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Abstract

The choice by a blockchain community of whether to implement a proposed upgrade consti-

tutes a coordination game, for which governance rules can help community members to select

an equilibrium. Unlike typical models of governance, in which the entire population is subject

to the outcome of the governance process, hard forks are possible and may be desirable for a

subset of the community. We develop a simple model of a coordination game in which coordi-

nating on a single chain is always an equilibrium for the community, whereas initiating a hard

fork can be an equilibrium depending on the composition of the community and the upgrade

being proposed. We explore the performance of two common voting schemes – majority rule

and quadratic voting – in assisting equilibrium selection and maximizing the total surplus of the

community. We show that, given the constant threat of a hard fork, both the governance rules

adopted and restrictions on the policy proposal space are important for maximizing community

value.

∗Corresponding author: stephanie@prysmgroup.io



1 Introduction

As more decentralized institutions leverage blockchain to improve function and transparency, the

question of how to govern an open blockchain is becoming increasingly important. The rules

governing the consensus protocol, whether to rollback the chain after a hack, or the token’s target

exchange rate with other currencies are just some examples of things that may need to be adjusted

after the platform launches. Economists have studied voting and governance systems for decades,

and their research can provide guidance for organizations seeking to design governance systems to

make these decisions (Mueller, 2003).

Blockchain has two distinct features that make its governance different than other situations

in which governance has traditionally been studied. First, if some participants in a blockchain

don’t like the output of a governance process, they can choose to hard fork, or to break off from the

existing chain and start their own independent chain. Second, most blockchain platforms exhibit

network effects: having more individuals on a chain, all other things equal, increases the value of

the chain to the other users. As a result, when choosing among policies in a governance setting, an

individual’s preferred policy depends not only on what the individual wants, but what the other

individuals on the chain want. This complexity of preferences cannot be captured by commonly

advocated voting procedures, leading to problematic outcomes when those voting procedures are

used.

In a blockchain community, a group that feels sufficiently strongly about the outcome of

a governance process can choose to secede from the chain. Such a scenario is generally assumed

away in contexts such as government or corporate governance because the equivalent choice is

extremely costly in those other contexts. Inefficiencies in blockchain governance arise not because

an undesirable outcome is imposed on some subset of the population, but because network effects

inflict large costs on the community when that subset of the community cannot be forced to
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stay. Under this constraint, choosing policy proposals that everyone can live with becomes more

important than the method for selecting from some arbitrary set of proposals.

In this paper, we illustrate some of the complexities that arise when using standard gov-

ernance techniques to govern a blockchain. We first build a game-theoretic model of a simple

coordination game. Users of the blockchain must choose between two chains: either stay on the

main chain with a status quo policy, or join a new chain with an upgraded policy. There are two

types of individuals on the blockchain, and the value of each chain to that individual depends on

the individual’s type and the number of other individuals choosing that policy.

We characterize the pure-strategy Nash equilibria of this game. It is always an equilibrium

for everyone to choose to stay on the main chain or for everyone to choose the upgraded chain.

Depending on the composition of the user base and the relative benefit of the two policies to each

type of user, a hard fork may be an equilibrium, Pareto dominant, or total surplus maximizing.

We then investigate the ability of two standard governance mechanisms, majority rule and

quadratic voting, to choose the socially optimal outcome for the entire blockchain community. We

first discuss the various criteria that can be used by the social planner to measure the welfare of the

community. We then show that the type of governance process selected is critical for preventing

hard forks and non-equilibrium outcomes. Governance systems that work well in other contexts

(such as state or national elections) will produce complicated and potentially suboptimal outcomes

in this setting.

We end with a discussion of the implications of our model and some areas for further in-

vestigation. One critical observation is that, as blockchain governance processes are developed,

blockchain developers may wish to encourage frequent, incremental proposals rather than infre-

quent, radical proposals in order to maintain a single community.
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All proofs appear in the appendix1.

2 Model of Individual Chain Participation

We first study a model where there is no governance process. A large blockchain community is

considering a proposed upgrade to its system. Each community member can choose to stay on the

original chain, or to move to a new chain with an upgraded policy to conduct future transactions.

2.1 Setup and Definitions

The value, v, to an individual community member, i, of transacting on a particular chain, j, is a

function of the fraction of the overall community also transacting on that chain, x. Assume this

function, vij(x), is continuously increasing, v′ij(x) > 0 (network effects), twice differentiable, and

that the returns to scale are not increasing, v′′ij(x) ≤ 0. Assume that the value of transacting on a

chain on which no other community members are transacting is 0, vij(0) = 0 for all i, j. Denote

v̄ij = vij(1), the maximum value individual i can receive from transacting on chain j.

