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Abstract 

 

In preparation for improving consortium blockchain’s performance for financial business 

applications, we first surveyed typical records of transaction rates for various financial systems and 

the performance capacity of several known consortium blockchains at this moment. The blockchain 

itself does not offer performance advantage, but rather sacrifices performance to achieve tamper-

resistance. However, the average transaction rates for blockchain technologies are continuously 

improving, and have already reached around 1,000-2,000 TPS, which is equivalent to the transaction 

rate for Zengin System, the common name for Japanese Bank’s Payment Clearing Network. 

Next, we analyzed and improved transaction rate for Hyperledger Fabric, one of the open source 

software tools for implementing consortium blockchain. We found that inefficient message transfer 

between the platform’s container and the application’s container was the main cause of Fabric’s 

performance bottleneck. Therefore, we have introduced more efficient API between the containers and 

improved the transaction rate from 725 TPS to 1,350 TPS (86% increase). 

Finally, we analyzed Fabric’s performance under the artificial network latency. We determine that 

Fabric running over a wide area network might be required to replace its consensus algorithm to 

improve its transaction rate, because other causes of performance deterioration, including the 

consensus algorithm, seem to become dominant. 
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1. Introduction 

 

The records for transaction rates actually processed by financial systems have increased in the 

past 50 years. Although most organizations have not disclosed their performance values, we can grasp 

the rough trend in transaction rate from a handful of articles on the financial systems stating their 

actual transaction rates. 

In advance, we must mention some notes about the transaction rates for the financial systems we 

will introduce in this paper. First, they are not capacities of the systems, but rather past records of the 

transaction rates actually processed by the systems. Second, they are not ‘average’, but ‘peak’ 

transaction rates. As systems that can handle average rate cannot necessarily handle peak rate, we will 

consider only peak rate from the beginning. However, as average rates are more often reported than 

peak rates, we simply estimate the peak rate as 5 times the average rate whenever we are only given 

the average rate from the article. 

Figure 1 shows typical records for peak transaction rate for financial systems in the past 50 years. 

From the 1960s to the 1990s, Japanese banks continued to invest in and develop their own core banking 

systems to introduce real-time online services (1st online systems, 1965-1975, 89 TPS), started to 

handle general accounts and cooperate with surrounding systems such as domestic exchange systems 

and automatic teller machines (2nd online systems, 1975-1985, 308 TPS), and finally separated 

hardwares and control programs from their business logic in order to easily benefit from technological 

innovations in hardware (3rd online systems, 1985-1995, 536 TPS) [1]. In the securities industries the 

transaction rate was drastically improved after 2000. The transaction rate for the NYSE (New York 

Stock Exchange) grew from 109 TPS to 1,786 TPS in the first decade of the 2000s due to the increasing 

small divided lots of stock orders [2]. In the case of the JPX (Japan Exchange Group), the transaction 

rate grew from 1,736 TPS to 6,366 TPS after the first decade of the 2000s due to the increase in stock 

orders thanks to “Abenomics,” Prime Minister Abe Shinzo’s economic policies [3]. JPX’s another 

report [4] says that several thousands to several ten thousands TPS are required for securities industry’s 

post-trade processing. Zengin System (Japanese Bank’s Payment Clearing Network), which handles 

Japanese domestic exchange, implies that its peak transaction rate was 1,080 TPS in 2012 [5]. Finally, 

VISA Inc. implies that VisaNet’s peak transaction rate was 15,855 TPS in 2010 [6]. 
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Figure 1: Typical records of transaction rates for financial systems. 

 

On the other side, in the 2010s, a huge number of blockchain technologies have emerged and 

their transaction rates are continually improving day by day. ‘Miyabi’, a consortium blockchain 

developed by bitFlyer and using Paxos-like consensus algorithm “BFK2” [7], was evaluated in a report 

[5], which claimed that it has achieved 1,500 TPS within a single data center. Moreover, BFK2 has a 

good finality feature (= transaction logs are immediately recorded on its ledger) and the blocks are 

always decided deterministically. ‘Mijin’, one of the aggressive consortium blockchain projects 

developed by Tech Bureau, insists that it has already achieved over 3,000 TPS on three nodes [8]; 

however, as its source code has not been disclosed yet, it is difficult for us to know its architecture in 

detail. An open source consortium blockchain project called ‘Fabric’ [9], which is a Hyperledger 

