


Benchmarking Decentralized Identity Systems: A
Multi-Dimensional Evaluation

Abstract—Decentralized Identity (DID) systems enable individ-
uals to manage digital identifiers and credentials without relying
on centralized authorities. As adoption accelerates, DID methods
implemented on Distributed Ledger Technologies (DLTs) have
gained prominence, each adopting distinct architectural and design
strategies. However, rigorous cross-platform evaluations remain
scarce. This study presents a comparative empirical analysis of
three major DLT-based DID implementations: Ethereum (Ethr-
DID), Hedera (HCS-DID), and XRP Ledger (XLS-40d). Using
reference Software Development Kits (SDKs) and high-resolution
benchmarking tools, we measure the latency, transaction cost,
and privacy leakage of core DID operations under standard-
ized experimental conditions. In addition to reporting absolute
performance metrics, we normalize latency and cost relative
to each platform’s block time and native transfer fee. Privacy
leakage is quantified using the Metadata-Leakage Score (MLS),
an entropy-based metric that captures the amount of identifiable
information exposed per operation. Results show that Ethereum
incurs the highest latency and fees but aligns closely with its block
time, indicating efficient integration with its smart contract layer.
XRP Ledger (XRPL) offers consistent, low-cost performance, but
suffers from higher metadata leakage due to verbose payload
structures. Hedera achieves the fastest operation times and low
fees, along with the lowest MLS, although its SDK introduces
occasional processing variance. These findings demonstrate that
DLT architecture and SDK design play a critical role in shaping
the practical performance of DID systems. The study offers
actionable insights for selecting appropriate DID stacks based on
latency sensitivity, cost constraints, and privacy requirements.

Index Terms—decentralized identity, distributed ledger tech-
nology, performance analysis

I. INTRODUCTION

Decentralized Identity (DID) has emerged as a transformative
approach to managing digital identities without reliance on
centralized authorities. By prioritizing user autonomy, the DID
model enables individuals to own, manage, and selectively
share their credentials [1]. Unlike traditional identity systems
that depend on centralized intermediaries for credential issuance
and verification, DID systems eliminate single points of failure
and enhance user privacy through cryptographically verifiable
identifiers.

Conventional identity management relies on siloed databases
maintained by governments, corporations (e.g., Google, Face-
book), or federated identity providers such as OpenID Connect.
While these systems support interoperability via single sign-
on, they introduce privacy and surveillance risks by allowing
identity providers to track user activity across services [2], [3].

As a partial alternative, crypto wallet addresses offer self-
generated public-private key pairs for authentication without
third-party involvement. While this improves autonomy, wallet-

based identity lacks support for expressing verifiable claims or
associating identifiers with rich, real-world attributes [4].

DID frameworks address these limitations by combining
cryptographic trust mechanisms with interoperable standards for
expressing and verifying identity data. Core components include
World Wide Web Consortium (W3C) Decentralized Identifiers
(DIDs) [5] and Verifiable Credentials (VCs) [6], which allow
entities to create resolvable, tamper-evident identifiers and
attach digitally signed credentials. DIDs resolve to DID
Documents hosted on decentralized networks (e.g. blockchains
or InterPlanetary File System (IPFS)), containing public keys,
service endpoints, and metadata for authentication and key
rotation.

Importantly, DIDs support formal trust frameworks through
native compatibility with cryptographic proof formats such as
JSON Web Tokens (JWTs) and Linked Data Proofs [7], [8].
This enables secure issuance and verification of credentials
across diverse ecosystems, going beyond the authentication
capabilities of crypto wallets.

As adoption grows, various DLT platforms have introduced
their own DID methods, each with distinct architectural
decisions. Throughout this paper, we use the term “blockchain”
interchangeably with DLT, noting that blockchain is a specific
implementation within the broader DLT landscape. For real-
world viability, DID systems must balance responsiveness, cost,
and privacy—yet systematic, empirical comparisons of these
trade-offs remain scarce.

To address this gap, we conduct a comparative evaluation
of three widely recognized DLT-based DID reference imple-
mentations: Ethereum (Ethr-DID), Hedera (HCS-DID), and
the XRP Ledger (XLS-40d). These platforms were selected
based on technical maturity, adoption in industry, and alignment
with W3C standards. We focus on three critical dimensions
of system performance: latency, transaction cost, and on-
chain metadata leakage—each vital for scalable, privacy-aware
identity deployments.

This study is guided by the following research questions:
• RQ1 – Performance Characterization: What are the ab-

solute and relative latency, transaction cost, and metadata-
leakage profiles of core DID operations on the selected
DLT platforms under standardized benchmark conditions?

• RQ2 – Architectural Attribution: How do the archi-
tectural features and SDK workflows of each platform
explain the performance outcomes observed in RQ1?

• RQ3 – Deployment Trade-offs: Which platform offers
the most effective balance among responsiveness, cost-
efficiency, and privacy for real-world DID applications?



By addressing these questions, our study advances the
field from qualitative comparisons to a structured, data-driven
evaluation that informs both researchers and practitioners in
selecting suitable DID platforms based on deployment-specific
priorities.

The remainder of this paper is organized as follows: Sec-
tion II reviews prior research on decentralized identity systems.
Section III introduces key architectural components of DIDs
and their reference implementations. Section IV describes our
evaluation methodology, including metrics and experimental
setup. Section V presents results and analysis, followed by
conclusions and future research directions in Section VII.

II. RELATED WORK

Several survey papers have examined the landscape of
decentralized identity and Self-Sovereign Identity (SSI) systems.
These works typically introduce foundational technologies
such as DIDs and VCs, and discuss a wide range of identity
systems and their underlying design choices. Notably, Dunphy
and Petitcolas [9] provided one of the earliest analyses of
blockchain-based identity management, while Mühle et al. [10]
outlined the core components of SSI architectures. More
recently, Krul et al. [11] systematized knowledge in the field by
evaluating trust assumptions and requirements across various
SSI implementations.

Comparative analyses of existing DID platforms have also
emerged. These studies frequently focus on solutions such
as uPort and Hyperledger Indy, evaluating their design and
dependencies based on publicly available documentation. For
instance, Satybaldy et al. [12] introduced a structured evaluation
framework and applied it to several SSI platforms. In parallel,
researchers have examined the architectural building blocks of
blockchain-based identity systems. Dib et al. [13] conducted
a detailed investigation of decentralized identity architectures,
highlighting technical challenges and recommending architec-
tural improvements.

While these studies offer valuable insights into the conceptual
and architectural foundations of decentralized identity, they
often lack empirical evaluation. Specifically, few works provide
a quantitative comparison of DID solutions focused on the
performance of core operations, latency characteristics, or
transaction cost under controlled experimental conditions. Most
prior analyses remain qualitative or conceptual, limiting their
utility for benchmarking or deployment planning.

In a separate line of research, performance benchmarking
of DLT platforms has been explored. Amherd et al. [14]
investigated the transaction throughput and efficiency of Hedera
Hashgraph, while other studies have measured the performance
of Ethereum and XRPL [15]–[17]. However, these analyses
do not specifically assess the performance of DID systems or
compare identity functionality across DLTs.