Let j = 0 be the status quo chain, and chain j = 1 be the chain containing the proposed

upgrade.

Definition. If vij(x) ≥ vik(x) for k 6= j for all x, then chain j is individual i’s preferred chain.

Suppose the community contains two types of members θ ∈ {A,B}, where type A prefers

the status quo chain, and type B prefers the upgraded chain. Each individual of type θ shares

the same value functions vθj(x). Let β be the fraction of community members who are type B, or

prefer the upgraded chain.

Observation. The maximum value a type A individual can receive from transacting on the status

quo chain is larger than the maximum value a type A individual can receive from transacting on

1Appendix in progress in this draft.
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the upgraded chain. The maximum value a type B individual can receive from transacting on the

status quo chain is less than the maximum value a type B individual can receive from transacting

on the upgraded chain.

v̄A0 ≥ v̄A1

v̄B1 ≥ v̄B0

Let q denote the fraction of the population that chooses to transact on the upgraded chain,

j = 1. Then (1 − q) is the fraction of the population that chooses to transact on the status quo

chain, j = 0.

2.2 Independent Strategic Chain Choice

In order to determine what chain each individual will choose in equilibrium, the value function of

the two chain options must be compared at each q, or each relevant combination of actions of all

other community members. We can find the level of q for which each type is indifferent between

the two chains.

Lemma 1. For each θ ∈ {A,B}, ∃ qθ such that vθj(qθ) = vθk(qθ − 1), where j is type θ’s preferred

chain and k is the alternative chain. For each type, there is a fraction of the population transacting

on their preferred chain, qθ, for which that type is indifferent between choosing their preferred chain

and choosing the alternative chain.

1. 0 < qB ≤ .5 ≤ (1− qA) < 1

2. A type θ individual will choose the status quo chain whenever q ≤ qθ.

3. A type θ individual will choose the upgraded chain whenever q > qθ.
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As more community members choose the upgraded chain instead of the status quo chain (q

increases), the value each type can receive increases for the upgraded chain and decreases for the

status quo chain. As such, each type is more likely to choose the upgraded chain when q is higher.

Because type A prefers the status quo chain, the level of adoption required to make individuals of

this type indifferent between choosing the upgraded chain and their preferred chain is higher than

that of type B individuals.

We can now describe the full set of pure strategy equilibria of this individual choice game,

based on ranges of β, the fraction of the community who are type B, in relation to the indifference

points of both types, qA and qB.

Proposition 1. The pure strategy Nash equilibria of this game are as follows:

a) For all β ∈ [0, 1], it is an equilibrium for all community members to use the same chain.

Specifically, there are at least two pure strategy equilibria, one in which all community mem-

bers use chain j = 0 the status quo chain, and one in which all community members use

chain j = 1, the upgraded chain.

b) For β < qB or β > (1− qA), there are no other pure strategy equilibria.

c) For β ∈ [qB, (1 − qA)], there is one additional pure strategy equilibrium, in which all type A

community members use the status quo chain and all type B community members choose the

upgraded chain.

In other words, it is always an equilibrium for everyone to stay on the original chain, or

for everyone to move to the upgraded chain. For certain population compositions, it is also an

equilibrium for the individuals who prefer the upgrade policy to hard fork and start their own

chain.
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For brevity, in the remainder of the paper, we will refer to the equilibria described in Propo-

sition 1 a) as single-chain equilibria (upgraded and status quo when it is necessary to specify), and

to the equilibrium described in Proposition 1 c) as the hard fork equilibrium.

3 The Social Planner’s Objective

The equilibria discussed above arise when there is no governance process, and each individual is

choosing the best chain for him or herself. A blockchain developer may want to institute governance

processes to ensure that certain equilibria occur rather than others. The governance process serves

as a decentralized method for the community to achieve these equilibria.

Before choosing a governance process, the social planner needs to know what he or she is

trying to optimize. We’ll consider two criteria for the optimality of equilibria. One criterion is total

surplus maximization, or if the equilibrium maximizes the total surplus of the community. Another

criterion is Pareto Optimality, or if there is no other equilibrium that can make one party better

off, without making the other party worse off.2

The social choice (governance) literature has long debated which criteria should be used by

the social planner to select equilibria. Majority or plurality rule, while not generally total surplus

maximizing, have benefited from their practicality and simplicity of implementation (Bowen, 1943;

Bergstrom, 1979; Rothkopf, 2007). Recent research by Posner and Weyl (2015) has argued that

the total surplus maximizing policy can be achieved with the relatively uncomplicated quadratic

voting mechanism. The blockchain social planner has the additional concern of whether the desired

policy will be applied to all community members.