Project in incubation originally developed by IBM, achieves 700 TPS at v0.6 [10]. IBM showed that 

it will improve Fabric’s transaction rate up to 1,000 TPS at v1.0 and provide its blockchain cloud 

service based on Fabric v1.0 [11]. ‘Iroha’ [12], which is also a Hyperledger Project in incubation 

developed by Soramitsu, is attempting to achieve thousands of TPS due to Sumeragi architecture, UDP 

multicast, and C++ technology, in spite of the fact that achieving finality in 2 s was originally designed 

to be guaranteed [13]. One of the developers of ‘Sawtooth Lake’ [14], which is another Hyperledger 

Project driven by Intel, showed that 1,000 TPS is their current performance target by splitting off the 

cryptographic portions of validation into its own space that can operate faster [15]. Finally, we have 

to mention that Enterprise Ethereum [16], developed by Enterprise Ethereum Alliance (EEA), has a 

relatively low performance target (100 TPS) due to its middle-size network consisting of around ten 

parties [17]. From these surveys, summarized in Table 1, we found that the average performance of 
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the latest consortium blockchains is around 1,000-2,000 TPS at this moment. 

In this paper, we will focus on Hyperledger Fabric and analyze the causes of its performance 

bottlenecks so that we can more deeply understand the architecture and problems of general 

consortium blockchain methods from the viewpoint of performance. 

 

Table 1: Transaction rates for known consortium blockchains 

blockchain core developer region the number 

of nodes 

transaction rate 

(TPS) 

announcement 

date 

Miyabi bitFlyer 1 unknown 1,500 11/30/2016 

mijin Tech Bureau 1 3 3,085 12/20/2016 

Fabric v0.6 Hyperledger 

Project (IBM) 

1 1 700 10/27/2016 

Fabric v1.0 Hyperledger 

Project (IBM) 

unknown unknown 1,000+ 

(target) 

3/20/2017 

Iroha Hyperledger 

Project 

(Soramitsu) 

unknown unknown Thousands 

(target) 

11/2/2016 

Sawtooth 

Lake 

Hyperledger 

Project (Intel) 

unknown unknown 1,000 

(target) 

3/13/2017 

Enterprise 

Ethereum 

Enterprise 

Ethereum 

Alliance (EEA) 

10 unknown 100 

(target) 

2/28/2017 
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2. Hyperledger Fabric 

 

2.1. v0.6.1 Ledger Architecture 

 

Chaincode is the business logic program in Fabric, which allows us to define and exchange assets 

using unspent transaction outputs as the inputs for subsequent transactions. The state changes of assets 

are recorded as transactions, each of which results in a set of key value writes on a ledger. The ledger 

is comprised of cryptographically chained data blocks and a state database to maintain Fabric’s current 

state. The transactions can be submitted to the network and applied to the ledger on all peers, each of 

which is an uncentralized main Fabric process, is distributed among the network, and maintains a copy 

of the ledger. The more different organizations that manage each peer and copy of the ledger, the more 

tamper-resistant the ledger becomes. 

 

2.2. Consensus Policy and v1.0 Release 

 

In general, blockchain consensus is regarded as the achieved state when it is ensured that both 

the order and the result of the transactions have met certain conditions. The peers of Fabric v0.6.1 

reach an agreement on the transaction order in an early stage, and all the transactions are executed 

serially, which is a disadvantage from the viewpoint of performance. The consensus algorithm of 

Fabric v0.6.1 is Practical Byzantine Fault Tolerance (PBFT). 

On the other hand, the peers of Fabric v1.0 reach an agreement on the result as well, which Fabric 

v0.6.1 did not achieve, and have alternative consensus algorithm option called Kafka. Since Fabric 

v1.0 does not determine the order before running the transactions, multiple transactions are allowed 

to be run in parallel. When the results of the same transaction on different peers turn out to be 

inconsistent, Fabric v1.0 will abort and retry the transaction. Therefore, independent transactions can 

take advantage of Fabric v1.0’s consensus policy, while interdependent transactions would rather 

suffer from the retry overhead. 
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3. Bottleneck Analysis 

 

At first, we made sure that chaincodes were executed completely serially from the debug logging 

of the peer of Fabric v0.5. We also made sure that the execution time of chaincode_example02, the 

simplest sample chaincode for a zero-sum exchange transaction bundled in Fabric v0.5, was 2 ms. 

These facts indicate that the largest possible transaction rate for chaincode_example02 is around 500 

TPS (= 1 s / 2 ms). Since the transaction rate we actually observed for the measurement was also 

around 500 TPS, we surmised that the chaincode execution was the main cause of the bottleneck at 

that time, and that decreasing the chaincode execution time would directly improve the transaction 

rate. 