This paper addresses this gap by presenting a focused,
comparative, and empirical evaluation of DID reference imple-
mentations on Ethereum, Hedera, and XRPL. By benchmarking
key DID operations, examining platform-specific architectural
characteristics, and quantifying performance in terms of latency,

cost, and metadata leakage, this work provides practical
insights for researchers and developers evaluating DLTs for
decentralized identity deployment. Our contribution extends
prior conceptual analyses with a data-driven, performance-
oriented methodology grounded in real SDK implementations
and repeatable benchmarking.

III. BACKGROUND

A. Decentralized Identifiers (DIDs)

DIDs are standardized by the W3C and offer a novel,
decentralized approach to digital identification within the
broader DID framework [5]. DIDs follow the URI format:

did:<method>:<method-specific-identifier>

Here, did denotes the scheme, method indicates the spe-
cific DID method (e.g., did:web, did:ion, did:ethr), and
method-specific-identifier is a unique identifier
typically derived from cryptographic material.

B. DID Document

DIDs are resolvable to DID Documents, which are JSON-
based data structures containing public keys, verification
methods, and service endpoints. These documents enable
authentication, credential issuance, and other trust-related
operations. They can be serialized in JSON or JSON for
Linked Data (LD) format, ensuring broad interoperability [18].
Depending on the DID method, the DID Document may be
stored:

• On-chain: Stored directly on a blockchain or distributed
ledger.

• Off-chain: Stored externally (e.g., in IPFS or a database)
with on-chain references.

An example DID Document:

{
"@context": "https://www.w3.org/ns/did/v1",
"id": "did:example:123456789abcdefghi",
"verificationMethod": [
{
"id": "did:example:123456789abcdefghi#key-1",
"type": "Ed25519VerificationKey2018",
"controller": "did:example:123456789abcdefghi",
"publicKeyBase58": "GfH345jHK...asd67X"

}
],
"authentication": [
"did:example:123456789abcdefghi#key-1"

],
"assertionMethod": [
"did:example:123456789abcdefghi#key-1"

],
"service": [
{
"id": "did:example:123456789abcdefghi#vcs",
"type": "VerifiableCredentialService",
"serviceEndpoint": "https://example.com/vcs"

}
]

}

A DID Document contains various properties, including
public keys, authentication methods, and service endpoints, as
shown in Table I.



Property Description
@context Defines the JSON-LD schema for DIDs.

id Globally unique DID for the entity.

verificationMethod Public keys for verifying cryptographic signatures.

authentication Keys used for authentication.

assertionMethod Keys used to issue Verifiable Credentials.

service Service endpoints for identity-linked services.

TABLE I: DID Document components

C. DID Method

A DID Method defines how DIDs are created, resolved,
updated, and deactivated within a specific system or network.
Each method must specify procedures for core DID operations
shown in Table II. DID resolution is performed by DID
Resolvers, which interpret the method and fetch the document
from the respective storage backend.

D. Decentralized Identity on Hedera

Hedera provides a robust foundation for decentralized iden-
tity by combining its high-throughput, low-latency consensus
mechanism with a DID framework aligned with emerging
W3C standards. This section outlines the Hedera DID method,
supported operations, and available tooling.

1) Hedera DID Method Design: Hedera’s approach lever-
ages the Hedera Consensus Service (HCS) to manage DIDs
and DID Documents in a tamper-evident and transparent way.
The DID method records DID-related events—such as creation,
updates, and deletions—on HCS. These events include metadata
and references, rather than the full DID document content. Off-
chain storage is used for the actual documents, while HCS
holds pointers (e.g., hashes) to retrieve them. This design offers
an efficient and scalable architecture.

According to the Hedera DID Method Specification [19],
the format is:

did:hedera:<network>:<identifier>_<topicId>

Here, network is the Hedera network (e.g., mainnet, testnet),
identifier is a Base58-encoded DID root public key,
and topicId refers to the HCS Topic ID where events are
recorded. For example, Topic ID 0.0.29656231 refers to
topic number 29656231 in shard 0, realm 0.

Each DID Document must include a public key of type
Ed25519VerificationKey2018 and support standard
verification mechanisms such as authentication, assertion, key
agreement, and capability delegation.

2) DID Operations: Hedera supports the full set of DID
operations via HCS messages, as shown in Table II. Resolu-
tion occurs through a Hedera Mirror Node (HMN). Create,
Update, Revoke, and Delete operations are submitted via HCS
messages (Figure 1).

3) Reference Implementation: The Hedera DID SDK for
JavaScript (did-sdk-js) [20] provides a reference imple-
mentation. It allows developers to create and manage DIDs
and VCs via HCS.

Fig. 1: Hedera DID Operations [19]

E. Decentralized Identity on Ethereum

Ethereum supports decentralized identity using smart con-
tracts, particularly through the ERC-1056 standard. This
framework enables self-sovereign identity without centralized
intermediaries, suitable for applications in DeFi, Web3 authen-
tication, and more.

1) Ethereum DID Method Design: Ethereum’s DID method
is implemented via the Ethr-DID Method [21], which uses the
ERC-1056 standard. The format is:

did:ethr:<network>:<identifier>

Here, network denotes the Ethereum chain (e.g., mainnet,
sepolia), and identifier is an Ethereum address (0x...) or
HEX-encoded secp256k1 public key.

Each identifier is self-controlled by its associated address.
Controllers can delegate or transfer control, including to smart
contracts (e.g., multi-signature wallets). DID Documents are
stored off-chain but secured via the ERC-1056 smart contract,
which records integrity and controller information. Verification
is done using cryptographic methods (secp256k1) or smart
contract logic.

Fig. 2: Ethereum DID operations.

2) DID Operations: Ethereum supports the full set of DID
operations through ERC-1056 transactions, as shown in Table II.
The DID is created off-chain by generating a new Ethereum
address (Figure 2a). Resolve, Update, Revoke, and Delete
operations require interaction with the smart contract (Figure
2b).

3) Reference Implementation: The Ethr-DID Library [22] is
the official reference maintained by the Decentralized Identity
Foundation (DIF). It integrates with frameworks such as
Veramo [23] and supports full DID lifecycle management.

F. Decentralized Identity on XRP Ledger

The XRPL introduced native DID support via XRP Ledger
Standard (XLS-40), which was activated on October 30,
2024 [24]. This implementation aligns with W3C DID standards
and enables on-ledger identity.



Operation Description Hedera Ethereum XRPL
DID Creation Establishes a new DID and its

corresponding DID Document.
A new DID is regis-
tered by submitting a
ConsensusSubmitMessage
transaction to an HCS topic.

DIDs are implicitly created when a
new Ethereum address is generated;
the ERC-1056 contract enables DID
document management.

A DIDSet transaction creates a DID
entry with its associated DID Docu-
ment or metadata.

DID Resolution Retrieves the DID Document
associated with a DID.

Query the relevant HCS topic via a
mirror node to reconstruct the DID
Document.

Dynamically reconstructed by query-
ing the smart contract logs and state
variables.

Use LedgerEntry or account ob-
jects to fetch the stored DID object.

DID Update Alters elements of the DID
Document, including keys, au-
thentication methods, or ser-
vice endpoints.

Event payloads specify
additions or modifications
to objects (e.g., Service,
VerificationMethod).

Controllers update attributes or man-
age delegates using smart contract
functions.

Submit another DIDSet transaction
to update existing attributes.

DID Revocation Removes selected properties
from the DID Document, such
as keys or services.

Objects to be removed are indicated
in the event payload.

Keys or attributes are revoked
through DIDDelegateChanged
or DIDAttributeChanged
events.

Not explicitly supported; attributes
may be cleared or replaced via
DIDSet.