2If utility is transferable, Pareto optimal and total surplus maximizing equilibria coincide, since individuals can
make side payments to ensure that the surplus-maximizing equilibria are also Pareto Optimal. For now, we assume
non-transferable utility. We discuss the validity of this assumption later in Section 5.3.
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3.1 Optimality of Single-Chain Equilibria

Both single-chain equilibria are Pareto Optimal as long as there are some users of each type in the

population. Depending on the community composition, either the status quo or upgraded chain

can be total surplus maximizing.

Observation. There exists ŝ such that for all β > ŝ the total surplus of the upgrade equilibrium is

greater than the total surplus of the status quo equilibrium, and for all β < ŝ the total surplus of

the status quo equilibrium is greater than the total surplus of the upgrade equilibrium.

The upgraded chain delivers more total surplus than the status quo chain if the community

contains sufficiently many individuals who prefer the upgrade. The reverse holds for the status quo

chain. Whether the surplus-maximizing chain is the total surplus maximizing equilibrium depends

on whether a hard fork is an equilibrium and, if so, what its total surplus is. We’ll solve that in

Section 3.3.2.

The total surplus maximizing chain is the same as the chain that is preferred by the majority

when the relative benefit to the type B individuals from the upgrade is the same as the relative

benefit to the type A individuals from the status quo chain.

Proposition 2. The single-chain equilibrium with higher total surplus is equivalent to the majority’s

preferred chain if and only if the value difference between the preferred chain and the alternative

chain is the same for both types of community member: ŝ = 1
2 if and only if v̄A0− v̄A1 = v̄B1− v̄B0.

If the two types are symmetric in the difference between their preferred and not preferred

chains—when all other community members adopt the same chain—then the majority’s preferred

chain is the total surplus maximizing chain. However, if there are asymmetries between the two

types, then this is not the case.
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Because each type’s payoff is increasing in the number of people on a chain, the highest payoff

for each type is realized when everyone joins their preferred chain. Therefore, both single-chain

equilibria are Pareto Optimal.

Observation. Each single-chain equilibrium is Pareto Optimal for β ∈ (0, 1). Since one type is

receiving its maximum possible payoff, that type will be worse off in any other configuration.

3.2 Blocking Coalitions

Even if a single chain equilibrium is Pareto Optimal or even total surplus maximizing, it may still

be the case that a coalition of community members would like to block that outcome from occurring

by hard forking. The following proposition describes the threshold of adoption above which type θ

individuals would rather have their own chain than to participate with the other type in the chain

they do not prefer.

Proposition 3. For each θ ∈ {A,B}, there exists pθ such that vθj(pθ) = v̄θk, where j is the

preferred chain of type θ and k is the other chain.

a) qθ < pθ

b) For β > pB each type B individual would prefer all type Bs to choose the upgraded chain than

to coordinate with the type A’s on the status quo chain. And for β ≤ pB each type B individ-

ual would prefer the single-chain status quo equilibrium to participating with β type Bs on the

upgraded chain.

c) For β < (1− pA), each type A individual would prefer all type As to choose the status quo chain

than to coordinate with the type B’s on the upgraded chain. And for β ≥ (1 − pA) each type A

individual would prefer the single-chain upgrade equilibrium to participating with (1 − β) type

As on the status quo chain.
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In the presence of blocking coalitions, the social planner’s job becomes much more difficult.

The social planner needs to take in to account that a dissatisfied group of users always has the

option to leave the chain and fork. This can happen even if a single chain equilibrium is total

surplus maximizing.

3.3 Optimality of Hard Forks

As we discussed earlier, blockchain situations are unique because governance decisions cannot be

forced on the entire community. A dissatisfied coalition is always free to leave. An important

question for the social planner is when a hard fork is optimal for the community – either Pareto

Optimal or total surplus maximizing. And if so, under what conditions should the social planner

attempt to deter or impede a hard fork?

We begin by solving for when a hard fork is Pareto Optimal, and then the conditions for a

hard fork to be total surplus maximizing.

3.3.1 Pareto Optimality of Hard Forks

A hard fork is Pareto Optimal if and only if both of the types A and B are blocking coalitions.