Moreover, we analyzed the debug logging of chaincode_example02 in micro-seconds on both the 

peer and the chaincode to reveal the main consumption of the execution time. We found that about 

90% of the chaincode execution time was consumed by message transfers between the peer and the 

chaincode. Figure 2 shows the analysis of the chaincode execution time.  

 

 

Figure 2: Analysis of chaincode execution time. 
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4. Our Proposed API Functions 

 

In order to improve Fabric’s transaction rate, we propose two new efficient API functions 

between the peer and the chaincode. 

The first is the ‘Differential Update State (DUS) API’ or ‘DiffUpdate()’. When a chaincode 

sends a predefined type of parameter set (key, operator, difference) to the peer, the peer calculates the 

updated value using the operator (e.g. A := A + X, A := A – X, A := A * X, A := A / X) and writes the 

value into the ledger. The advantage is that the chaincode does not have to get any state of the key in 

advance for updating the value. This improves by half of the number of the request messages on the 

existent API functions, which were required to use two messages (GetState() and PutState()). In case 

of chaincode_example02, only two DUS functions are sufficient because two sets of (GetState() and 

PutState()) can be replaced by them. 

The second is the ‘Compound Request (CR) API’ or ‘Compound()’. When a chaincode sends 

arbitrary set of request messages to the peer by this function, the peer execute all the requests in a 

specified order. CR supports multiple read functions, multiple write functions and their hybrid. The 

advantage is that the chaincode can reduce the number of requests to be issued. CR is especially suited 

for parameter read and parameter initialization. Since the peer handles the multiple requests as a 

transaction and issues rollback operation if the transaction fails, any rollback codes do not have to be 

written in each chaincode. In case of chaincode_example02, we can combine two DUS functions into 

one CR function and the number of messages can be decreased by half again. Considering another 

fixed round trip message pair (TRANSACTION / COMPLETED), the total number of the request 

messages are decreased from five to two. Therefore, we are expecting 2.5 times performance 

improvement by introducing DUS and CR. 

We have implemented the prototype of DUS and CR on Fabric v0.6.1. Although the CR 

function itself is designed to be able to contain any kinds of function calls, current our CR 

implementation only supports PutState() and DUS. We are planning to support GetState() as well in 

the near future. 

Figure 3 shows the behavior of DUS and CR. We will refer to the two new efficient API 

functions as ‘revised API’ in the remainder of this paper. 
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Figure 3: Behavior of two new efficient API functions. 
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5. Evaluation 

 

5.1. Setup 

 

Our Fabric environment consisted of four physical peer nodes, each configured with two 18-core 

Intel Xeon E5-2695v4 CPUs, 128 GB RAM, and a 1.8 TB 10k RPM hard disk drive. These nodes ran 

an Ubuntu Server 16.04 (Linux 4.4.0 kernel). The network environment was 1GbE. 

We configured some of the TCP parameters in the Ubuntu Server, such as net.ipv4.tcp_tw_reuse 

= 1 and net.ipv4.tcp_fin_timeout = 5, because the number of TCP ports are generally fixed in advance 

and the ports have to be recycled as quickly as possible so that Fabric can receive a large amount of 

transaction requests in a second. If we left the parameters at the default values (net.ipv4.tcp_tw_reuse 

= 0, net.ipv4.tcp_fin_timeout = 60), used ports would not be released for 60 s and we could not use 

any heavy workload in our experiment (heavy workload would consume all the free ports in 60 s). 

We used Fabric v0.6.1 for our performance evaluation. Each node was dedicated to running the 

Fabric peer and chaincode_example02. We did not use Fabric’s Certificate Authority (CA) because 

we know it has its own bottleneck, which should be solved independently. We configured Fabric’s 

parameter general.timeout.request to 86,400 s to avoid cancellation of the transactions which waited 

to be executed for a long while. If we left the parameter at the default value (general.timeout.request 

= 2s), the transactions waiting for more than 2 s since they were received by the peer could not ever 

be executed and we could not use any heavy workload in our experiment (heavy workload would make 

the transaction queue too long to be executed in 2 s). 