DID Deactivation Permanently disables the DID,
making it non-resolvable.

Entire DID Document is nullified,
rendering the DID inactive.

Setting the controller to the null ad-
dress (0x0) deactivates the DID.

A DIDDelete transaction deacti-
vates the DID and reclaims reserved
XRP.

TABLE II: Comparison of core DID operations across Hedera, Ethereum, and XRPL.

1) XRPL DID Method Design: XRPL’s approach uses ledger-
native DID objects and transactions, avoiding the need for
smart contracts. It defines two transaction types: DIDSet and
DIDDelete [25].

The decentralized identifier format is:

did:xrpl:<network-id>:<identifier>

Where network-id identifies the XRPL network (e.g., 1 for
Mainnet), and identifier is the Account ID or hex-encoded
master public key.

2) DID Operations: The set of DID operations supported
by XRPL is summarized in Table II.

3) Reference Implementation: The XRPL SDK for
JavaScript [26] offers a native reference for interacting with
DID features on the XRP Ledger.

IV. METHODOLOGY

This research proposes a systematic benchmarking frame-
work to evaluate DID reference implementations across various
DLTs. The framework targets both fundamental DID operations
and complete identity management workflows, as summarized
in Table II. These operations represent the lifecycle events
essential to decentralized identity systems, such as creation,
resolution, update, revocation, and deactivation of DIDs.

A. Reference Implementations
The study evaluates representative DID implementations

across multiple DLT platforms. To ensure interoperability and
comparability, we focus on DID methods that comply with
the W3C DID specification. The evaluation adopts a neutral,
technology-agnostic stance.

Reference implementations were selected based on public in-
dicators of adoption and maturity, including GitHub star counts,
repository activity, and developer community engagement. To
ensure consistency and eliminate variability due to differences
in SDK languages, all tests were performed using JavaScript-
based SDKs. This design choice facilitates uniformity in
benchmarking environments, tooling, and execution.

Table III summarizes the DID SDKs evaluated for each DLT
platform.

DLT DID Method SDK Version Language Chain
Ethereum did:ethr [21] Ethr-DID

SDK [27]
2.1.2 JavaScript Sepolia

Hedera did:hedera [19] Hedera DID
SDK [20]

0.1.1 JavaScript Hedera
Testnet

XRPL did:xrpl [24] XRPL
SDK [26]

2.4.1 JavaScript XRPL
Testnet

TABLE III: DID SDKs across DLTs

B. Evaluation Metrics

The benchmarking framework evaluates DID implementa-
tions across three key dimensions: performance, cost efficiency,
and privacy. Table IV summarizes the core metrics used in the
analysis.

Category Metric Description
Performance Latency Measures the time elapsed from initiation

to completion of each DID operation.

Cost
Efficiency

On-chain
operation cost

Quantifies transaction fees in both native
tokens and USD to evaluate economic effi-
ciency.

Privacy On-chain
metadata leakage

Quantifies the amount of identifying or
fingerprintable information disclosed via on-
chain metadata per operation.

TABLE IV: Key Metrics for DID SDK Benchmarking

1) Full Cycle Operation: To capture the end-to-end perfor-
mance of a realistic DID lifecycle, we introduce a composite
metric termed the Full Cycle Operation. This metric
aggregates the measured latency and cost of the core lifecycle
actions—Create, Resolve, Update, Revoke, and Delete. The
Full Cycle model thus provides a holistic view of cumulative
performance and cost, complementing the insights from isolated
benchmarks.

2) Relative Latency and Cost Metrics: To facilitate fair com-
parison across DLTs with heterogeneous network properties,
we normalize latency and cost using platform-specific baselines.
For latency, the relative latency Lrel is defined as:

Lrel =

(
L̄op

T̄block

)
× 100%



where L̄op is the mean latency of a DID operation, and T̄block
is the average block time (or consensus event interval) of
the platform [28]. This metric contextualizes responsiveness
relative to native block production rates.

For cost, the relative cost Crel compares the mean
fee of a DID operation C̄op to the cost of a standard token
transfer C̄std:

Crel =

(
C̄op

C̄std

)
× 100%

These relative metrics reveal the operational overhead of DID
interactions and allow cross-platform evaluation independent
of absolute performance or fee levels.

C. Benchmarking Tools and Hardware Setup

For each JavaScript-based DID SDK, benchmarking was
conducted using consistent measurement tools and controlled
environments:

• Latency: Measured using Node.js high-resolution perfor-
mance timers.

• Cost: On-chain transaction costs were retrieved via
ethers.js and blockchain explorer APIs, then converted to
USD using contemporaneous market prices.

Experiments were conducted on an Amazon EC2 c5.4xlarge
instance (16 vCPUs, Intel Xeon Platinum @ 3.0 GHz, 32
GiB RAM), running Amazon Linux 2023. This setup ensures
computational consistency and supports the reproducibility of
results in future studies.

D. Experimental Design

The benchmarking experiment was designed as a single,
unified evaluation of DID SDKs across three DLT platforms.
All SDKs were tested under identical conditions—using the
same benchmarking tools, hardware environment, and sequence
of operations. For each SDK, a single experiment consisting
of 100 iterations per DID operation was conducted to ensure
statistical reliability. During each iteration, latency, transaction
cost, and on-chain metadata were recorded to compute the
corresponding performance, cost-efficiency, and privacy metrics.
This controlled experimental design ensures consistency across
platforms and isolates the effects of the underlying technology
stacks. The results reported throughout the paper are derived
from this singular experimental setup.

V. RESULTS AND DISCUSSION

This section presents a comparative analysis of core DID
operations across three DLT platforms: Ethereum (Ethr-DID),
XRP Ledger (XLS-40d), and Hedera (HCS-DID). The eval-
uation integrates empirical performance measurements with
structural insights into the operational workflows implemented
by each reference SDK. This dual approach enables both quanti-
tative benchmarking and qualitative comparison of architectural
design choices, offering a comprehensive perspective on how
each platform supports decentralized identity functionality.

A. Latency Analysis

Figure 3 presents the latency distributions for five core
DID operations along with the composite Full Cycle operation
across Ethereum, XRPL, and Hedera. Latencies are measured
in seconds and presented in separate subplots for each platform.
For context, a dashed green line in each plot indicates the mean
block interval time for Ethereum (12.06s), XRPL (3.87s), and
Hedera (2.90s) [29], allowing for direct comparison between
operation latency and standard transaction processing intervals.
Figure 4 complements this by presenting the relative latency
of each operation as a percentage of the respective platform’s
block time. For Hedera, which operates on a Hashgraph rather
than a blockchain, the mean consensus time is used instead.
Detailed statistics are available in Appendix Table IX.

Across all platforms, DID Resolve consistently demonstrates
the lowest latency (Figure 3). This outcome is expected, as
resolution is an off-chain operation that retrieves existing data
rather than submitting new transactions. Hedera records the
fastest resolve time with a mean latency of 0.056s. XRPL
follows at 0.076s, and Ethereum achieves 0.534s. The relatively
fast and consistent results are due to the read-only nature
of resolve operations and the efficiency of data retrieval
mechanisms across the three platforms.