Proposition 4 describes the ranges of β, the fraction of the community who are type B, for

which both types will prefer the hard fork equilibrium to the single-chain equilibrium coordinated

on the chain that type does not prefer. In this case, coordination on a single-chain equilibrium

implies that one type will be worse off than if that type initiated a hard fork, so the hard fork itself

is Pareto optimal.

However, there are ranges for which one or both types does at least as well in the single-chain

equilibrium coordinated on the chain they do not prefer as they do in a hard fork equilibrium. In

that case, there is a single-chain equilibrium that makes both types better off than the hard fork
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equilibrium. This implies that there are always ranges of β for which a hard fork is an equilibrium

but not Pareto Optimal.

Proposition 4. There exists a range of β for which a hard fork is Pareto Optimal if and only if

pB < (1− pA).

a) When this condition is satisfied, a hard fork is Pareto Optimal if and only if β ∈ (pB, (1− pA)).

b) If this range exists, it is inside the range for which a hard fork is an equilibrium, (pB, (1−pA)) ∈

[qB, (1− qA)].

c) If this range exists, it need not include 1
2 .

If this range exists and β is inside it, then no matter which coordinated equilibrium is chosen,

the ‘losing’ side constitutes a blocking coalition.

3.3.2 Total Surplus of Hard Forks

It is also possible for the hard fork to be total surplus maximizing for some values of β.

Lemma 2. For each θ there exists an sθ such that the amount gained by type θ from initiating

a hard fork is equal to the amount lost by the other type when type θ leaves their preferred chain.

qθ < pθ < sθ. sθ solves:

sθv̄θk + (1− sθ)v̄−θk = sθv̄θj(sθ) + (1− sθ)v̄−θk(1− sθ)

Where j is type θ’s preferred chain and k is type −θ’s preferred chain; −θ is the other type.

Proposition 5. There is a range of β for which a hard fork is total surplus maximizing if and only

if sB < (1− sA). If this condition is satisfied:

a) A hard fork is total surplus maximizing if and only if β ∈ [sB, (1− sA)].
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b) ŝ ∈ [sB, (1−sA)] so that for β above the range the upgrade equilibrium is total surplus maximizing,

and for β below the range the status quo is total surplus maximizing, and in the range the hard

fork is total surplus maximizing.

c) [sB, (1− sA)] ⊂ [pB, (1− pA)]

d) It may or may not be that 1
2 ∈ [sB, (1− sA)].

Corollary 1. If pB < (1−pA), then there are ranges of β for which the hard fork is Pareto optimal

but not total surplus maximizing.

Corollary 2. There is no range for which a hard fork is Pareto optimal and/or total surplus

maximizing if pB + pA ≥ 1.

The set of results above show two things. First, there are a very limited range of values for

which a hard fork is total surplus maximizing. However, there are a wider range of values for which

the hard fork is Pareto optimal but not total surplus maximizing.

This presents a particularly difficult situation for the social planner. If he or she tries to

implement the surplus-maximizing outcome, there will be a blocking coalition that will choose to

fork, and the social planner cannot prevent that sub-optimal outcome. This is where the assumption

of non-transferable utility is particularly crucial, as if we had transferable utility, the surplus-

maximizing outcome would also be Pareto optimal.

4 Implications for Governance Systems

The blockchain social planner—who by nature of the technology is operating under network effects

and costless defection—faces a complicated set of issues.

First, as we discussed previously, governance in the context of blockchain is better thought

of as a coordination mechanism. The results of a governance decision process are a suggestion that
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the community is free to accept and implement or to form coalitions to block. A good governance

system will facilitate productive coordination, but the designer of such a system cannot enforce

how the system is used.

Second, solving for the optimal policies requires detailed knowledge of the community com-

position. Without this information, the indifference points and total surplus thresholds cannot

be determined, and therefore it is unclear what policy the governance process should implement.

While theoretical solutions to this problem, such as the Vickrey-Clarke-Groves mechanism, have

been developed, such solutions are exceedingly complicated and none has ever been implemented

(Vickrey, 1961; Clarke, 1971; Groves, 1973).

It is for these reasons, among others, that blockchain will probably require new methods

of governance that will be developed over time. In this section, we focus on the ambiguities

and strategic issues that can arise using two frequently advocated governance methods. The two

methods are:

• Majority rule: The policy preferred by more than 50% of the population is implemented3.

• Quadratic voting: The policy that maximizes total surplus is implemented4.

4.1 Majority Rule Governance

Majority rule informs the community what fraction of community members prefer each option. A

policy decision using majority rule will choose to upgrade if β > .5 and otherwise will choose the

status quo.

