˆ

t0, ω̄2u at different times t for both of the liquidity pools AAVE/WETH and UNI/WETH. The transaction costs are set
to c “ 10 USD. The functions of APRs for the pools are ai pXtq “ βie

σiXt , for i “ 1, 2.
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Figure 6.9: The figure shows the optimal recompounding strategies ω1,2
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P t0, ω̄1u ˆ t0, ω̄2u for
both of the liquidity pools UNI/WETH and AAVE/WETH. The APR2 for the second liquidity pool AAVE/WETH is
varying, and the APR1 “ 0.14 for the first liquidity pool UNI/WETH is fixed. The transaction costs are set to c “ 10
USD. The functions of APRs for both of the liquidity pools are ai pXtq “ βie

σiXt , for i “ 1, 2.

Next, we investigate the optimal recompounding solutions with respect to changing transaction
costs. Figure 6.11 shows the optimal controls at t “ 1.5 for varying transaction costs in both pools. As
seen from the plots, when transaction costs increase, the individual (light red) and joint recompounding
region (dark red) becomes smaller.

Throughout this section, we applied our proposed mathematical framework that resamples the
yield farming investment process for different cases, such as for stablecoins on Curve and Ethereum
tokens on Uniswap for single and multiple pools. Depending on the situation, we, therefore, calibrated
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Figure 6.10: The figure shows the optimal recompounding strategies ω1,2
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P t0, ω̄1u ˆ t0, ω̄2u for
both of the liquidity pools UNI/WETH and AAVE/WETH. The APR1 (APR2) for the first (second) liquidity pool is
increasing (decreasing). The transaction costs are set to c “ 10 USD. The functions of APRs for both of the liquidity
pools are ai pXtq “ βie

σiXt , for i “ 1, 2.

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 1.0.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 2.5.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 5.0.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 10.0.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 15.0.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

3000 4000 5000 6000 7000 8000
S1

t

3000

4000

5000

6000

7000

8000

S2
t

1, 2(t, X1
t , X2

t , S1
t , S2

t ). t = 1.5.
X1

t = 0.073. X2
t = 0.131. c = 25.0.

1 = 0
2 = 0

1 = 0
2 = 2

1 = 1
2 = 0

1 = 1
2 = 2

Figure 6.11: The figure shows the optimal recompounding strategies ω1,2
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P t0, ω̄1u ˆ t0, ω̄2u for
both of the liquidity pools AAVE/WETH and UNI/WETH at the time point t “ 1.5. The values for the transaction
costs c “ are set to 1 USD, 2.5 USD, 5 USD, 15 USD, and 25 USD. The functions of APRs for both of the liquidity
pools are ai pXtq “ βie

σiXt , for i “ 1, 2.

the stochastic APR process to best fit the respective DEX data. In addition, the analysis conducted
reveals that the model delivers intuitively intriguing results and is able to quantitatively replicate the
main economic trade-offs.

35



7 Robustness

To verify the robustness results of the analysis to various specifications, a series of tests are carried
out and reported in the Appendix.

7.1 Curve – Single Liquidity Pool with Stochastic APR

We depict the behavior of the dynamics of the optimal control ω for different levels of the risk
tolerance parameter in Figure F.1. In line with the intuition, a larger (lower) value for γ increases
(decreases) the recompounding region, and in contrast, decreases (increases) the withdrawal area.

7.2 Uniswap – Single Liquidity Pool with Stochastic APR

In Figure F.2, we show how the optimal control ω changes with varying levels of the risk tolerance
parameter. As expected, a larger value of γ expands the recompounding region, while a smaller value
decreases it.

7.3 Uniswap – Two Liquidity Pools with Stochastic APR

In the Internet Appendix III, we present the derivation of the stochastic optimization framework
for the two liquidity pools with a Cobb-Douglas utility. We then calibrate the model to the data and
present the optimal compounding regions. The results are qualitatively similar to those in Section 6.3.

8 Conclusion

Yield farming allows individuals to make use of their token savings by providing liquidity and is,
therefore, a means of earning interest on cryptocurrencies, similar to earning interest on a deposit in
a savings account. Previously, only centralized exchanges and professional market makers were able
to offer liquidity due to their access to capital and technical expertise. In this work, we explain and
detail the outlined (economic) mechanisms and functioning of yield farming in all its facets.

In the empirical analysis, we quantify the transaction costs, risks, and returns of two major decent-
ralized exchanges, Curve and Uniswap, on the Ethereum blockchain. On Curve, the average transaction
cost is 25 USD, but there have been instances where it exceeded a few hundred USD. The average
risk (impermanent loss) is negligible, but it can reach extreme lows. Rewards average at 3% but have
the potential to exceed 20% on favorable days. In contrast, for the liquidity pools on Uniswap (for
non-stablecoin pairs) the impermanent loss is considerable with extreme values reaching nearly –30%,
and average rewards reduced to less than 10% when considering net APRs. Moreover, on non-favorable
days the risk of liquidity provision for non-stablecoin pairs exceeds its returns. We also find that there
are diversification benefits among the different liquidity pools on Uniswap. The empirical part of this
study, therefore, offers a clearer understanding of yield farming and makes it easier for the broader
audience to understand.

In addition, we present a mathematical framework that resembles the yield farming investment
process, and hence, serves as a blueprint for agents to make optimal investment decisions. In our
model, we derive an explicit expression for the impermanent loss as a function of the tokens’ volatilities
and their correlation. The impermanent loss can be seen as the major source of risk that the agent
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faces. The model reveals that the agent’s optimal recompounding (and withdrawal) policy follows a
bang-bang type of control, which, in this context, means that the agent recompounds (withdrawals)
the maximum or nothing, but never any intermediate amount. The flexibility of the framework is
demonstrated through various applications: for the liquidity provision of stablecoins on Curve; for the
liquidity provision on Uniswap, and for multiple pools. The sensitivity analyses provide insight into
the agent’s behavior in different market situations, specifically the influence of changing transaction
costs and the risk-tolerance parameter of the agent’s utility.
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Appendix A Yield Farming – Details and Nuances

A.1 Different Forms of Yield Farming

Yield farming is an income opportunity in which one lends tokens through a decentralized applic-
ation. There are different ways of yield farming (other than by liquidity provision, as discussed in the
main text of the article), and in the following, we provide a short overview.

i) Yield farmers support network operations, for example; validating transactions: They allocate
their tokens toward high-quality validators, allowing the network to run more efficiently and securely.
Rewards are paid by network participants, who pay fees to validators in exchange for using the network.
Validators then remit a portion of those fees back to yield farmers.

ii) Yield farmers provide lending for traders, and hence, allocate holdings toward capital-constrained
traders. Farmers are compensated by borrowers, who pay continuous interest back to farmers (where
the protocol takes a percentage). Although some protocols temporarily guarantee fixed interest rates,
most use floating rates that allocate supply and demand.

iii) Yield farmers provide management and governance to protocols, where they create surplus
through more efficient management through powering pooled systems and, thus, manage tokens in
passive and delegated ways. For example, some protocols can reallocate liquidity toward particular
markets more quickly and cheaper than a group of disaggregated traders.

iv) Another value provided by yield farmers is enhanced visibility and trust through asset allocation.
Farmers enhance protocols’ marketing efforts by leveraging user adaption. Specifically, protocols ask
farmers to purchase and lock tokens in exchange for token distributions — with larger rewards for
longer lockups. Of course, part of this exchange is that locked holders, who cannot respond to market
conditions, bear substantial macroeconomic price risk relative to liquid ones.