In contrast, on-chain operations show greater latency vari-
ation. Ethereum’s DID Create operation is implemented off-
chain, resulting in an exceptionally low latency of 0.011s.
However, its Update, Revoke, and Delete operations require
on-chain execution, with mean latencies between 12.2 and 12.6
seconds. These align closely with Ethereum’s block production
interval, as shown in Figure 4. Notably, these operations display
significant variability, with standard deviations exceeding 3–4
seconds and maximum latencies reaching up to 37 seconds.

XRPL exhibits higher relative latencies for on-chain opera-
tions. As illustrated in Figure 3b, Create, Update, Revoke, and
Delete operations average between 5.6 and 5.8 seconds. These
values correspond to 145–150% of XRPL’s block interval,
indicating that DID operations incur additional overhead com-
pared to standard transactions. However, XRPL’s performance
remains consistent, with low variance across samples.

Hedera offers the fastest on-chain operation times overall,
as shown in Figure 3c. Create, Update, Revoke, and Delete
operations show mean latencies between 4.0 and 4.4 sec-
onds—equivalent to 137–151% of Hedera’s mean consensus
time. Although moderate overhead exists due to SDK-side
processes such as mirror node subscription and message parsing,
Hedera still outperforms Ethereum and XRPL in absolute
terms. The highest variability appears in the Create operation,
which depends on asynchronous confirmation of HCS-published
events.

In summary, while Ethereum shows the highest absolute
latencies, its DID operations scale proportionally with block
time, reflecting efficient integration with its smart contract layer
and minimal SDK-induced delays. Hedera delivers the best
overall performance in terms of speed, while XRPL excels in
latency consistency. However, both Hedera and XRPL reveal

https://docs.ethers.org/v5/


(a) Latency of Operations for Ethereum. (b) Latency of Operations for XRPL. (c) Latency of Operations for Hedera.

Fig. 3: Latency distribution of DID operations across Ethereum, XRPL, and Hedera. Purple data points represent on-chain
operations, while blue points denote off-chain operations. Each subplot includes the respective network’s mean block time,
indicated by a dashed green line.

Fig. 4: Relative latency of DID operations, expressed as a
percentage of the platform’s mean block time. This normalised
metric allows comparison of operational delays across DLTs
with differing consensus speeds (Ethereum: 12.06s, XRPL:
3.87s, Hedera: 2.90s).

elevated relative latencies compared to their block or consensus
times due to additional SDK-level processing and validation
steps, which will be further examined in Section V-C.

B. Transaction Cost Analysis

Figure 5 presents the cost distribution of DID operations, and
Full Cycle across Ethereum, XRPL, and Hedera. Transaction
costs are reported in USD, estimated based on market prices as
of April 15, 2025. In alignment with the latency analysis, each
subplot includes a dashed green line representing the mean
cost of a standard cryptocurrency transfer on the corresponding
blockchain (Ethereum: $0.04 at 1.2 Gwei, XRPL: $0.000021,
Hedera: $0.0001). This enables direct comparison between DID
operation fees and typical network transaction fees. To ensure

consistency in evaluation, the same gas price (1.2 Gwei) was
applied to both Ether transfer transactions and our Ethereum-
based DID experiments. Detailed cost statistics can be found
in the Appendix - Table X.

As shown in Figure 5a, Ethereum incurs the highest transac-
tion costs for on-chain DID operations. DID Update, Revoke,
and Delete average $0.066, $0.065, and $0.060, respectively.
Meanwhile, DID Create and Resolve operations incur no cost
because they are off-chain in the Ethr-DID model. The Full
Cycle operation reaches an average of $0.19. These values
are approximately 150–164% higher than Ethereum’s standard
Ether transfer cost of $0.04 (Figure 6). This disparity stems
from the nature of DID operations, which require interaction
with the ERC-1056 smart contract. Specifically, each update,
revoke, or delete operation triggers a state change and emits
one or more events to the Ethereum log system. This results
in higher gas usage due to storage writes, event indexing, and
signature verification overhead, which are substantially more
resource-intensive than basic transfers.

The XRP Ledger shows extremely low and consistent
transaction costs across all DID operations (Figure 5b). The
mean cost for Create, Update, Revoke, and Delete operations is
consistently $0.000021—matching the standard XRP payment
fee. The DID Resolve operation incurs no cost. The current
minimum transaction fee required by the XRPL network is
0.00001 XRP (10 drops) [30], and all DID operations align with
this threshold. The cost distribution is exceptionally narrow
with zero variance, confirming that XRPL maintains perfect
fee predictability and minimal cost. This reflects XRPL’s
lightweight transaction model and the fact that DID operations
are implemented as standard transaction types.

Hedera also demonstrates low-cost DID operations (Fig-
ure 5c). The mean cost for DID Create is $0.00016, while
Update, Revoke, and Delete average around $0.00015. The Full



(a) Cost of DID Operations for Ethereum. (b) Cost of DID Operations for XRPL. (c) Cost of DID Operations for Hedera.

Fig. 5: Cost distribution of DID operations across Ethereum, XRPL, and Hedera (in USD, based on prices as of April 15,
2025). Purple data points represent on-chain operations, while blue points denote off-chain operations. Each subplot includes a
dashed green line indicating the mean cost of a standard cryptocurrency transfer on the respective network.

Fig. 6: Relative transaction cost of DID operations, expressed
as a percentage of the mean fee for a standard cryptocurrency
transfer on each platform. This baseline-adjusted metric enables
cross-platform cost comparison.

Cycle totals approximately $0.00062. Compared to Hedera’s
standard CryptoTransfer fee of $0.0001 [31], DID op-
erations are roughly 150–160% more expensive (Figure 6).
Although DID operations on Hedera use the lightweight
ConsensusSubmitMessage service, their transaction cost
is higher than that of basic transfers. This is primarily due
to the structured and signed JSON payloads required by the
DID method, as well as additional metadata and formatting
overhead introduced by the DID SDK.

In summary, Ethereum remains the most expensive platform
for DID operations, largely due to the use of gas-intensive smart
contract calls and log emissions. XRPL achieves the lowest
and most consistent costs, maintaining parity with its baseline
fee structure. Hedera offers low fees with slight overhead
driven by DID-specific data formatting and SDK integration.

These results highlight the importance of cost efficiency in the
scalability of decentralized identity systems, with XRPL and
Hedera emerging as more suitable options for high-volume
identity use cases.

C. Design-Level Analysis and Performance Interpretation

This section addresses Research Question 2 (RQ2). Building
on the empirical findings from latency and cost analysis, we
examine the design-level factors—such as transaction models,
consensus mechanics, and SDK architecture—that shape the
operational characteristics of each DID implementation. By
connecting technical design patterns to performance outcomes,
we provide a deeper interpretation of why certain platforms
show faster execution, greater consistency, or lower costs.

1) DID Create Operation: The Ethr-DID implementation
follows an implicit registration model, where a DID is derived
from an Ethereum address without requiring interaction with the
blockchain. As illustrated in the sequence diagram (Figure 7a),
the creation process simply involves generating a key pair
and instantiating a DID object in memory using the Ethr-DID
SDK. When a new key is needed, it is generated locally, for
example, via the ethers.js library. Since no transaction
is submitted to the network, the process avoids consensus
delays entirely. Consequently, Ethereum achieved the lowest
mean latency of approximately 0.011 seconds, with minimal
variance, highlighting the performance benefits of off-chain
DID instantiation.