3Many blockchain developers have noted the problem of implementing a system such as majority rule under an
anonymous system. Our focus here is on the desirability of specific governance processes. Implementation of a
governance process with desirable properties is a topic for further research.

4Posner and Weyl (2015) proves that the quadratic voting mechanism proposed in that paper always results in the
total surplus maximizing policy. Like majority rule, quadratic voting faces a variety of implementation challenges,
which should be studied further.
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The potential existence of a blocking coalition complicates the practicality of majority rule

governance in the context of blockchain. In addition to providing a mechanism for policy choice, a

majority rule governance structure also provides information that can facilitate coordination for a

blocking coalition. If a coalition’s preferred policy is not chosen to be implemented by the majority,

they may still learn through the voting process that their coalition is large enough that they would

prefer to hard fork.

In the following proposition, we solve for the conditions under which there is no blocking

coalition that would prefer to secede and start a new chain.

Proposition 6. The majority rule outcome has no blocking coalition for any value of β if and only

if pB ≥ 1
2 and (1− pA) ≤ 1

2 .

If this condition is satisfied then majority rule will always implement a single-chain equilib-

rium, specifically the one preferred by a majority of the community.

4.2 Quadratic Voting

A common critique of majority rule voting is that, while it measures the fraction of the population

that prefers each option, it does not measure the intensity of those relative preferences. For that

reason, Posner and Weyl (2015) developed the concept of quadratic voting. In that paper the

authors demonstrate that under quadratic voting, a voter will optimize his votes according to the

value a policy change will induce for him, and the community will select the equilibrium that is

total surplus maximizing. Quadratic voting is potentially useful to a blockchain community because

it will capture if the minority coalition has particularly intense preferences.

However, like majority rule, quadratic voting is designed to apply to contexts where blocking

coalitions and hard forks are not present. The additional information provided by this mechanism,

regarding the strength of relative preferences, is not enough to prevent a blocking coalition from
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forming. In order to account for these conditions, the voting mechanism would need to elicit the

full value functions for each individual for each policy for each level of q, not just at q ∈ {0, 1}5.

In addition, the option of conducting a hard fork is not explicitly considered by this voting

scheme. As demonstrated by Proposition 5 there are some conditions under which a hard fork itself

delivers more surplus than either single-chain equilibrium does. Under those conditions, quadratic

voting as it is currently specified would not result in the total surplus maximizing policy if it did

succeed in coordinating the full community on a single chain.

In the next proposition, we solve for the community compositions where the policy resulting

from quadratic voting will not have a blocking coalition.

Proposition 7. The quadratic voting outcome has no blocking coalition for any value of β if and

only if pB ≥ ŝ and (1− pA) ≤ ŝ.

If these thresholds could be guaranteed, then quadratic voting would always result in a single

chain equilibrium. Further, under these condition, a hard fork is not total surplus maximizing, so

the resulting single-chain equilibrium does maximizes total surplus.

4.3 Optimal Governance

Figure 1 summarizes the findings from Section 3 so that two alternative governance systems—

majority rule and quadratic voting—can be analyzed and compared.

The table has four columns:

1. In the first column, neither type wants to block the other type’s preferred chain, and thus

neither will hard fork. The governance process only decides which policy will be implemented

on the single chain.

5This is exactly what the Vickrey-Clarke-Groves mechanism, which has been criticized for its impracticality (see
Rothkopf (2007)), does.
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2. In the second column, the minority wants to block the majority’s preferred chain, but not

vice versa.

3. In the third column, the majority wants to block the minority’s preferred chain, but not vice

versa.

4. Each type wants to block the other’s preferred chain.

The rows indicate which equilibrium outcome is total surplus maximizing:

1. In the first row, the majority’s preferred chain is total surplus maximizing.

2. In the second row, the minority’s preferred chain is total surplus maximizing.

3. In the third row, the hard fork is total surplus maximizing.

The table highlights some of the cases in which the choice of governance process is particu-

larly important in a blockchain setting.

If β ∈ [(1 − pA), pB] (column 1), then either single-chain equilibrium can be implemented

without the risk of a hard fork occurring. A majority rule governance system will implement the

policy preferred by the majority, while quadratic voting will implement the policy that maximizes

surplus (even if it is preferred only by a minority). All community members will choose to coordinate

on that chain.