A.2 LP Tokens, Reward Tokens, Boosting, and Concentrated Liquidity

Next, we describe the secondary and more specific aspects of yield farming that vary from platform
to platform.

In return for depositing tokens into a liquidity pool, the liquidity providers obtains LP tokens,
which serve as the mathematical proof of assets provided and, therefore, hold the claim to getting
those assets back. LP token staking is an additional source of income.37 Hence, staking might be the
second step involved in yield farming; it is equivalent to locking them away for a period of time.38 LPs
are paid for this action because it renounces their ability to return the LP tokens, which means exiting
the investment. Removing part of the token supply from circulation effectively impacts the market
price, while growing the liquidity pool improves trade execution, and signals that the community is
willing to commit to supporting the token for an extended period of time.

In addition to LP tokens, the LPs also obtain so-called reward tokens (these can be wrapped tokens,
governance tokens, or secondary tokens), which further encourage token holding, while simultaneously
facilitating token liquidity on exchanges and product usage. These tokens are, for example, issued in

37Although the terms yield farming and staking are sometimes used interchangeably, there are distinct ways in which
they differ. Originally staking is one of multiple mechanisms involved in supporting a blockchain network and particip-
ating in transaction validation by committing tokens to a particular network. It is used by blockchain networks, which
use the proof-of-stake (PoS) consensus mechanism.

38See for example, https://www.convexfinance.com/stake for how to stake various Curve LP tokens.
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order to incentivize the liquidity provision of a token for which there is an increasing demand. There are
even certain pools that have rewards in stablecoins. Platforms can engineer their token economics to
both reward their innovation and foster a long-term sustainable protocol and community that continue
to provide value. More details on the profitability of LP token staking on PancakeSwap can be found
in Augustin et al. (2022).

In addition to generating additional yields by staking LP tokens and claiming reward tokens, some
platforms allow for boosting yields generated in a liquidity pool once the user locks the governance
token for a specific amount of time. For instance, a yield farmer can boost the rewards on some pools
up to 2.5 times from the base amount by holding a substantial amount of the platforms’ governance
tokens relative to the liquidity they provide.

Uniswap V3 introduces the concept of concentrated liquidity (CL), allowing liquidity providers to
aggregate their pool liquidity in a defined interval and earn fees when the spot price moves into their
specified active zone. If the price of the tokens does not fall outside of the range, one can provide more
effective liquidity (also called virtual liquidity). The LP can, therefore, increase the capital efficiency of
the position by narrowing the active range with the disadvantage to experience a larger impermanent
loss. A detailed discussion about concentrated liquidity and its effect on the impermanent loss is
provided in Heimbach et al. (2022).

As can be inferred from the outlined description, the devil of yield farming is in its details. In the
mathematical framework we provide, we abstract from the platform specific details (LP tokens, reward
tokens, boosting, and concentrated liquidity) and focus on the general functioning of yield farming,
which is depositing tokens into a liquidity pool, paying the transaction costs, and earning the respective
trading fees.

A.3 Quantifying Transactions Costs

In the following we break down the calculation of the transaction action costs for the smart contract
functionality as used on the Ethereum blockchain. A standard Ethereum transfer requires 21,000 units
of gas, but more complicated transactions involving smart contracts (such as liquidity pools) require
more computational work and, therefore, a higher amount of gas units than a simple payment. The
transaction costs in USD for 21,000 units of gas are displayed in Figure A.1. Transaction costs (on the
Ethereum blockchain) can be calculated as the product of gas units GU times the gas price per unit
GP denoted GPUSD in USD.

TCUSD “ GU ˆ GPUSD. (A.1)

GP itself is a function of the base fees (in Gwei), which denote the minimum amount of gas required
to include a transaction and are adjusted by the demand for transaction inclusion. To obtain GPUSD,
one has to multiply the GP with the exchange rate Ether-USD (ETH-USD) for one unit of Gwei (1e9
Gwei equals one ETH). To incentivize the inclusion of the transaction in the block, the user can add a
priority fee (as a “tip” for the validator). In addition, the user can set a “max fee” for the transaction,
where the difference between the max fee and the fee actual paid is refunded when the transaction is
executed. A more detailed discussion about transaction fees on the Ethereum blockchain can be found
in Donmez and Karaivanov (2022).
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Figure A.1: Ethereum Transaction Costs – Standard Transaction. The figure shows the time-series plot of
transaction costs for a standard transaction on the Ethereum network. Transaction costs are calculated applying equation
(A.1), using 21.000 units of gas. The data is sampled daily, and the sample period is from 02-2021 to 10-2022. In the
plots, the five-day moving average is depicted.

A.4 Impermanent Loss

It is relatively straightforward to derive a formula quantifying the impermanent loss as a function
of the tokens’ percentage change in value, which is illustrated in Figure A.2; see, for example, Xu et al.
(2023).
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Figure A.2: Impermanent Loss. The figure displays the impermanent loss for the AMM constant product rule,
which is calculated as 2
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Appendix B Empirical Analysis – Additional Figures
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Figure B.1: Curve – Impermanent Loss. The figure shows the time-series plot of the impermanent loss (annualized)
within each Curve pool. The dotted line represents the average impermanent loss. Details on the Curve pools and the
token pairs are provided in Table 4.1 and Table I.1. The data is sampled daily, and the sample period is from 02-2020
to 10-2022. The data is winsorized at the 5% quantile. In the plots, the five-day moving average is depicted.
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Figure B.2: Curve – APRs. The figure shows the time-series plot of APRs of the six liquidity pools from Curve as
inferable from Table 4.1. The data is sampled daily, and the sample period is from 02-2020 to 10-2022. In the plots, the
five-day moving average is depicted.
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Appendix C Impermanent Loss in Continuous Time

If we divide equation (5.13) in both numerator and denominator by P 2
t , and then, using equation

(5.4), equation (5.8), and equation (5.9), we have the following calculation,
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If we look at the term Rtd
´
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2 L
?
Rtdt in the numerator further, and, using equation (5.6), we

then have
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Hence, the impermanent loss (C.1) can be simplified as

dIt “
2Ld

`?
Rt

˘

´ L dRt?
Rt

2L
?
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, (C.2)

which is the continuous-time equivalent of the impermanent loss formula in Heimbach et al. (2022).
Using N2

t

N1
t

“ Rt “
P 1
t

P 2
t
, derived from the relative price equation (5.2) and Assumption 5.1, and beginning

from the second line of equation (C.1), we can further show that equation (C.2) is equal to ´ σ̃2

8 dt as
well,
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Appendix D Finite-Difference Method

In this section, we describe the numerical approach of the finite-difference method that we use for
solving the HJB equations associated with our yielding farming models. We demonstrate the procedure
of deriving the numerical scheme for solving the HJB equation (5.29) for the model of two liquidity
pools as an example. By following the same procedure, the HJB equation (5.23) for the model of single
liquidity pool can be solved numerically as well.