In contrast, XRPL mandates an on-chain registration through
a DIDSet transaction (Figure 7b). This includes generating
a key pair, constructing and submitting the transaction, and
waiting for ledger consensus and validation. The process
introduces unavoidable delays due to block finality and SDK
processing. The mean latency was measured at approximately
5.6 seconds, with moderate variance. While performance
remains stable, the need for network confirmation results in



(a) Ethereum DID Create (b) XRPL DID Create

(c) Hedera DID Create

Fig. 7: DID Create operation sequence diagram.

(a) Ethereum DID Resolve
(b) XRPL DID Resolve

(c) Hedera DID Resolve

Fig. 8: DID Resolve operation sequence diagram.

significantly higher latency compared to Ethereum’s off-chain
model.

Hedera’s HCS-DID method involves a more complex se-
quence compared to other platforms (Table V). DID creation
requires the initialization of a new HCS topic, the publication of
a DID owner event message, and confirmation via subscription
to the topic through mirror nodes. The mean latency for this
process is approximately 7 seconds. However, since the Hedera
DID method supports the creation of multiple DIDs under
a single topic ID, we adjusted our benchmarking setup to
initialize a single HCS topic and reuse it for multiple DID
registrations—aligning the setup more closely with Ethereum
and XRPL. When excluding the topic creation step, the average
latency for DID creation on Hedera decreases to approximately
4.3 seconds, though it shows greater variance and more frequent
outliers, reaching up to 23 seconds. This variability is primarily
due to the multi-step process, including event propagation
across the HMN and confirmation delays handled by the SDK.
Additional overhead is introduced by the combined use of the
Hashgraph SDK and the DID SDK, as shown in Figure 7c.

2) DID Resolve Operation: The observed differences in DID
Resolve latency across Ethereum (0.534s), XRPL (0.076s), and

TABLE V: Latency and Design Trade-offs for DID Creation

Factor Ethereum XRPL Hedera

On-chain Write Required No Yes Yes
Consensus Interaction None Single transaction Two transactions
SDK Overhead Minimal Moderate High
Latency Outliers Rare Occasional Frequent
Mean Latency ∼11 ms ∼5.6 s ∼4.3 s

Hedera (0.056s) can be attributed to the underlying design
and data retrieval mechanisms illustrated in their respective
sequence diagrams in Figure 8. Ethereum’s Ethr-DID resolver
must query the ERC-1056 smart contract for logs and state
variables, requiring multiple read operations across potentially
deep historical logs to reconstruct the DID document. This
dependency on smart contract event enumeration and state
inspection contributes to longer latency. XRPL resolves DIDs
by performing a single LedgerEntry request to fetch a
pre-structured DID object stored on-chain, resulting in faster
retrieval, though still constrained by ledger lookup and valida-
tion. In contrast, Hedera’s design leverages a lightweight event
stream model where all DID-related messages are sequentially



(a) Ethereum (b) XRPL (c) Hedera

Fig. 9: DID Update, Revoke, and Delete operation sequence diagrams.

published to a single HCS topic. The resolve process involves
subscribing to that topic via the HMN and parsing the ordered
messages to reconstruct the DID document. Because message
retrieval is optimized through streaming APIs and topic state is
isolated from global ledger history, Hedera achieves the lowest
latency. Additionally, Hedera’s event-driven model avoids costly
log traversal or contract interactions, contributing to its high
responsiveness in resolution operations.

3) DID Update, Revoke and Delete Operations: The latency
performance of the DID Update, Revoke, and Delete operations
varies significantly across Ethereum, XRPL, and Hedera,
reflecting the underlying architectural and design choices of
each network and their corresponding DID methods.

On Ethereum, these operations are executed
through on-chain transactions that interact directly
with the EthrDIDRegistry smart contract, as
shown in Figure 9a. Specifically, attribute updates
are handled via setAttribute(), revocations via
revokeAttribute(), and deletion (ownership change)
via changeOwner(). As each of these invokes a new
transaction and requires confirmation through Ethereum’s
probabilistic finality mechanism, they are subject to the full
latency of block confirmation and gas price dynamics. The
mean latencies observed—12.9 seconds for Update, 12.2
seconds for Revoke, and 12.6 seconds for Delete—are the
highest among the platforms studied. Furthermore, the wide
standard deviations and long-tail maxima (up to 37 seconds)
reflect Ethereum’s volatile transaction inclusion times and
congestion sensitivity. These results are consistent with the
interaction-heavy nature of Ethereum’s smart contracts and
their reliance on EVM execution and block mining.

In XRPL, DID Update and Revoke operations are both
executed through DIDSet transactions, while DID Delete
uses a dedicated DIDDelete transaction. All three operations
require submitting a transaction to the ledger and waiting for
deterministic consensus validation, as illustrated in Figure 9b.

Compared to Ethereum, XRPL demonstrates significantly lower
latency, with mean times of 5.8 seconds (Update), 5.8 seconds
(Revoke), and 5.7 seconds (Delete). This improvement can be
attributed to XRPL’s fast consensus protocol and deterministic
finality, which avoids the uncertainty and delays associated
with transaction confirmation in Ethereum. Nevertheless, be-
cause each operation still involves writing to the ledger and
propagating changes across the network, a baseline latency is
unavoidable. The relatively narrow variance across operations
suggests a stable and predictable performance profile.

Hedera’s HCS-DID method follows a distinct event-driven
model. For all three operations the application submits a
signed event message to a dedicated HCS topic, which is
then propagated via the HCS and confirmed through the
HMN infrastructure (Figure 9c). Despite Hedera’s generally
faster consensus finality (2.9s), the average latency for these
operations (4.2 seconds for Update, 4.0 seconds for Revoke, and
4.0 seconds for Delete) is shaped by the asynchronous nature
of topic message propagation and confirmation. Compared to
Ethereum and XRPL, Hedera consistently demonstrates the
lowest mean latency and variance. However, the presence of
occasional outliers (with maxima reaching 14.1 seconds for Up-
date) is explained by additional consensus-level interactions and
SDK-induced delays—particularly in message propagation to
topic and subscription confirmation. Still, Hedera’s lightweight,
append-only topic model avoids the need for smart contract
execution or state-heavy ledger modifications, thereby enabling
faster and more scalable identity operations.

In summary, the performance differences observed in the DID
Update, Revoke, and Delete operations align with the trade-offs
inherent to each platform’s design. Ethereum’s contract-centric
architecture offers expressiveness at the cost of latency and
volatility. XRPL achieves faster and more stable performance
through a transaction-based model with deterministic finality.
Hedera delivers the best latency characteristics overall, enabled
by its event-based messaging and efficient consensus pipeline,



albeit with minor variance due to SDK and network-layer
propagation steps.

D. Privacy Analysis

1) Metadata-Leakage Score (MLS): MLS quantifies the
amount of identifying or fingerprintable information revealed
through the on-chain metadata of DID operations. Conceptually,
MLS calculates the Shannon entropy of observable transaction
payloads, thus assessing the diversity and uniqueness of
metadata content. Expressed in bits per operation, higher
MLS values indicate increased information leakage and greater
privacy risk, whereas lower values imply stronger resistance
to fingerprinting.

MLS analysis considers a predefined set of on-chain at-
tributes available to any observer (e.g., blockchain indexers
or mirror nodes) when a DID operation is performed. These
attributes include DID-specific fields—such as decentralized
identifiers, DID Document parameters (service endpoints, keys),
and cryptographic signatures—as well as blockchain-specific
metadata such as sequence numbers, block numbers, transaction
hashes, and consensus timestamps. Off-chain data, such as
client IP addresses, TLS metadata, or local timestamps, are
explicitly excluded from consideration.