Columns 2 and 3 are cases in which the choice of governance system have material impli-

cations for the future of the community. In column 2, where β ∈ [12 , (1 − pA)] or β ∈ [pB,
1
2 ], the

minority will want to block the majority’s preferred chain, but not vice versa. Under majority

rule, the minority will choose to fork from the policy that the governance process chooses. Under

quadratic voting, however, the minority’s preferred policy will be implemented if it is total surplus

maximizing (row 2) in which case the community will stay in a single chain.
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Figure 1: Single Chain Outcomes and Their Blocking Coalitions for Ranges of β
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If β > max{12 , pB, (1−pA)} or β < min{12 , pB, (1−pA)} (column 3), the reverse occurs. The

majority wants to block the minority’s preferred chain, but not vice versa. This means that while

majority rule will result in outcomes that are not subject to blocking, a governance system—such as

quadratic voting—intended to select the total surplus maximizing outcome can result in a blocking

coalition wanting to initiate a fork.

Both majority rule voting and quadratic voting suffer in column 4, where any single-chain

equilibrium has a blocking coalition. The voting process used here is irrelevant, because the fork

will always occur.

The above analysis assumes that, despite the knowledge that a hard fork is possible, voters

would utilize the same voting strategies that they would in the absence of this possibility. Of course,

because these voting systems provide limited information that can be utilized by blocking coalitions

to change the outcomes of the governance process, strategic voting would have to be re-analyzed

in this context. Strategic voting would further complicate the basic problems that arise due to

blocking coalitions.

5 Discussion

The model in this paper explores some of the complications that can arise when designing a gov-

ernance process for a blockchain. In this section, we discuss some extensions and paths for future

research.

5.1 Optimal Policy Proposal Processes

The problems discussed in the previous section arise when one or both types values the two policy

options very differently—loving one option and hating the other—and when the two types are

asymmetric regarding their preferences.

17



In this context, many of these problems can be solved if the possible set of thresholds is

limited. By reducing the scope of policies that can be considered, the social planner can reduce the

probability that a proposed policy is polarizing enough to provoke a hard fork, or to stretch the

limits of the governance process.

While these proposal processes are not often explicitly modeled, the analysis above indicates

that in the context of blockchain, this aspect of the governance system is vital to facilitating

community decisions. For example, under majority rule, if proposals are moderate enough to

guarantee that each type would rather participate in a single chain with the other type than use

its preferred chain with only half of the community, then hard forks and blocking coalitions can be

avoided entirely. The solution for quadratic voting is more complex because the threshold depends

on ŝ, which itself is a function of the policy proposed.

Understanding the interplay between the governance system and the policy proposal process

is a fertile area for future research.

5.2 The Social Planner’s Objective

The idea of ‘the tyranny of the majority’ cannot apply in a context where blocking coalitions are

possible. As such, it is unclear that total surplus maximization should be the goal of a blockchain

social planner. The primary questions for those designing blockchain governance is when should

hard forks be deterred and when should they be facilitated.

In this paper, any differences in continuation values from maintaining a single-chain versus

initiating a hard fork are not explicitly modeled. Further research regarding the tradeoffs between

foregoing a desired policy today and enabling future outcomes with a larger community should be

explored.
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Further, if people are complex, and have sets of preferences that align with different groups

across different dimensions, then the majority is not a monolith and the boundaries between po-

tential coalitions are not well defined. Instead, different subsets of the community are ‘winning’ or

getting their way on different issues over time. In this case, the majority looks less like a tyrant and

more like an amorphous entity, of which any community member could be a part at any given time.

In this case the goal of the social planner may be to facilitate a set of intertemporal compromises

through which the governance process serves all community members.

5.3 Transferable Utility

We have assumed in this analysis that utility is not transferable across community members, so

that it is impossible to compensate the ‘losing’ type in order to achieve the total surplus maximizing

outcome.

Existing governance theories do not consider whether utility is transferable, because trans-

ferability is irrelevant when outside options are assumed away—those who lose out do not have to

be compensated when they do not have a choice in the matter. For blockchain, on the other hand,

since a single policy choice cannot be enforced, it becomes a question whether community members

will abide by the decision that results from a governance process. While a social planner may want

to implement the total surplus maximizing policy, the inability to transfer utility together with the

inability to enforce a policy choice on the whole community may imply that such an implementation

is infeasible.

This is an issue that needs to be explored further. We anticipate that there would be a

variety of challenges to creating a system that would allow the losing side to be compensated.

Free-riding and adverse selection are just two. Exactly how a system can be designed to prevent

this type of problem should be the subject of future research.
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6 Conclusion

In this paper, we have explored the performance of classic governance mechanisms in governing a

blockchain community. Both majority rule and quadratic voting can provide effective governance,

or lead to suboptimal outcomes, depending on the policies proposed and the composition of the

community.