In order to solve the HJB equation (5.29), we first need to convert the continuous computational
domain into a bounded discretized domain D “ T ˆ X1 ˆ X2 ˆ S1 ˆ S2 P R5, where

T “ rtmin, tmaxs “ ttmin “ t0, t1, ¨ ¨ ¨ , tn, ¨ ¨ ¨ , tN “ tmaxu P R, with tn “ tmin ` n∆t, (D.1)
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ą 0 are the discretization steps.
We use a finite difference method to solve the HJB equation (5.29) on the discretized domain

D defined by equation (D.1). More specifically, for equation (5.29) we apply central differences to
approximate the first-and second-order derivatives with respect to variables x1 and x2, as well as for
the second-order derivatives with respect to variables s1 and s2. We apply a first-order upwind scheme
to approximate the first-order derivatives with respect to variables s1 and s2, and a first-order explicit
scheme for the derivative with respect to the time variable t as follows:
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m,h´1,i,j ´ 2V n

m,h,i,j ` V n
m,h`1,i,j

∆x22
,

V n,m,h,i,j
s1 «

V n
m,h,i`1,j ´ V n

m,h,i,j

∆s1
, V n,m,h,i,j

s1s1 «
V n
m,h,i´1,j ´ 2V n

m,h,i,j ` V n
m,h,i`1,j

∆s21
,

V n,m,h,i,j
s2 «

V n
m,h,i,j`1 ´ V n

m,h,i,j

∆s2
, V n,m,h,i,j

s2s2 «
V n
m,h,i,j´1 ´ 2V n

m,h,i,j ` V n
m,h,i,j`1

∆s22
,

where V n
m,h,i,j and V n,m,h,i,j

˚ respectively represent the values of V and derivatives of V with respect

to variable ˚ at the location
´

tn, x
1
m, x2h, s

1
i , s

2
j

¯

in the discretized domain D.
Replacing the derivatives in equation (5.29) with the approximations given by equation (D.2), we

then have the following numerical scheme:

V n´1
m,h,i,j “

¨

˚

˝

1 ´
∆tσ2

x1

∆x21
´

∆tσ2
x2

∆x22
´

∆tσ̂2
1

`

s1i
˘2

∆s21
´

∆tσ̂2
2

´

s2j

¯2

∆s22

˛

‹

‚

V n
m,h,i,j (D.3)
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`

ˆ

∆tσ2
x1

2∆x21
`

∆tκ1x
1
m

2∆x1

˙

V n
m´1,h,i,j `

ˆ

∆tσ2
x1

2∆x21
´

∆tκ1x
1
m

2∆x1

˙

V n
m`1,h,i,j

`

ˆ

∆tσ2
x2

2∆x22
`

∆tκ2x
2
h

2∆x2

˙

V n
m,h´1,i,j `

ˆ

∆tσ2
x2

2∆x22
´

∆tκ2x
2
h

2∆x2

˙

V n
m,h`1,i,j

`
∆tσ̂2

1

`

s1i
˘2

2∆s21
V n
m,h,i´1,j `

∆tσ̂2
1

`

s1i
˘2

2∆s21
V n
m,h,i`1,j

`

∆tσ̂2
2

´

s2j

¯2

2∆s22
V n
m,h,i,j´1 `

∆tσ̂2
2

´

s2j

¯2

2∆s22
V n
m,h,i,j`1

` sup
ω1Pt0, ω̄1u

ω2Pt0, ω̄2u

«

∆t
2
ÿ

q“1

paq pxqq sq ´ ωqq `
∆t

∆s1

ˆ

p1 ´ λ1qω1 ´
σ̃2
1

8
s1i

˙

V n
m,h,i`1,j

´
∆t

∆s1

ˆ

p1 ´ λ1qω1 ´
σ̃2
1

8
s1i

˙

V n
m,h,i,j `

∆t

∆s2

ˆ

p1 ´ λ2qω2 ´
σ̃2
2

8
s2j

˙

V n
m,h,i,j`1

´
∆t

∆s2

ˆ

p1 ´ λ2qω2 ´
σ̃2
2

8
s2j

˙

V n
m,h,i,j

ff

“ 0.

where t is in backward; in other words, for tn, we have n “ N, N ´ 1, ¨ ¨ ¨ , 2, 1, because we have a
terminal condition V

´

tN , x1m, x2h, s
1
i , s

2
j

¯

“
η
γs

´

s1i ` s2j

¯γs
, @i, j.

The numerical scheme that is given by equation (D.3) is stable if it satisfies a Courant-Fredrichs-
Lewy (CFL) condition, which is checked probabilistically by using the Markov chain approximation
method of Kushner and Dupuis (2001). The dynamic programming equation for the value function is

V ∆x1 pt, x1, x2, s1, s2q “ sup
ω1Pt0, ω̄1u

ω2Pt0, ω̄2u

«

ÿ

x1

p∆x1
`

x1, x
1
1 |ω1, ω2

˘

V ∆x1
`

t, x1
1, x2 s1, s2

˘

ff

,

where p∆x1 px1, x
1
1 |ω1, ω2q is the transition probability from state x1 to state x1

1. In order to maintain
the stability of the numerical scheme (D.3), the following arguments:

pm “ 1 ´
∆tσ2

x1

∆x21
´

∆tσ2
x2

∆x22
´

∆tσ̂2
1

`

s1i
˘2

∆s21
´

∆tσ̂2
2

´

s2j

¯2

∆s22
`

∆tσ̃2
1s

1
i

8∆s1
(D.4)