 

5.2. Single Node Performance 

 

First, we measured the Fabric’s transaction rate with the existent API and our revised API on a 

single node. We calculate the transaction rate from the frequency of block generation, which means 

the transaction rate with finality. We attempted to evaluate the transaction rate under the various 

number of concurrent client processes. Figure 4 shows that the transaction rate reached its peak, 717 

TPS, at 8 concurrent processes when we used the existent API. On the other hand, the transaction rate 

reached its peak, 1,417 TPS, at 16 concurrent processes when we used our revised API, which indicates 

that our revised API achieved 98% improvement under the condition of a single node. Since the 

expected transaction rate of our revised API was 2.5 times larger than that of the existent API, 98% 

improvement almost achieved the expectation. Moreover, we suggest that removing the containers 

between the peer and the chaincode might improve the transaction rate even more. However, that must 

be controversial because the removal of the containers would lead to a renouncement of some security 

features. 
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Just for reference, we will briefly show some important factors from the evaluation of Fabric v0.5. 

Although the default value of the parameter general.batchsize was 2, changing this parameter to 16 

improved the transaction rate dramatically. Hyperledger community also knew it and adopted 500 as 

the new default value in v0.6.1. In addition to this parameter, Fabric v0.6.1 seemed to have changed 

something that resulted in the improvement of the transaction rate. 

 

5.3. Four Node Performance 

 

We also measured the transaction rate on the four physical peer nodes, distributing and leveling 

the concurrent client processes among the four nodes. Therefore, the x-axis for the measurement of 

the four nodes in Figure 4 indicates the sum of the concurrent processes among the four nodes. Figure 

4 shows that the transaction rate reached its peak, 725 TPS, at 16 concurrent processes when we used 

the existent API. On the other hand, the transaction rate reached its peak, 1,350 TPS, at 32 concurrent 

processes when we used our revised API, which indicates that our revised API achieved 86% 

improvement under the condition of four nodes. Since the expected transaction rate of our revised API 

was 2.5 times larger than that of the existent API, 86% improvement almost achieved the expectation. 

We believe that the shift of the number of concurrent processes at which transaction rate reached its 

peak to a larger value was caused by the configuration with which the concurrent processes were 

distributed among the four nodes. 

Although the blockchain’s performance generally deteriorates as the number of nodes increases, 

the four node transaction rate achieved almost the same result as the single node, no matter which API 

we used. We observed over 1,000 hardware interrupts per second on each peer caused by the message 

transfers from the other peers during the consensus phase; however, this did not result in any 

performance deterioration, at least under the condition of four nodes. 

 

 



11 

 

 

Figure 4: Performance comparison between the existent API and our revised API. 

 

 

5.4. Influence of Network Latency 

 

Finally, we evaluated the negative influence of network latency on the Fabric transaction rate 

when the nodes are located in various sizes of wide area network. To load each node with the network 

latency artificially, we used the Linux standard command named tc(8). We used the configuration in 

which the number of concurrent processes was fixed at 32 throughout this measurement. 

The result was that the transaction rate deteriorated as the network latency increased. From this 

experiment, we determined some important facts about Fabric. First, until the network latency reaches 

4 ms, almost equivalent to the distance between Tokyo and Shizuoka, nothing suffer from the latency. 

Second, until the network latency reaches 32 ms, almost equivalent to the distance between Tokyo and 

Hakata, the performance deterioration is relatively small and the advantage of our revised API remains. 

In other words, the performance bottleneck is still mainly caused by the inefficiency of the API 

functions between the peer and the chaincode. Finally, however, from a network latency of 64 ms and 

larger, almost equivalent to the distance between Tokyo and Shanghai, our revised API advantage 

disappears, and other causes of performance deterioration, including the consensus algorithm, seem to 

become dominant. Therefore, the Fabric running over a wide area network might be required to replace 

its consensus algorithm to improve its transaction rate. Figure 5 shows the performance comparison 

under the network latency. 
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Figure 5: Performance comparison under network latency. 
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6. Conclusion 

 

Blockchain itself does not offer performance advantage, but rather sacrifices performance to 

achieve tamper-resistance. However, the average transaction rates for blockchain technologies are 

continuously improving, and have already reached around 1,000-2,000 TPS, which is equivalent to 

the transaction rate for Zengin System, the common name for Japanese Bank’s Payment Clearing 

Network. 

In case of Fabric v0.6.1, since all the transactions are executed serially, the execution time of each 

transaction can often affect the transaction rate. We found that inefficient message transfer between 

the peer container and the chaincode container was the main cause of Fabric’s performance bottleneck. 

In this paper, we showed that we could improve Fabric’s transaction rate from 725 TPS to 1,350 TPS 

(86% increase) by introducing more efficient API between the containers. 

From the experiment under artificial network latency, we determine that Fabric running over a 

wide area network might be required to replace its consensus algorithm to improve its transaction rate, 

because other causes of performance deterioration, including the consensus algorithm, seem to become 

dominant. 
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