Given the complexity of governing a blockchain, we anticipate that blockchain developers

will end up designing new and unique governance mechanisms. Some open questions to consider

include what to use as the social planner’s objective, whether and when to try to prevent hard forks,

and how to design a policy proposal process that works in harmony with the chosen governance.

20



References

Ted C. Bergstrom. When does majority rule supply public goods efficiently? The Scandanavian

Journal of Economics, 81(2):216–226, 1979.

Howard R. Bowen. The interpretation of voting in the allocation of economic resources. The

Quarterly Journal of Economics, 58(1):27–48, 1943.

Edward H. Clarke. Multipart pricing of public goods. Public Choice, 8:19–33, 1971.

Theodore Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

Dennis C. Mueller. Public Choice III. Cambridge University Press, 2003.

Eric A. Posner and E. Glen Weyl. Voting squared: Quadratic voting in democratic politics. Van-

derbilt Law Review, 68(2), 2015.

Michael H. Rothkopf. Thirteen reasons why the vickrey-clarke-groves process is not practical.

Operations Research, 55(2):191–197, 2007.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of

Finance, 16(1):8–37, 1961.

21



A Proofs

Lemma 1. For each θ ∈ {A,B}, ∃ qθ such that vθj(qθ) = vθk(qθ − 1), where j is type θ’s preferred

chain and k is the alternative chain. For each type, there is a fraction of the population transacting

on their preferred chain, qθ, for which that type is indifferent between choosing their preferred chain

and choosing the alternative chain.

1. 0 < qB ≤ .5 ≤ (1− qA) < 1

2. A type θ individual will choose the status quo chain whenever q ≤ qθ.

3. A type θ individual will choose the upgraded chain whenever q > qθ.

Proof. Existence holds due to the intermediate value theorem. 2) and 3) hold because v′θj > 0. 1)

Holds because by definition, if j is type θ’s preferred chain, it must be that vθj(
1
2) ≥ vθk(12). Thus,

qB ∈ (0, 12 ] and (1− qA) ∈ [12 , 1).

Proposition 1. The pure strategy Nash equilibria of this game are as follows:

a) For all β ∈ [0, 1], it is an equilibrium for all community members to use the same chain.

Specifically, there are at least two pure strategy equilibria, one in which all community mem-

bers use chain j = 0 the status quo chain, and one in which all community members use

chain j = 1, the upgraded chain.

b) For β < qB or β > (1− qA), there are no other pure strategy equilibria.

c) For β ∈ [qB, (1 − qA)], there is one additional pure strategy equilibrium, in which all type A

community members use the status quo chain and all type B community members choose the

upgraded chain.

Proof. If neither type is randomizing then q ∈ {0, β, 1}.
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a) By Lemma 1, qB, (1−qA) ∈ (0, 1), thus when q = 0 individuals of both types choose to participate

in the status quo chain, and when q = 1 individuals of both types choose to participate in the

upgraded chain.

b) By Lemma 1 if β < qB then β < (1− qA), therefore it cannot be an equilibrium for β type Bs

to use the upgraded chain; either the type As or the type Bs would prefer to switch to the other

chain in that circumstance.

c) By Lemma 1, if β ∈ [qB, (1 − qA)], then type A individuals prefer to use the status quo chain

if the other type As are also using the status quo chain—because (1 − β) > qA—and type B

individuals prefer to use the upgraded chain the other type Bs are also using the upgraded

chain—because β > qB.

Proposition 2. The single-chain equilibrium with higher total surplus is equivalent to the majority’s

preferred chain if and only if the value difference between the preferred chain and the alternative

chain is the same for both types of community member: ŝ = 1
2 if and only if v̄A0− v̄A1 = v̄B1− v̄B0.

Proof. The total surplus of the status quo chain is (1 − β)v̄A0 + βv̄B0. The total surplus of the

upgraded chain is (1− β)v̄A1 + βv̄B1. ŝ satisfies:

ŝ(v̄B1 − v̄B0) = (1− ŝ)(v̄A0 − v̄A1)

If ŝ = 1
2 , then

(v̄B1 − v̄B0) = (v̄A0 − v̄A1)
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and if (v̄B1 − v̄B0) = (v̄A0 − v̄A1), then,

ŝ = (1− ŝ)

or ŝ = 1
2 .