`
∆tσ̃2

2s
2
j

8∆s2
´

∆t p1 ´ λ1q

∆s1
ω1 ´

∆t p1 ´ λ2q

∆s2
ω2

p´
m “

∆tσ2
x1

2∆x21
`

∆tκ1x
1
m

2∆x1
, p`

m “
∆tσ2

x1

2∆x21
´

∆tκ1x
1
m

2∆x1
,

p´
h “

∆tσ2
x2

2∆x22
`

∆tκ2x
2
h

2∆x2
, p`

h “
∆tσ2

x2

2∆x22
´

∆tκ2x
2
h

2∆x2
,

p´
i “

∆tσ̂2
1

`

s1i
˘2

2∆s21
, p`

i “
∆tσ̂2

1

`

s1i
˘2

2∆s21
´

∆tσ̃2
1s

1
i

8∆s1
`

∆t p1 ´ λ1q

∆s1
ω1

p´
j “

∆tσ̂2
2

´

s2j

¯2

2∆s22
, p`

j “

∆tσ̂2
2

´

s2j

¯2

2∆s22
´

∆tσ̃2
2s

2
j

8∆s2
`

∆t p1 ´ λ2q

∆s2
ω2

are the transition probabilities between different states of xi and sj for i, j “ 1, 2; therefore, their
values have to be in p0, 1q, and p´

i ` pi ` p`
i ` p´

j ` p`
j ` p`

h ` p´
m ` p`

m “ 1 for all cases ω1 “ 0 or ω̄1
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and ω2 “ 0 or ω̄2.
In order to solve the two liquidity pools model numerically using the finite-difference scheme (D.3),

we also need to set the boundary conditions. Because the OU processes are approximated by Markov
chains, we can adjust the numerical scheme at the boundary points so that the Markov chain approx-
imation of Xi

t reflects back to discretized domain Xi. More specifically, at the ghost points x1´1 and
x1M`1, V n

´1,h,i,j and V n
M`1,h,i,j are replaced by their adjacent points V n

0,h,i,j and V n
M,h,i,j , and at the

ghost points x2´1 and x2L`1, V
n
m,´1,i,j and V n

m,L`1,i,j are replaced by their adjacent points V n
m,0,i,j and

V n
m,L,i,j

V n,0,h,i,j
x1

«
V n
1,h,i,j ´ V n

0,h,i,j

2∆x1
, V n,0,h,i,j

x1x1
«

V n
0,h,i,j ´ 2V n

0,h,i,j ` V n
1,h,i,j

2∆x1
, (D.5)

V n,M,h,i,j
x1

«
V n
M,h,i,j ´ V n

M´1,h,i,j

2∆x1
, V n,M,h,i,j

x1x1
«

V n
M´1,h,i,j ´ 2V n

M,h,i,j ` V n
M,h,i,j

∆x21
,

V n,m,0,i,j
x2

«
V n
m,1,i,j ´ V n

0,h,i,j

2∆x2
, V n,m,0,i,j

x2x2
«

V n
m,0,i,j ´ 2V n

m,0,i,j ` V n
m,0,i,j

2∆x2
,

V n,m,L,i,j
x2

«
V n
m,L,i,j ´ V n

m,L´1,i,j

2∆x2
, V n,m,L,i,j

x2x2
«

V n
m,L´1,i,j ´ 2V n

m,L,i,j ` V n
m,L,i,j

∆x22
.

For the derivative with respect to s1 and s2, we can observe from equation (D.2) that, because the
first-order derivatives with respect to these two variables are approximated by the upwind scheme, we
therefore need only to set boundary condition at i “ I and j “ J . For the second-order derivatives with
respect to s1 and s2, because they are approximated by the central-difference scheme, we therefore
need to set the boundary condition at i “ 0, i “ I, j “ 0, and j “ J , for which we choose the
Neumann boundary conditions. From the utility function (5.27) for the two liquidity pools model, we
have V

´

tn, x
1
m, x2h, s

1
i , s

2
j

¯

“
η
γs

´

s1i ` s2j

¯γs
, therefore,

V n,m,h,I,j
s1 «

γs
s1I ` s2j

V
`

tn, x
1
m, x2h, s

1
I , s

2
j

˘

, V n,m,h,i,J
s2 «

γs
s1i ` s2J

V
`

tn, x
1
m, x2h, s

1
i , s

2
J

˘

, (D.6)

V n,m,h,0,j
s1s1 «

γs pγs ´ 1q
´

s10 ` s2j

¯2V
`

tn, x
1
m, x2h, s

1
0, s

2
j

˘

, V n,m,h,I,j
s1s1 «

γs pγs ´ 1q
´

s1I ` s2j

¯2V
`

tn, x
1
m, x2h, s

1
I , s

2
j

˘

,

V n,m,h,i,0
s2s2 «

γs pγs ´ 1q
`

s1i ` s20
˘2 V

`

tn, x
1
m, x2h, s

1
i , s

2
0

˘

, V n,m,h,i,J
s2s2 «

γ2 pγ2 ´ 1q
`

s1i ` s2J
˘2 V

`

tn, x
1
m, x2h, s

1
i , s

2
J

˘

.

All together, we can rewrite the finite-difference scheme (D.3) in matrix form as follows:

V n´1 “ V n `

2
ÿ

q“1

˜

∆tσ2
xq

2
D2

xq
V n ´ ∆tκqdiag pxqqDxqV

n

¸

(D.7)

`

2
ÿ

q“1

˜

∆tσ̂2
qs

2
q

2
D2

sqV
n ´

∆tσ̃2
qsq

8
DsqV

n

¸

`

2
ÿ

q“1

“

∆t
`

diag paq pxqqq diag psqq ´ ωn´1
q

˘

` ∆t p1 ´ λqqωn´1
q DsqV

n
‰

,

where x1 “
“

x10, x
1
1, ¨ ¨ ¨ , x1M

‰J, x2 “
“

x20, x
2
1, ¨ ¨ ¨ , x2H

‰J, s1 “
“

s10, s
1
1, ¨ ¨ ¨ , s1I

‰J, s2 “
“

s20, s
2
1, ¨ ¨ ¨ , s2J

‰J,
V n px1, xs, s1, s2q P R4, ωn

q px1, xs, s1, s2q P R4 for q “ 1, 2, D‹
˚V

n P R4, and D‹
˚ are derivative
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operators that are defined as follows:

“

D´
x1
V n

‰m,ℓ

i,j
“

V n`1
m`1,ℓ,i,j ´ V n`1

m´1,ℓ,i,j

2∆x1
,

“

D2
x1
V n

‰m,ℓ

i,j
“

V n
m´1,ℓ,i,j ´ 2V n

m,ℓ,i,j ` V n
m`1,ℓ,i,j

∆x21
, (D.8)

“

D´
x2
V n

‰m,ℓ

i,j
“

V n
m,ℓ`1,i,j ´ V n

m,ℓ´1,i,j

2∆x2
,

“

D2
x2
V n

‰m,ℓ

i,j
“

V n
m,ℓ´1,i,j ´ 2V n

m,ℓ,i,j ` V n
m,ℓ`1,i,j

∆x22
,

“

D´
s1V

n
‰m,ℓ

i,j
“

V n
m,ℓ,i`1,j ´ V n

m,ℓ,i,j

∆s1
,

“

D2
s1V

n
‰m,ℓ

i,j
“

V n
m,ℓ,i´1,j ´ 2V n

m,ℓ,i,j ` V n
m,ℓ,i`1,j

∆s21
,

“

D´
s2V

n
‰m,ℓ

i,j
“

V n
m,ℓ,i,j`1 ´ V n

m,ℓ,i,j

∆s2
,

“

D2
s2V

n
‰m,ℓ

i,j
“

V n
m,ℓ,i,j´1 ´ 2V n

m,ℓ,i,j ` V n
m,ℓ,i,j`1

∆s22
,

where rD‹
˚V

ns
m,ℓ
i,j represents the element in the matrix D‹

˚V
n at location

´

x1m, x2h, s
1
i , s

2
j

¯

. At each
time t “ tn for n “ N, N ´ 1, ¨ ¨ ¨ , 2, 1, the value of equation (D.7) is calculated, and the optimal
values for the control variables ωq for q “ 1, 2 are updated by using condition (5.30),

“

ωn
q

‰m,h

i,j
“

$

&

%

ω̄q, if p1 ´ λqq ω̄q
V n
m,h,i`1,j´V n

m,h,i,j

∆sq
ą ω̄q,

0, otherwise,
(D.9)

where
“

ωn
q

‰m,h

i,j
“ ωq

´

tn, x
1
m, x2h, s

1
i , s

2
j

¯

. Algorithm Appendix D.1 gives the pseudo-code for imple-
menting the finite-difference method (D.7) for solving the two-pool case of the yield farming problem.

