


The Bitcoin Peers Network

Giuseppe Pappalardo

⇤1,2
, Guido Caldarelli

2

, and Tomaso Aste

1,3

1

Department of Computer Science, UCL, London, UK

2

IMT School for Advanced Studies, Lucca, IT

3

UCL Centre for Blockchain Technologies, UCL, London, UK

June 30, 2016

Abstract

We monitor the state of the Bitcoin network investigating how fast

peers share blocks and transactions among each other, which kind of ser-

vices they o↵er and which version of the protocol they used. This is done

in order to understand the mechanisms miners put in place to gain an ad-

vantage with respect to the others. The approach used makes also us able

to study how data are propagated among the network, investigate forks

events and better understand collaboration/competition behavior among

peers.

1 Introduction

Behind Bitcoin[1], the most popular cryptographic currency, there are users
distributed all over the world who, in a voluntary way or for profit, participate
to the network. At the beginning the network was designed keeping in mind
several rules in order to guarantee “one CPU, one vote”[1]. When Bitcoin mining
profitability started to increase, other people such as developers and manufactors
become attracted to the idea to push up the mining process and “win” the
reward. Therefore today there is an heterogeneous environment where “peers”
run their customized mining client, using Application Specific Integrated Circuit
(ASIC) trying to have an advantage on the other clients. The most promising
technology introduced within Bitcoin is not just the currency itself but the
Blockchain, a distributed public ledger which, using the proof-of-work algorithm,
can guarantee trust and reliability in an untrustworthy environment. In this
work we measure how the Bitcoin network works using the data exchanged
among peers. This will help to understand how nodes interact with each others,
and how information propagate through the network.

1.1 Blockchain

The Blockchain is a distributed database which keeps track of all payments made
using the Bitcoin currency. A payment is called “transaction” and involves one

⇤
Correspondence author: g.pappalardo@ucl.ac.uk

1

Paolo Tasca


Paolo Tasca


Paolo Tasca




or more “input” Bitcoin wallets who are sending some funds to one or more
“output” wallets. Transactions are included inside blocks by special peers called
“Miners” which participate to the solution of a criptographic puzzle, the proof-
of-work. After a miner create a block, it will try to seal it cryptographically
with a hash produced from the block and a random part. If the number is
by chances smaller then a threshold imposed by the proof-of-work then it is
considered “valid” and it can start to be spread among the network. When a
peer receives a new block, it should verify if the block is valid. In order to do
that, it has to verify whether the hash of the block fulfills the proof-of-work
requirements. After that, the peer has to verify also each transaction included
inside the block. If the whole block and all the transactions are verified, it
accepts the new block as valid and starts propagating it through the network
(and if the peer is a miner, also it will start to discover the next block on top
of it). If the block is not valid or at least one transaction inside the block is
invalid, the block will be discarded.

1.2 Bitcoin

Bitcoin consist of all the technologies used by the criptocurrency (such as the
Blockchain) and the currency itself. The owner of the funds can access or claim
them through his own private key, stored in a Bitcoin wallet, which contains
only the set of keys (public and private) which allow users to use funds for
transactions. It means that each amount of Bitcoin is not included inside a
wallet but the available funds of a wallet is recorded on the Blockchain. Since
all the Bitcoin transactions are recorded on the Blockchain, it is possible to keep
track of all movements among wallets.

1.3 Communication protocol

The Bitcoin Protocol [2] consists of a set of messages used by clients to enable
communication among peers. There are several customization of the client but
all of them have to respect the rules provided by the protocol. We developed a
client implementing these messages:

• getaddr - Used to request a list of known peers from a node. This message
will issue an ”addr” message as response.

• addr - Used to send a single peer to the neighbors once discovered or a
list of known peers when requested.

• ping - message used to check if the connection is still active.

• pong - message used as reply to a ping message.

• inv - Inventory message sent by a client in order to let peers known about
new blocks/peers/transactions.

2 Related Work

In the last few years there as been some interest in the study of the Bitcoin net-
work with notable contributions from Decker[3], Coinscope[4] ad Bitnodes[5].