In this study, MLS is evaluated exclusively for three on-chain
DID operations: Update, Revoke, and Delete, on Ethereum,
Hedera, and XRPL. The analysis uses the same set of 100
transactions per operation previously employed for latency
and cost benchmarking, ensuring methodological consistency.
Payload metadata from these transactions is aggregated to
compute MLS. An example of the metadata payload from
a single DID Update operation (transaction) on Hedera is
provided below:
{

"transaction_info": {
"initial_transaction_id": {

"account_id": "0.0.5436919",
"nonce": 0,
"scheduled": false,
"transaction_valid_start": "1747825185.015271329"

},
"number": 1,
"total": 1

},
"consensus_timestamp": "1747825198.342924000",
"message": {
"message": {

"timestamp": "2025-05-21T10:59:57.905Z",
"operation": "update",
"did": "did:hedera:testnet:zEqgDR8Fh2ZXbuLQTi1Bc_0.0.5649399",
"event": {
"Service": {
"id": "did:hedera:testnet:zEqgDR8Fh2ZXbuLQTi1Bc_0.0.5649399#service-0",
"type": "LinkedDomains",
"serviceEndpoint": "https://example.com/0"

}
}

},
"signature": "hdcVRQRQgWHs1B8SDHhTebId0YilcB/YThF3Y18fuwmbxcvMaJTzMzjMucKJl5=="

},
"payer_account_id": "0.0.5436919",
"running_hash": "kDGNsUl2nWzCZ9eOMGWT1tUvILBE2xpucpsWu6EtK6hzCXOxOMGxoahpxIi6EhvY",
"running_hash_version": 3,
"sequence_number": 818,
"topic_id": "0.0.5649399"

}

The MLS calculation proceeds in two main stages:
1) Tokenization and Entropy Calculation: All decoded

metadata payloads from the 100 transactions for each
operation and platform are concatenated and tokenized
into discrete units. Practically, this involves parsing each
payload’s JSON structure, flattening nested objects into

key-value pairs, and treating each pair as an individual
token. The empirical probability mass function p(x) for
each distinct token x is estimated. Shannon entropy per
token is calculated as:

Htoken = −
∑
x

p(x) log2 p(x) (1)

and then normalized by the total token count, yielding
average entropy per token.

2) Aggregation: The entropy per token is scaled by the
average token count per DID operation to produce the
final MLS metric:

MLSop = Htoken × E[tokens per transaction] (2)

Given the significant variability in payload structure and
content length across different blockchains and DID operations,
this scaling ensures fair comparisons of metadata leakage
per operation. An MLS of zero bits per operation would
indicate completely uniform payloads, indistinguishable across
all observed transactions. Conversely, higher MLS values
reflect sufficient variability—either in structure or content—to
uniquely identify or fingerprint individual transactions.

Employing Shannon entropy to measure metadata leakage
aligns with established practices in privacy and fingerprint-
ing research. For instance, [32] applied entropy analysis to
browser configuration samples, reporting that typical browser
fingerprints exposed approximately 18.1 bits of identifying
information. Similarly, [33] introduced entropy-based metrics
for anonymity evaluation in mix networks, demonstrating that
higher entropy corresponded to greater anonymity. Building
upon these methodologies, our MLS adapts this information-
theoretic approach specifically for evaluating privacy implica-
tions of on-chain DID metadata.

TABLE VI: MLS for DID Operations

(a) DID Update transactions

Chain Bits/Token Avg Tokens Bits/Txn

Ethereum 0.0034 24.0 0.082
Hedera 0.0037 19.0 0.071
XRPL 0.0024 36.0 0.088

(b) DID Revoke transactions

Chain Bits/Token Avg Tokens Bits/Txn

Ethereum 0.0036 23.0 0.083
Hedera 0.0040 17.0 0.068
XRPL 0.0024 35.0 0.083

(c) DID Delete transactions

Chain Bits/Token Avg Tokens Bits/Txn

Ethereum 0.0035 22.0 0.078
Hedera 0.0038 17.0 0.064
XRPL 0.0020 40.0 0.079

2) Operation-Specific Leakage: Table VI summarizes the
MLS results for each on-chain DID operation across the
evaluated DLT platforms. Three key metrics are reported per



platform and operation: bits per token, average tokens per
transaction, and total bits per transaction (operation).

Across all evaluated operations, Hedera consistently demon-
strates the highest bits-per-token values, indicating greater
variability and uniqueness in its individual metadata fields.
Ethereum follows closely behind, showing slightly lower per-
token entropy, while XRPL records the lowest bits-per-token,
reflecting a more uniform and compact metadata structure.

Regarding average tokens per transaction, XRPL generates
the most verbose payloads, with approximately 35 to 40 tokens
per transaction. This higher token count significantly amplifies
its overall information leakage, despite each individual token
having relatively low entropy. Ethereum occupies a moderate
position, with payloads comprising around 22–24 tokens per
transaction, and Hedera exhibits the leanest metadata footprint,
averaging only 17–19 tokens per transaction.

When combining these two factors into total bits per trans-
action, XRPL’s high token count results in the greatest leakage
for the Update (0.088 bits/txn) and Delete (0.079 bits/txn)
operations, closely matching Ethereum for Revoke operations
(0.083 bits/txn). Conversely, Hedera consistently shows the
lowest total leakage across all three operations—0.070 bits/txn
for Update, 0.068 bits/txn for Revoke, and 0.064 bits/txn for
Delete.

3) Aggregate Leakage Across All Operations: Table VII and
Figure 10 summarize the aggregate entropy for each blockchain,
along with the average bits per token and average tokens
per transaction, combining results from all three on-chain
operations.

An MLS value of exactly 0 bits per transaction would
imply complete indistinguishability among on-chain DID
operations. In practice, observed MLS values range between
0.06–0.09 bits per transaction for individual operations, scaling
to 0.20–0.25 bits per transaction when aggregated across
Update, Revoke, and Delete. These non-zero scores indicate
measurable entropy—reflecting the presence of identifiable
variability—in every on-chain DID payload.

Among the platforms tested, Hedera achieves the lowest
aggregate MLS (0.20 bits per transaction, 60 bits total across
all 300 transactions), benefiting from its comparatively compact
payload structure. Ethereum has an intermediate MLS value of
0.24 bits per transaction, translating to a total of 72 bits. XRPL
exhibits the highest overall MLS at 0.25 bits per transaction
(75 bits in total), primarily driven by its larger token counts
per transaction, despite having the lowest per-token entropy.
The total bits metric highlights these cumulative differences,
providing a clearer measure of overall metadata leakage across
the evaluated operations.

Figure 10 further illustrates that within each blockchain,
Delete operations leak the least metadata, followed by Update,
and finally Revoke operations, although differences between
operations remain modest.

Given that MLS correlates directly with the potential for
transaction fingerprinting or correlation by external observers,
Hedera’s lower MLS suggests it offers a slightly stronger
privacy posture for DID operations. XRPL’s larger, more

verbose payloads incur greater metadata leakage risk, while
Ethereum positions itself between the two. Although these
MLS differences appear minor when considered individually,
their cumulative effect could influence the ease with which
external observers or adversaries track or correlate DID-related
activities over time.