Algorithm Appendix D.1: Iterative Policy Updating Algorithm Using Finite-Difference
Scheme for Two Liquidity Pools. Parameter max_iter taken to be 5 or 10.
1 Initialize ωn

1 “ 0 and ωn
2 “ 0 for all n ď N ;

2 for iteration in range pmax_iterq do
3 Initialize V N “ U using equation (5.27);
4 for n in reversed prange pNqq do
5 Calculate V n´1 using equation (D.7) and current values of ωn´1

1 and ωn´1
2 ;

6 Update ωn´1
1 and ωn´1

2 using equation (D.9) and V n´1 computed in previous step ;
7 end
8 end

Similarly, equation (5.23) for the model of single liquidity pool can be solved numerically by using
the finite-difference method described thus far. As with the model of two liquidity pools, the first-
and second-order derivatives with respect to x – here x corresponds to the OU process Xt in the
stochastic system (5.19) – are approximated by the central difference, the derivative with respect
to s is approximated by the first-order upwind scheme, and the derivative for the time variable t is
approximated by a first-order explicit scheme. Consequently, we have

V n´1
i,j “

ˆ

∆tσ2

2∆x2
`

∆tκxi
2∆x

˙

V n
i´1,j `

˜

1 ´
∆tσ2

∆x2
´

∆tσ̂2s2j
∆s2

¸

V n
i,j (D.10)

`

ˆ

∆tσ2

2∆x2
´

∆tκxi
2∆x

˙

V n
i`1,j `

∆tσ̂2s2j
2∆s2

V n
i,j´1 `

∆tσ̂2s2j
2∆s2

V n
i,j`1
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` sup
wPt0, w̄u

νPt0, ν̄u

«

∆ta pxiq sj ´ ∆t pw ´ νq `
∆t

´

w ´ λww ´ ν ´ λνν ´ σ̃2

8 sj

¯

∆s
V n
i,j`1

´

∆t
´

w ´ λww ´ ν ´ λνν ´ σ̃2

8 sj

¯

∆s
V n
i,j

ff

,

where V n
i,j represents the values of V ptn, xi, sjq in the discretized domain,

p´
i “

∆tσ2

2∆x2
`

∆tκxi
2∆x

, p`
i “

∆tσ2

2∆x2
´

∆tκxi
2∆x

, p´
j “

∆tσ̂2s2j
2∆s2

,

pi “ 1 ´
∆tσ2

∆x2
´

∆tσ̂2s2j
∆s2

`
∆tσ̃2sj
8∆s

´
∆t p1 ´ λωqω

∆s
`

∆t p1 ` λq ν

∆s
,

p`
j “

∆tσ̂2s2j
2∆s2

´
∆tσ̃2sj
8∆s

`
∆t p1 ´ λωqω

∆s
´

∆t p1 ` λνq ν

∆s
,

are the transition probabilities whose values are in p0, 1q between different states of xi and sj , and
p´
i `pi `p`

i `p´
j `p`

j “ 1 for all cases ω “ 0 or ω̄ and ν “ 0 or ν̄. The numerical scheme that is given
by equation (D.10) is stable if it satisfies a CFL condition, which is checked probabilistically by using
the Markov chain approximation method as well. The numerical scheme (D.10) is solved in backward
time t because we have a terminal condition V pT, x, sq “

η
γ s

γ . We use the same approach to set the
(Neumann) boundary conditions for variables s and x.
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Appendix E Model Calibration

This appendix provides the details to estimate the parameters of the OU processes. The OU process
Xt is defined in equation (5.17) and is stationary if and only if κ ą 0. The APR for the single liquidity
pool model that is proposed in Section 5.3.2 is an exponential OU process APRt “ a pXtq :“ βeXt .
Taking the logarithm, we have lnAPRt “ Xt ` lnβ, which is a stationary OU process with same
parameters κ and σ, but with long-term mean lnβ. Given data APRn “ APRtn for n “ 0, 1, 2, ¨ ¨ ¨ , N ,
with time step ∆t “ tn`1 ´ tn, @n, we estimate lnβ, κ, and σ as follows.

First, we have the time-series average is the estimator for lnβ,

ylnβ “
1

N

N´1
ÿ

n“0

lnAPRn.

Next, we consider the recursion for the centered process,

Xt`1 “ p1 ´ κ∆tqXt ` ϵt, (E.1)

where ϵt „ N
`

0, σ2∆t
˘

. Using estimator ylnβ we define the sample centered process as pXn “ APRn ´

ylnβ, which is then plugged into equation (E.1) for the estimation of κ. The estimator for κ is

κ̂ “
1

∆t

˜

1 ´

řN´1
n“0

pXn`1
pXn

řN´1
t“0

pX2
n

¸

.

Typically the step-size ∆t is small so that κ∆t ! 1, hence we have ´ ln p1 ´ κ∆tq „ κ∆t, and therefore,

the estimator for κ becomes κ̂ “ ´ 1
∆t ln

ˆ

řN´1
t“0

pXn`1
pXn

řN´1
n“0

pX2
n

˙

. Finally, the estimation of σ is calculated by

summing the squared centered process pXn, in other words xσ2 “ 2κ̂
N

řN´1
n“0

´

pXn

¯2
. In summary, the

estimators for β, κ, and σ, respectively are:

ylnβ “
1

N

N´1
ÿ

n“0

lnAPRn,

κ̂ “ ´
1

∆t
ln

¨

˚

˝

řN´1
n“0

´

lnAPRn`1 ´ ylnβ
¯´

lnAPRn ´ ylnβ
¯

řN´1
n“0

´

lnAPRn ´ ylnβ
¯2

˛

‹

‚

,

xσ2 “
2κ̂

N

N´1
ÿ

n“0

´

lnAPRn ´ ylnβ
¯2

.