2

Paolo Tasca


Paolo Tasca




Bitnodes provides a snapshot of all reachable peers on the networks and some
statistics related to the type of the client (i.e. protocol version used, last block
stored and ip-geolocalization). Since all the data are provided as a list of online
clients it is not possible to understand how the peers are connected to each other
or how data are propagated among them. The approach used by Bitnodes to
discover the peers is to send recursively to a ”getaddr” message to each node
reachable in order to get back part of their known nodes list. Coinscope uses the
same approach of Bitnodes in order to discover clients, but they also discover
edges between nodes, introducing an algorithm they named ”AddressProbe”.
Guessing the connections among clients was made possible by the Bitcoin pro-
tocol itself (until Bitcoin Core 0.10.1[6]), indeed each node keeps a list of known
nodes coupled with a timestamp information. If the node exchanges some mes-
sages with a peer it keeps its own timestamp on the database updated. If,
instead, a node discovers some new nodes through another peer, it applied a 2
hours penalties on the timestamp before storing the address into its own peer
database. According to that it was possible to guess the connections[7] of a
peer just retrieving several time the known peers list and sorting all the records
in chronological order. This kind of network topology inference makes use of
behavior specific to Bitcoin Core prior to version 0.10.1. Biryukov[7] [6] showed
that reconstruct the peers network could be used in order to make an attack on
Bitcoin Core clients. To avoid the possibility of such attack, the software was
modified and now each client does not update the timestamp of a connected
client every time they send or receive data. Decker[3] did not studied the topol-
ogy of the network but the data propagation rate. His idea was to establish a
connection with each node and provide a timestamp for each block or transac-
tion received. In this way, without knowing how the peers are connected, he
was able to measure how long a block or a transactions takes to propagate on
the network.

3 Methods

The Bitcoin network groups on average five thousands heterogeneous reach-
able peers with di↵erent computational capabilities and distributed around the
world, connected by ”random” links. In this work we use the data propagated
through the peers and reconstruct all the information related to the network in
order to understand:

• How the peers are characterized

• How they interact within each other

Data exchanged by peers consist of coordinating signals (i.e. announcing new
blocks or transactions) and data messages (blocks, addresses and transactions).
Following the path of [4] and [3], we first decided to monitor our own Bit-
coin client through the Bitcoin-Core API using the “getpeerinfo” command and
requesting the “getaddr” message in order to understand, whether it is still pos-
sible to exploit the “getaddr” messages to reconstruct the peers network. After
the paper by Biryukov[7], the Bitcoin core client was fixed. Indeed we noticed
that if two clients are connected the timestamp on their known peer database is
not updated anymore. We observed for an active connection that the timestamp

3

Paolo Tasca


Paolo Tasca


Paolo Tasca


Paolo Tasca


Paolo Tasca


Paolo Tasca




is updated only when the connection drops or each 24 hours (in case the con-
nection is still alive). Other cases are the same as described on [4]. Data were
collected joining on the network as a normal node and trying to establish a con-
nection within each peer address discovered and waiting for “inv” messages for
both, blocks and transactions. During the listening period of 10 days, we found
more than 12 thousands unique peers, 8969 belonging to ipv4 network, 3332
belonging to ipv6 network and 124 belonging to Tor network. This amount
of peers is consistent with the amount reported by Bitnodes[5]. Surprisingly
we received more than 126 thousands di↵erent blocks (instead of about 1200),
some of them valid but “old”, where the oldest of them was included into the
Blockchain more than 3 years ago.

Figure 1: The figure shows how long time requires each block to reach all the
nodes of the networks. Since in the network each connection can be dropped by
a node without alert the peers, some blocks could be received from a partition
of the total network. As end time for each wave is selected the first propagated
announce of the following blocks.

4 Preliminary Results and Discussion

Here we report results concerning only the “new” blocks mined during the listen-
ing time. Our client established a connection with each reachable peer into the
the network and waited for “inv” messages sent by them. The client for collect-
ing the data was written in Go programming languages[8], in order to exploit its
multithreading native management. We established only one connection with
each reachable node in order to not interfere with the network behavior. This is
because most clients accepts only 8 connections from peers and it is not possible
anymore to measure or estimate the number of active connections held by each
client. Also, each client have the possibility of dropping the connection at any
time without advice the peer. This means that while a peer is transmitting a
block (on average every 10 minutes), if the connection is lost before the peer is
propagating the new block, the node will not send anymore the block after that
the connection was recovered. We collected 592GB of data in a period of 1208

4

Paolo Tasca


Paolo Tasca


Paolo Tasca




Figure 2: This figure shows the number of Blocks received from Peers in a defined
time window. The red line groups how many Blocks (y axis) are received by
nodes (x axis) in 1 second after the first propagation (t¡1 second).

valid blocks (from block height 410119 to 411327) mined during the listening
time window. The most part of data regard transactions “inv” messages (589
GB) while the remaining is related to blocks “inv” messages. During the inves-
tigation we received a large amount of blocks and transactions, and we decided
to classify them. The classification will be discussed in the following parts.