TABLE VII: Total MLS across all operations

Chain AvgBits/Token AvgTokens/Txn TotalBits/Txn Total Bits

Ethereum 0.0035 23 0.24 72
Hedera 0.0038 17.7 0.20 60
XRPL 0.0023 37 0.25 75

Fig. 10: Total MLS: total entropy by operation and chain.

E. Implications for Practitioners and Researchers

The findings of this study offer actionable guidance for prac-
titioners selecting DID systems for deployment. In addressing
RQ3, we identify clear trade-offs among latency, cost, and
privacy, showing that no single platform optimally satisfies all
dimensions—highlighting the importance of aligning platform
choice with application-specific requirements.

Practitioners prioritizing low latency will find Hedera the
most responsive. Its event-driven design yields the fastest DID
operation times (4.0–4.4 seconds), though occasional outliers
arise from asynchronous message propagation. Hedera also
demonstrates the lowest metadata leakage, making it favorable
for privacy-conscious deployments.

XRPL delivers highly predictable performance with minimal
fee volatility. Its deterministic consensus mechanism ensures
consistent latencies (5.6–5.8 seconds) and uniform transaction
costs as low as $0.000021, making it well-suited for large-scale,
cost-sensitive applications. However, its verbose transaction
payloads result in the highest MLS, which may be a concern
in privacy-critical contexts.

Ethereum, while exhibiting the highest costs and longest
latencies (12.2–12.9 seconds for on-chain operations), main-
tains consistent performance tied to block time and benefits
from mature tooling and deep Web3 integration—valuable in
ecosystems requiring programmability and interoperability.



These platform-specific profiles support informed deploy-
ment decisions: Hedera excels in latency-sensitive scenarios,
XRPL offers cost efficiency at scale, and Ethereum prioritizes
integration flexibility. For researchers, our contributions in-
clude a reproducible benchmarking framework, a DID system
evaluation model, and the first application of entropy-based
privacy metrics to DID operations—laying groundwork for
future empirical studies in decentralized identity.

F. Threats to Validity

While the benchmarking framework was designed for
fairness and repeatability, several limitations must be acknowl-
edged. First, all experiments were conducted under controlled
testnet conditions, which may not fully reflect mainnet dynam-
ics such as congestion, fee volatility, or security risk—posing
a threat to external validity. Second, SDK behavior and perfor-
mance may vary across versions or implementations; although
we used widely adopted JavaScript SDKs, some platform-
specific optimizations or limitations may affect generalizability.
Finally, although we collected over 100 samples per operation,
we did not perform statistical inference, and future work may
include significance testing to support stronger conclusions.
These factors should be considered when interpreting and
applying the results.

VI. INTEROPERABILITY IN DID SYSTEMS

Interoperability in the context of decentralized identity
systems refers to the ability of different DID methods and
platforms to understand, resolve, and utilize each other’s
identifiers and credentials seamlessly. In practice, this requires
adherence to common standards—such as the W3C’s data
model for DIDs—so that a DID created on one distributed
ledger can be recognized and verified on another. Moreover, an
interoperable DID system enables global resolvability, meaning
that any DID can be resolved to its corresponding DID
Document and public keys by any standards-compliant system.
It also ensures that credentials issued to one DID can be trusted
and verified across platforms.

A central tool in enabling such interoperability is the use of
global resolvers. For instance, the Universal Resolver
(UR) [34], an open-source project maintained by the DIF [35],
serves as a meta-resolver that supports multiple DID methods
via pluggable drivers. By querying the appropriate driver, the
UR can retrieve a DID Document from a wide range of DLT-
based and non-DLT-based methods, thereby standardizing the
resolution process for developers and applications. Conse-
quently, DID methods that provide an operational UR driver can
be considered more interoperable in real-world deployments.

A. Comparative Analysis of Interoperability

Ethereum (did:ethr): The Ethr-DID method, built on
Ethereum and formalized under ERC-1056, is one of the earliest
W3C-conformant DID methods [36]. It is supported in the
UR via an official driver and integrated into various identity
frameworks, such as Veramo. Ethr-DID supports VC formats

using both JWT and JSON-LD. Ethereum’s identity ecosys-
tem—including projects like Veramo and ConsenSys—has
been actively involved in the W3C and DIF working groups,
ensuring that Ethr-DID aligns with broader standards and can
interoperate with other identity systems.

Hedera (did:hedera): Hedera joined the W3C and registered
its DID method in the W3C DID Methods Registry in 2020 [37],
signaling its commitment to emerging global standards. Hedera
provides official SDKs and has integrated with SSI frameworks
such as Hyperledger Aries. For example, a recent plugin enables
Hedera DIDs and revocation registries to be used by Aries
agents, demonstrating cross-platform identity integration [38].
Governance of Hedera’s identity stack is managed by the
Hedera Governing Council and the HBAR Foundation, both of
which collaborate with standards bodies. Hedera is a member
of both the DIF and the Linux Foundation’s (LF) Decentralized
Trust initiative and contributes actively to open-source identity
projects, indicating a strong organizational commitment to
interoperability. The entire Hedera codebase, including identity
components, has been open-sourced under the LF’s Hiero
project, further aligning its governance with the open standards
community. A UR driver is in development but is not yet fully
integrated into the public resolver instance as of mid-2025.

XRPL (did:xrpl): The XRP Ledger introduced a native
DID standard via the XLS-40d amendment in 2023, bringing
decentralized identity capabilities to the XRPL. This DID
method was explicitly designed to conform to the W3C DID
v1.0 specification [39]. For DID resolution, XRPL’s archi-
tecture supports global interoperability: any W3C-compliant
resolver (e.g., the UR with an appropriate driver) can resolve
did:xrpl identifiers by querying the ledger for the corre-
sponding DID object and retrieving the linked DID Document.
Organizationally, the XRPL DID effort has been led by RippleX
(Ripple’s development division) and the broader open-source
XRPL community. Although Ripple and the XRPL Foundation
were not initially members of the DIF or W3C working groups,
the XLS-40d proposal was developed in alignment with W3C
and decentralized identity infrastructure standards. Additionally,
Ripple is rolling out a “Credentials” feature on XRPL that
builds on the DID standard to support on-ledger verifiable
credentials for KYC/AML compliance, following the W3C VCs
format [40]. This demonstrates XRPL’s focus on interoperable,
privacy-preserving identity for regulated industries.

In summary, Ethereum, Hedera, and XRPL each contribute
to a converging ecosystem of decentralized identity grounded in
shared standards. All three evaluated DID methods demonstrate
strong alignment with the W3C DID Core specification, estab-
lishing a baseline for technical interoperability. As shown in
Table VIII, although these platforms follow a similar conceptual
model of identity, they differ significantly in implementation
approaches, governance structures, and deployment maturity.
Ethereum’s did:ethr method is widely adopted, benefits
from mature tooling, and is fully integrated with the UR,
making it highly interoperable in practice. Hedera’s architecture
supports scalable, event-driven identity management with
partial UR integration and ongoing adoption within Aries-



TABLE VIII: Interoperability Comparison of DID Methods

Factor Ethereum (Ethr-DID) Hedera (HCS-DID) XRPL (XLS-40d)
W3C DID Core Compliance Yes Yes Yes
Standards Participation Active (Veramo/Consensys) DIF

member; W3C DID WG contributor
DIF and W3C member; contributor
to Hiero

Aligns with W3C; not a DIF member

Universal Resolver Support Yes (driver integrated) Partial (driver under development) Partial (no operational driver yet)
VC Format Support W3C Verifiable Credentials (JSON-