By the ergodic theory for the stationary OU process, we have P
´
ˇ

ˇ

ˇ

ylnβ ´ lnβ
ˇ

ˇ

ˇ
ě ϵ

¯

, P p|κ̂ ´ κ| ě ϵq, and

P
´
ˇ

ˇ

ˇ

xσ2 ´ σ
ˇ

ˇ

ˇ
ě ϵ

¯

as N Ñ `8 for any ϵ ą 0. For the central limit theory and further mathematical
details of the ergodic theory, we refer to Kutoyants (2004). For the OU processes that are defined by
equation (5.25) for the two liquidity pools model that is proposed in Section 5.3.3, we use the same
method to estimate their parameters βi, κi, and σi, for i “ 1, 2. To estimate the parameters of the
OU processes that are defined in equation (5.25), we use the same approach provided above.
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Appendix F Model – Additional Figures
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Figure F.1: The optimal recompounding strategy ω pt, Xt, Stq with different values of the risk tolerance coefficients γ
for C̄urve. The time point is t “ 1.5. The value for the transaction cost c “ λω̄ is 10 USD. The horizontal axis is labeled
by the values of APR for C̄urve; in other words, a pXtq “ βeXt . The associated stochastic control problem is formulated
in Section 5.3.2 and Section 6.1.
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Figure F.2: The optimal recompounding strategies ω pt, Xt, Stq ´ ν pt, Xt, Stq of different values of the risk tolerance
coefficients γ for Ūniswap. The time point is t “ 1.5. The value of the transaction cost is c “ λω̄ “ λν̄ “ 10 USD. The
horizontal axis is labeled by the values of APR for the Uniswap pool; in other words, a pXtq “ βeXt . The associated
stochastic control problem is formulated in Section 5.3.2 and Section 6.2.
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Internet Appendix

I Empirical Analysis – Additional Tables and Figures

Token Type Market Capitalization Collateralized Publisher

DAI Stablecoin 6.86b Crypto makerdao
USDC Stablecoin 48.88b Fiat centre
USDT Stablecoin 67.95b Fiat tether
TUSD Stablecoin 877.90m Fiat trueusd
BUSD Stablecoin 21.06b Fiat binance
sUSD Stablecoin 69.75m Crypto synthetix
USDPAX Stablecoin 943.12m Fiat paxos

Table I.1: Token Overview – Curve Pools. The table reports the names, type, the market capitalization (as of
September 28, 2022), the collateralization, and the publisher of the tokens traded in the six pools from Curve. The data
is obtained from https://coinmarketcap.com/.

Panel A: Adding Liquidity
Liquidity Pool Mean Standard Deviation Minimum Maximum

compound 50.677 57.654 0.796 279.420
y 27.166 39.089 0.288 172.450
busd 23.850 29.260 1.732 116.813
susdv2 44.250 51.677 0.326 237.268
pax 13.675 17.870 0.565 48.006
3pool 32.656 32.085 1.431 143.708
C̄urve 34.478 36.795 0.307 166.611

Panel B: Remove Liquidity
Liquidity Pool Mean Standard Deviation Minimum Maximum

compound 11.772 21.873 0.068 94.594
y 7.109 9.273 0.088 45.002
busd 8.389 9.718 0.652 35.203
susdv2 14.533 20.419 0.000 109.446
pax 0.451 0.169 0.332 0.571
3pool 25.069 25.097 0.000 106.860
C̄urve 23.276 26.493 0.000 121.963

Table I.2: Summary Statistics – Curve Transaction Costs. The table reports the summary statistics (mean,
standard deviation, minimum, and maximum observations) of transactions costs (in USD), where Panel A describes the
action add liquidity and Panel B the action remove liquidity, of the six liquidity pools from Curve, as described in Table
4.1 and their average (C̄urve pool). The data is obtained from etherscan.io and sampled daily. The sample period is
from 02-2020 to 10-2022. The data is winzorized at the 1% quantile.

53

https://coinmarketcap.com/
h
t
t
p
s
:
/
/
c
o
i
n
m
a
r
k
e
t
c
a
p
.
c
o
m
/


Liquidity Pool Mean Standard Deviation Minimum

compound -0.00023 0.00085 -0.00616
y -0.00020 0.00065 -0.00459
busd -0.00020 0.00064 -0.00454
susdv2 -0.00454 0.01151 -0.08100
pax -0.00031 0.00087 -0.00636
3pool -0.00023 0.00077 -0.00541
C̄urve -0.00095 0.00219 -0.01801

Table I.3: Summary Statistics – Curve Impermanent Loss. The table reports the summary statistics (mean,
standard deviation, and minimum observations) (Panel A) of the impermanent loss (annualized) of the six liquidity
pools (and their average called C̄urve) from Curve. The data is sampled daily, and the sample period is from 02-2020 to
10-2022. The price data is winzorized at the 1% quantile.

Panel A: Summary Statistics
Liquidity Pool Mean Standard Deviation Minimum Maximum

compound 0.041 0.038 -0.338 0.201
y 0.050 0.060 -0.090 0.353
busd 0.048 0.052 0.001 0.274
susdv2 0.023 0.033 0.000 0.201
pax 0.015 0.028 0.000 0.178
3pool 0.008 0.010 -0.006 0.071
C̄urve 0.031 0.040 0.001 0.240

Panel B: Correlation Matrix
Liquidity Pool compound y busd susdv2 pax 3pool C̄urve

compound 1.000 0.556 0.585 0.427 0.414 0.498 0.661
y 0.556 1.000 0.704 0.361 0.371 0.336 0.763
busd 0.585 0.704 1.000 0.462 0.470 0.468 0.754
susdv2 0.427 0.361 0.462 1.000 0.532 0.480 0.680
pax 0.414 0.371 0.470 0.532 1.000 0.459 0.680
3pool 0.498 0.336 0.468 0.480 0.459 1.000 0.616
C̄urve 0.661 0.763 0.754 0.680 0.680 0.616 1.000

Table I.4: Summary Statistics and Correlation Dynamics – Curve APRs. The table reports the summary
statistics (mean, standard deviation, and minimum and maximum observations) (Panel A) and the correlation matrix
(Panel B) of APRs (in decimals) of the six liquidity pools (and their average, called C̄urve) from Curve. The data is
sampled daily, and the sample period is from 02-2020 to 10-2022. The data is winzorized at the 1% quantile.
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Figure I.1: Curve – Pool Token Prices. The figure shows the time-series plots of the respective token prices within
each pool. Details on the pools and the token pairs are provided in Table 4.1 and Table I.1. The data is sampled daily,
and the sample period ranges from 01-2020 to 10-2022. The data is winsorized at the 1% quantile. In the plots, the
five-day moving average is depicted.
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Figure I.2: Curve – Average Pool Token Correlation. The figure shows the time-series plot of the average token
correlations (calculated over a rolling window of 30 days) within each pool. The dotted line represents the unconditional
average correlation. Details on the pools and the token pairs are provided in Table 4.1 and Table I.1. The data is
sampled daily, and the sample period is from 02-2021 to 10-2022. The price data is winsorized at the 1% quantile. In
the plots, the five-day moving average is depicted.
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II Model – Additional Figures
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Figure II.1: The figure shows the solution for the HJB equation (5.23) with respect to V pt, x, sq at different time t
for the Ūniswap liquidity pool. The value of the risk tolerance coefficient is γ “ 0.8, and the value for the transaction
cost c is set to 10 USD.
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III Two Liquidity Pools with Cobb-Douglas Utility