Listening Time Blockchain Time
Minimum Time -5.48 seconds -558 seconds
Maximum Time 4650.09 seconds 4642 seconds
Medium Time 550.05 seconds 550.05 seconds
Variance 550.11 seconds 550.30 seconds
Percentile 50% 383.25 seconds 384 seconds

Table 1: This table show some time statistics related to Mined During Listening
Blocks set, comparing timestamp wrote on each block within the time reported
inside the Blockchain. The time on the Blockchain can be wrong since a miner
could vary the timestamp if the nonce don’t converge to a valid proof-of-work
block. The minimum time is negative due to a Fork event. During the monitored
period we observed that the minimum time required to a block to be mined is
about 2 minutes, while the maximum time is 77 minutes. Also, the medium
time for discovering a block is about 9 minutes and the 50% percentile is about
6 minutes.

4.1 Blocks

Each Block received from a client is recorded within the receiving time and
labeled using one of the following definition:

• Mined During Listening Blocks (MDLB): This set identify all the blocks
which were included on the Blockchain during the listening period and

5



propagated by the peers before the next block was discovered.

• Echo Blocks (EB): This set identifies all the blocks included in the Blockchain
propagated with some delay.

• Fork Blocks (FB): This set identifies all the blocks not included in the
Blockchain, propagated by the peers with a valid hash (below the proof-
of-work threshold).

• Invalid Blocks (IB): This set identifies all the blocks not included in the
Blockchain, propagated by the peers and having a hash above the proof-
of-work threshold (so they should be discarded by the peers).

All of the preliminary results shown refer to MDLB set (if not specified other-
wise). In figure 1 is possible to see a cumulative block propagation. The curves
have di↵erent length due to the fact that each block is discovered after a varying
time. Also the number of nodes depends on the number of connections estab-
lished during the block propagation time. Table 1 shows some time statistics
related to time required from miners in order to discover a new block. Despite
data collected for each block are propagated by a di↵erent number of peers,
preliminary results show that the propagation time seems to be quite stable on
the network as showed in figure 2, depending only on the Source of the block
and by the Bitcoin client used, as showed in figure 3.

Figure 3: This figure shows the relationship between the 50% percentile of for
a peer (x axis) with the standard deviation from the mean time (y axis). Each
color represent a di↵erent Bitcoin client program. As it is possible to see the
nodes who uses the purple client software are quite slower on receiving blocks
compared to the other clients.

4.2 Transactions

Each Transaction received from a client is recorded within the receiving time
and labeled using one of the following definition:

6



• Blockchain Transaction (BT): Valid Transactions, included in a Blockchain’s
Block and propagated before the block they are included is discovered and
propagated through the network.

• Echo Transaction (ET): Valid Transactions, included in a Blockchain’s
Block but propagated in delay.

• Invalid Transaction (IT): Transactions not valid for some reasons.

Figure [?] shows the received transactions rate per hour for IT set (in red)
and BT plus ET set in blue. We will proceed the investigation in order to
see if peers have a competitive behavior (as seen for Blocks) or if they are
more collaborative. During the listening time we received 1820212 Transactions.
Among them there are 1722696 which were included in the Blockchain. The
total number of Transactions included in the Blockchain during the monitoring
time is 1723962. So our client do not received 1266 Transactions which were
included in the Blockchain. Our investigation will continue understanding if
the time required for include a transaction in the Blockchain depends on some
factors, such as the source node who issued it.

Figure 4: This figure shows the number of Transactions per hour received from
Peers.The Blue line represent the transactions included in the Blockchain during
or after the listening time. The red line represent all the invalid transactions.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] “Bitcoin protocol documentation.” [Online]. Available: https://en.bitcoin.
it/wiki/Protocol documentation

[3] C. Decker and R. Wattenhofer, “Information Propagation in the Bitcoin Net-
work,” in 13th IEEE International Conference on Peer-to-Peer Computing

(P2P), Trento, Italy, September 2013.

7

http://www.bitcoin.org/bitcoin.pdf
Paolo Tasca


https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation


[4] M. Andrew, L. James, P. Andrew, G. Neal, L. Dave, S. Neil, and B. Bobby,
“Discovering bitcoin’s public topology and influential nodes.”

[5] Bitnodes is currently being developed to estimate the size of the bitcoin
network by finding all the reachable nodes in the network. [Online].
Available: https://bitnodes.21.co/

[6] Guessing bitcoin’s p2p connections. [Online]. Available: http://jonasnick.
github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/

[7] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of
clients in bitcoin P2P network,” CoRR, vol. abs/1405.7418, 2014. [Online].
Available: http://arxiv.org/abs/1405.7418

[8] The go programming languages. [Online]. Available: https://golang.org/

8

https://bitnodes.21.co/
http://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
http://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
http://arxiv.org/abs/1405.7418
https://golang.org/