LD or JWT)
W3C Verifiable Credentials (JSON-
LD); Hyperledger AnonCreds inte-
gration (via Aries plugin) for ZKP
credentials

W3C Verifiable Credentials (JSON-
LD); XRPL “Credentials” feature in
progress

Governance Model Open Ethereum network
governance; DID method managed
by open-source contract (ERC-
1056), no central authority beyond
Ethereum consensus

Public permissioned network (Hed-
era Council governance); identity
features developed by Hedera &
partners, now open-sourced under
LF governance

Public ledger (validator governance
via amendments); identity features
proposed by RippleX and approved
by validator consensus; Community-
driven standardization

Cross-Chain Integration Potential Multi-chain EVM support (mainnet,
L2s, sidechains)

Interoperable via standards – e.g.
Hedera DIDs used in Hyperledger
Aries SSI networks

Early integration (e.g., Sologenic);
cross-chain bridging under exploration

based SSI frameworks. XRPL’s did:xrpl method, while
relatively new, is fully W3C-compliant and tailored toward
regulated financial applications, though it currently lacks full
UR and cross-chain support.

Looking ahead, sustained collaboration through initiatives
like the W3C, DIF, and open-source interoperability projects
will be essential to advancing the interoperability landscape.
This includes expanding universal resolver support for all
DID methods and enabling seamless verification of credentials
across ecosystems—such as a VC signed by a did:ethr,
did:hedera, or did:xrpl being verifiable on any other
compliant platform. Overall, while the DID methods differ
in architectural design and governance, they share a common
vision: enabling decentralized, portable digital identities. Each
platform continues to evolve toward greater cross-ledger
compatibility, and the growing convergence around W3C
standards and cross-chain tooling suggests a future where user
identities are no longer siloed to a single blockchain, but can
instead move fluidly across a decentralized web of trust.

VII. CONCLUSION

This paper presented a comprehensive comparative analy-
sis of DID systems across three prominent DLT platforms:
Ethereum, Hedera, and the XRPL. Through systematic bench-
marking of reference implementations—Ethr-DID, HCS-DID,
and XLS-40d—we evaluated critical operational metrics, specif-
ically latency, transaction costs, and metadata leakage, and
interpreted the architectural design choices influencing real-
world performance.

Our findings highlight substantial differences among the
evaluated platforms. Ethereum, despite showing the highest
absolute latencies and transaction costs, displays a tight corre-
lation between DID operation performance and the network’s
inherent block production interval. This behavior underscores
efficient integration with smart contracts and minimal overhead
at the SDK level. Conversely, XRPL provides highly consistent
latency and predictable cost profiles, positioning itself as a
reliable and cost-effective platform for DID operations, albeit
with slightly increased latency relative to its inherent consensus
speed. Hedera emerges as the leader in terms of absolute latency,

delivering rapid and scalable on-chain DID operations coupled
with stable, minimal transaction fees.

The architectural analysis provides further insights into
these empirical results. Ethereum’s smart contract-centric
model facilitates flexible identity metadata representation but
introduces variability in transaction confirmation times due
to gas-based prioritization mechanisms and network conges-
tion. XRPL’s lightweight ledger model offers deterministic
behavior and stable transaction processing, contributing to
its consistent performance. Hedera’s event-driven, topic-based
architecture supports high throughput, rapid resolution, and
efficient identity workflows, with only minor variability arising
from asynchronous event propagation.

Beyond empirical measurements, this study illustrates how
foundational design decisions—including off-chain resolution
strategies, ledger data structures, and transaction processing
pipelines—directly affect the responsiveness and scalability of
decentralized identity frameworks. These insights are invaluable
for developers, enterprises, and ecosystem stakeholders tasked
with selecting appropriate DID methods and underlying DLT
platforms for deployment in real-world scenarios.

Taken together, our results point to a simple conclusion: the
most effective design for a DLT-native DID system is an event-
stream architecture with fast finality and deterministic low fees.
This design combines the fast, ordered propagation we observed
on Hedera with the predictable fees and stable behavior
seen on XRPL, while also incorporating Ethereum’s clean
event semantics and mature account/key management patterns
(delegates, multisig, key rotation) where needed. In practice,
we recommend recording constant-size hash commitments on-
chain, keeping encrypted, content-addressed DID documents
off-chain, and representing each DID as an append-only log
that supports ordered updates, key rotation, and recovery. This
approach delivers low, stable latency and cost, minimizes meta-
data leakage, and keeps resolution straightforward—consistent
with the patterns in our results.

Future research could extend these findings by evaluating
additional DID methods across diverse blockchain networks,
assessing performance under high-load conditions, and explor-
ing the security trade-offs inherent in various decentralized



identity architectures.

VIII. APPENDIX

A. Replication Package and Data Availability

To support transparency and reproducibility, we provide
a complete replication package accompanying this paper. It
includes the benchmarking scripts, raw result files, anal-
ysis notebooks, and documentation required to reproduce
all figures and tables. The package is publicly available
at: https://github.com/dlt-science/DID-Research. All materials
are released under an open-source license and are compatible
with the experimental methodology described in Section IV.

B. Summary Statistics for DID Operation Cost and Latency

TABLE IX: Summary statistics of DID operation latencies (in
seconds) by DLT.

Metric DID Create DID Resolve DID Update DID Revoke DID Delete Full Cycle

E
th

er
eu

m Mean 0.011 0.534 12.885 12.232 12.567 38.230
Std 0.005 0.063 4.931 3.488 4.815 7.387
Min 0.010 0.423 8.670 8.685 4.628 30.701
Max 0.015 0.966 37.643 37.280 37.474 63.729

X
R

PL

Mean 5.602 0.076 5.821 5.761 5.683 22.943
Std 1.183 0.006 1.197 1.199 1.081 2.221
Min 2.594 0.075 3729 3708 3743 16183
Max 7.229 0.078 8.347 8.356 7.342 27.739

H
ed

er
a Mean 4.375 0.056 4.199 3.970 3.999 16.599

Std 2.396 0.008 1.504 0.537 0.441 2.820
Min 2.570 0.051 2.698 2.225 2.875 13.091
Max 23.192 0.100 14.128 5.328 5.231 34.932

TABLE X: Summary statistics of DID operation costs (in USD)
by DLT.

Metric DID Create DID Resolve DID Update DID Revoke DID Delete Full Cycle

E
th

er
eu

m Mean 0.000000 0.000000 0.065600 0.064800 0.060300 0.190700
Std 0.000000 0.000000 0.004989 0.005021 0.005214 0.008791
Min 0.000000 0.000000 0.060000 0.060000 0.050000 0.170000
Max 0.000000 0.000000 0.070000 0.070000 0.070000 0.210000

X
R

PL

Mean 0.000021 0.000000 0.000021 0.000021 0.000021 0.000084
Std 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Min 0.000021 0.000000 0.000021 0.000021 0.000021 0.000084
Max 0.000021 0.000000 0.000021 0.000021 0.000021 0.000084

H
ed

er
a Mean 0.000159 0.000000 0.000156 0.000153 0.000150 0.000618

Std 0.000000 0.000000 0.000001 0.000001 0.000000 0.000001
Min 0.000159 0.000000 0.000156 0.000152 0.000150 0.000617
Max 0.000159 0.000000 0.000156 0.000154 0.000150 0.000619
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