For the two liquidity pools model in Section 5.3.3, we can take the Cobb–Douglas production
function as the utility

U
`

Kt, S
1
t , S

2
t

˘

“
1

γ1

`

S1
t

˘γ1 1

γ2

`

S2
t

˘γ2 1

γ3
Kγ3

t , (III.1)

where γj P p0, 1q for j “ 1, 2, and 3 are the risk tolerance coefficients, and
ř3

j“1 γj “ 1. This utility
is strictly concave in Kt, whereas the utility in equation (III.1) is linear. When solving numerically,
the utility function in equation (III.1) will lead to output that has noticeable differences from the
output presented in Section 6.3. In the implementation, the utility function (III.1) does not permit a
dimension-reducing ansatz as does the utility of equation (III.1), and therefore the numerical schemes
have slower runtime and are computed on a less fine mesh.

III.1 Optimal Liquidity Provision

For the two liquidity pools case with utility equation (III.1), we consider a system similar to that
of equation (5.25), but which will be easier for numerical computation because APRs are drive by a
single, common OU process,

dKt “

2
ÿ

i“1

`

ai pXtqS
i
t ´ ωi

t ` νit
˘

dt, (III.2)

dSi
t “

ˆ

ωi
t ´ νit ´ ci1tωi

tą0u ´
σ̃2
i

8
Si
t

˙

dt ` σ̂iS
i
tdB̂

i
t, for i “ 1, 2

dXt “ ´κXtdt ` dBt,

where Bt and B̂i
t for i “ 1, 2 are three mutually independent one-dimensional standard Brownian

motions, ωi
t P r0, ω̄is, νit P r0, ν̄is, κ ą 0, and ci ą 0 are the constant transaction costs for the two

different liquidity pools. The control variable ωi
t represents at each time t the amount of the rewarded

ith token that is recompounded back into the ith liquidity pool. As done for the two liquidity pools
model proposed in Section 5.3.3, here we set νit ” 0 @t.

The two APRs ai pXtq in equation (III.2) are driven by the same OU process Xt. However, there
is still an obvious difference when we compare it with the SDE (5.17) or with equation (5.25), which
is that there is not a volatility parameter σ in the diffusion term dBt. The reason is that in order to
reduce the dimensions of the stochastic control problem, we must assume that the APRs for the two
different liquidity pools are driven by the same OU process. Meanwhile, we still want to capture the
volatilities for the two different liquidity pools; therefore, the two different σi are specified within the
functions of the APRs ai pXtq for i “ 1, 2 for the two liquidity pools, respectively.

The control processes ωi
t for i “ 1, 2 are progressively measurable process, which are sought to

maximize the expectation of the utility function (III.1) with respect to to the wallet Kt and the staking
amounts Si

t at terminal time t “ T . Therefore, the value function is

Q pt, x, k, s1, s2q “ sup
pω1

t ,ω
2
t qPA

E
“

U
`

KT , S
1
T , S

2
T

˘ ˇ

ˇXt “ x, Kt “ k, S1
t “ s1, S

2
t “ s2

‰

, (III.3)

where
`

Xt, Kt, S
1
t , S

2
t

˘

follow equation (III.2), t P r0, T s is the time variable, px, k, s1, s2q P R ˆ
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R` ˆ R` ˆ R`, and A is the set of admissible controls, as follows:

A “

!

`

ω1
t , ω

2
t

˘

0ďtďT

ˇ

ˇ

`

ω1
t , ω

2
t

˘

is Ft-measurable with ωi
t P r0, ω̄is for i “ 1, 2

)

,

with the control bounds ω̄i for i “ 1, 2 being parameters such that 0 ă ω̄i ă 8.
The value function Q pt, x, k, s1, s2q defined in equation (III.3) has the following HJB equation:

Qt ` LQ `
1

2

2
ÿ

i“1

σ̂2
i s

2
iQsisi (III.4)

` sup
ω1Pr0, ω̄1s

ω2Pr0, ω̄2s

2
ÿ

i“1

„

pai pxq si ´ ωiqQk `

ˆ

ωi ´ ci1tωią0u ´
σ̃2
i

8
si

˙

Qsi

ȷ

“ 0,

where LQ “ 1
2Qxx ´ κxQx, and terminal condition is Q pT, x, k, s1, s2q “ 1

γ1
sγ11

1
γ2
sγ22

1
γ3
kγ3 . The

linearity of the Hamiltonian with respect to ωi for i “ 1, 2 leads to the optimal controls being of a
bang-bang type,

ωi “

$

&

%

ω̄i, if pω̄i ´ ciqQsi ą ω̄iQk,

0, otherwise.

Let λi P p0, 1q for i “ 1, 2 be parameters such that ci “ λiω̄i. The SDEs for the staking amounts
defined in equation (III.2) become dSi

t “

´

p1 ´ λiqω
i
t ´

σ̃2
i
8 Si

t

¯

dt ` σ̂iS
i
tdB̂

i
t with ωi

t P t0, ω̄iu. Then
the HJB equation (III.4) with bang-bang controls can be written succinctly as

Qt ` LQ `
1

2

2
ÿ

i“1

σ̂2
i s

2
iQsisi (III.5)

` sup
ω1Pt0, ω̄1u

ω2Pt0, ω̄2u

2
ÿ

i“1

„

pai pxq si ´ ωiqQk `

ˆ

p1 ´ λiqωi ´
σ̃2
i

8
si

˙

Qsi

ȷ

“ 0,

where LQ is defined as it is in equation (III.4), and the terminal condition is Q pT, x, k, s1, s2q “

1
γ1
sγ11

1
γ2
sγ22

1
γ3
kγ3 . In terms of λ1 and λ2, the optimal bang-bang controls are expressed as

ωi “

$

&

%

ω̄i, if p1 ´ λiq ω̄iQsi ą ω̄iQk,

0, otherwise.

III.2 Numerical Experiments – Uniswap

The control problem (III.3) is solved numerically by utilizing the finite-difference method that is
proposed in Appendix D. The bounded discretized domain D is similar to equation (D.1); however,
one of the Xi is substituted by K “ rkmin, kmaxs “ tkmin “ k0, k1, ¨ ¨ ¨ , kh, ¨ ¨ ¨ , kH “ kmaxu, kh “

kmin ` h∆k, and ∆k “ 1
H pkmax ´ kminq ą 0 is the discretization step. Also, there is a new term Qk in

the HJB equation (III.5) that does not appear in equation (5.23) or equation (5.29). It is the first-order
derivative with respect to variable k, which is approximated by a first-order upwind scheme,

Qn,m,h,i,j
k «

Qn
m,h`1,i,j ´ Qn

m,h,i,j

∆k
. (III.6)
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Because Qk is approximated by the upwind scheme (III.6), we therefore only need to set the Neumann
boundary condition for kh “ kH ; that is,

Qn,m,H,i,j
k «

γ3
kH

Q
`

xm, kH , s1i , s
2
j

˘

.

For the numerical examples of Cobb–Douglas production function, we select ChainLink and Wrapped
Ethereum (LINK/WETH) as the first pool and Wrapped Ethereum and Curve (WETH/CRV) as the
second pool. Empirically, the average APR for the first pool (second pool) is around 32% (28%),
and the unconditional correlation between the pool APRs is close to zero (1.6%) over the sample
period. We assume that the dynamics of APRs are ai pXtq :“ βie

σiXt for i “ 1, 2, where Xt is the
OU process that is defined in equation (III.2). For parameter estimation, we follow Appendix E and
obtain σ1 “ 0.61, σ2 “ 0.74, β1 “ 0.30, β2 “ 0.25, κ1 “ 3.24, and κ2 “ 2.37; therefore, we set
κ “ 1

2 pκ1 ` κ2q.39 We estimate σ̂1 “ 0.26, σ̂2 “ 0.32, σ̃1 “ 0.14 and σ̃2 “ 0.12. For the utility
function (III.1), we set the risk tolerance coefficients to γ1 “ 0.33, γ2 “ 0.33, and γ3 “ 0.34 and the
bound for the control to ω̄1 “ ω̄2 “ 100. For the discretized computational domain D, we set tmin “ 0,
tmax “ 3, xmin “ ´9.5σ{

?
2κ, xmax “ 1.25σ{

?
2κ, kmin “ 0, kmax “ 2000, s1min “ s2min “ 1000,

s1max “ s2max “ 3000, N “ tmax ˆ 365 ˆ 3, M “ 60, H “ 10, I “ 25, and J “ 25.
Figures III.1 illustrates the optimal control w1 corresponding to the individual pool. The results

are similar for the second pool and therefore not reported. The plot exhibits a similar pattern as
observed in the single-pool case. At the initial time t “ 0, there is a significant compounding region,
while near the terminal time t “ T , a no-recompounding region is evident. The area for intermediate
points between these two regions gradually decreases.
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Figure III.1: Evolution of the optimal recompounding strategy w1
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at different times t for the
first liquidity pool LINK/WETH. The transaction costs are set to c “ 10 USD. The risk tolerance is set to γ1 “ 0.33,
γ2 “ 0.33, and γ3 “ 0.34. The horizontal axis is labeled by the values of APR for the liquidity pool LINK/WETH; in
other words, a1 pXtq “ β1e

σ1Xt .

Figure III.2 displays the projection of w1 and w2 on t0, ω̄1u ˆ t0, ω̄2u. The plots show that at
39As in the single liquidity pool case, we apply a moving average over the last 30 days to the time-series is from 12-2021

to 12-2022 before estimating the coefficients of the exponential OU processes.
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t “ 0, the agent consistently chooses to recompound. However, as we approach t “ T , the costs of re-
compounding outweigh the benefits. Notably, the dynamics at intermediate time points are intriguing,
with clear divisions into the four discussed areas. The plots reveal a simultaneous reduction in the
optimal recompounding region for both pools. Moreover, the individual recompounding areas shift
from being concentrated across the entire corner at t “ 1.199 to a rectangular concentration at lower
values of respective range of St (t “ 1.8 and t “ 2.4).
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Figure III.2: Evolution of the optimal recompounding strategies ω1,2
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P t0, ω̄1uˆt0, ω̄2u at different
times t for both of the liquidity pools LINK/WETH and WETH/CRV. The transaction costs are set to c “ 10 USD. The
risk tolerance is set to γ1 “ 0.33, γ2 “ 0.33, and γ3 “ 0.34. The functions of APRs for the pools are ai pXtq “ βie

σiXt ,
for i “ 1, 2.

To investigate optimal recompounding behavior under changing market conditions (APRs), we
conduct a comparative statics analysis. By fixing the APR of the first liquidity pool and increasing
the APRs for the second pool, we examine the dynamics of the controls w1 and w2 at t “ 1.5. Figure
III.3 illustrates the plots depicting these dynamics. Notably, the light blue recompounding region for
w2 expands as APR2 increases. Additionally, the dark red recompounding region for ω1 “ ω̄1 and
ω2 “ ω̄2 grows with APR2, indicating that the agent not only recompounds more frequently within
pool 2 but also utilizes the additional resources from pool 2 to recompound more often within pool 1.

Next we investigate the optimal recompounding solutions with respect to changing transaction
costs. To do these analyses we will fix the transactions costs on one pool and vary transaction costs
in the other. Figure III.4 shows the optimal controls at t “ 1.5 for fixed transaction costs in pool
1 of LINK/WETH (λ1 “ 0.1, which equals 10 USD) and varying in pool 2 of WETH/CRV (from 1

USD to 50 USD). As seen from the plots, when transaction costs on pool 2 increase, its individual
recompounding region (light blue) becomes smaller. In contrast, the individual recompounding region
of pool 1 (light red) becomes larger. For extreme transaction costs of 50 USD, the optimal criteria
command recompounding almost only in pool 1. The model, therefore, delivers reasonable and intuitive
dynamics for the optimal control and changes in transaction costs.
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Figure III.3: The optimal recompounding strategies ω1,2
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P t0, ω̄1u ˆ t0, ω̄2u for both of the
liquidity pools LINK/WETH and WETH/CRV. The APR2 for the second liquidity pool WETH/CRV is varying, and
the APR1 “ 0.15 for the first liquidity pool LINK/WETH is fixed. The transaction costs are set to c “ 10 USD. The
risk tolerance is set to γ1 “ 0.33, γ2 “ 0.33, and γ3 “ 0.34. The functions of APRs for both of the liquidity pools are
ai pXtq “ βie

σiXt , for i “ 1, 2.

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 1.00.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 2.50.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 5.00.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 10.00.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 25.00.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

1000 1500 2000 2500 3000
S1

t

1000

1500

2000

2500

3000

S2
t

w1, 2(t, Xt, Kt, S1
t , S2

t ). t = 1.5, Xt = 1.7.
Kt = 1111.11. c2 = 50.00.

w1 = 0
w2 = 0

w1 = 0
w2 = w2

w1 = w1
w2 = 0

w1 = w1
w2 = w2

Figure III.4: The optimal recompounding strategies ω1,2
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P t0, ω̄1uˆt0, ω̄2u for both of the liquidity
pools LINK/WETH and WETH/CRV. The values of the transaction cost c2 are set to 1 USD, 2.5 USD, 5 USD, 10
USD, 25 USD, and 50 USD. The transaction costs c1 of the first liquidity pool LINK/WETH are fixed to 10 USD. The
functions of APRs for both of the liquidity pools are ai pXtq “ βie

σiXt , for i “ 1, 2.
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