Proposition 3. For each θ ∈ {A,B}, there exists pθ such that vθj(pθ) = v̄θk, where j is the

preferred chain of type θ and k is the other chain.

a) qθ < pθ

b) For β > pB each type B individual would prefer all type Bs to choose the upgraded chain than

to coordinate with the type A’s on the status quo chain. And for β ≤ pB each type B individ-

ual would prefer the single-chain status quo equilibrium to participating with β type Bs on the

upgraded chain.

c) For β < (1− pA), each type A individual would prefer all type As to choose the status quo chain

than to coordinate with the type B’s on the upgraded chain. And for β ≥ (1 − pA) each type A

individual would prefer the single-chain upgrade equilibrium to participating with (1 − β) type

As on the status quo chain.

Proof. Existence is due to the intermediate value theorem.

a) v̄θk > vθk(1− qθ) = vθk(qθ): the first inequality holds due to v′θk > 0, the second by Lemma 1.

b) Holds because vB1(q) is increasing in β.

c) Holds because vB1(q) is decreasing in β (increasing in (1− β)).
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Proposition 4. There exists a range of β for which a hard fork is Pareto Optimal if and only if

pB < (1− pA).

a) When this condition is satisfied, a hard fork is Pareto Optimal if and only if β ∈ (pB, (1− pA)).

b) If this range exists, it is inside the range for which a hard fork is an equilibrium, (pB, (1−pA)) ∈

[qB, (1− qA)].

c) If this range exists, it need not include 1
2 .

Lemma 2. For each θ there exists an sθ such that the amount gained by type θ from initiating

a hard fork is equal to the amount lost by the other type when type θ leaves their preferred chain.

qθ < pθ < sθ. sθ solves:

sθv̄θk + (1− sθ)v̄−θk = sθv̄θj(sθ) + (1− sθ)v̄−θk(1− sθ)

Where j is type θ’s preferred chain and k is type −θ’s preferred chain; −θ is the other type.

Proposition 5. There is a range of β for which a hard fork is total surplus maximizing if and only

if sB < (1− sA). If this condition is satisfied:

a) A hard fork is total surplus maximizing if and only if β ∈ [sB, (1− sA)].

b) ŝ ∈ [sB, (1−sA)] so that for β above the range the upgrade equilibrium is total surplus maximizing,

and for β below the range the status quo is total surplus maximizing, and in the range the hard

fork is total surplus maximizing.

c) [sB, (1− sA)] ⊂ [pB, (1− pA)]

d) It may or may not be that 1
2 ∈ [sB, (1− sA)].
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Corollary 3. If pB < (1−pA), then there are ranges of β for which the hard fork is Pareto optimal

but not total surplus maximizing.

Proof. By Proposition 5 c) the range in which a hard fork is total surplus maximizing is strictly

contained in [pB, (1 − pA)], when it exists. Then, if pB < (1 − pA), there is an x ∈ [pB, (1 − pA)]

such that x /∈ [sB, (1− sA)].

Corollary 4. There is no range for which a hard fork is Pareto optimal and/or total surplus

maximizing if pB + pA ≥ 1.

Proof. By Proposition 4, if pB + pA ≥ 1, then there is no range for which the hard for is Pareto

Optimal. By Lemma 2, pθ < sθ. Therefore, if pB + pA ≥ 1, then sB > (1− sA). By Proposition 5,

there is not range for which the hard for is total surplus maximizing.

Proposition 6. The majority rule outcome has no blocking coalition for any value of β if and only

if pB ≥ 1
2 and (1− pA) ≤ 1

2 .

Proof. By Proposition 3, type B blocks when β > pB and type A blocks when β < (1− pA). Type

B (A) is in the majority when β > 1
2 (β < 1

2). Therefore, if pB ≥ 1
2 ((1 − pA) ≤ 1

2), then B (A)

β > pB (β < (1− pA)) implies that B (A) is in the majority.

Proposition 7. The quadratic voting outcome has no blocking coalition for any value of β if and

only if pB ≥ ŝ and (1− pA) ≤ ŝ.

Proof. By Proposition 3, type B blocks when β > pB and type A blocks when β < (1 − pA). If

pB ≥ ŝ and (1 − pA) ≤ ŝ, then pB > (1 − pA); therefore by Proposition 5. Then, by Proposition

2, Type B’s (A’s) preferred chain is total surplus maximizing β > ŝ (β < ŝ). Therefore, if pB ≥ 1
2

((1 − pA) ≤ 1
2), then B (A) β > pB (β < (1 − pA)) implies that B’s (A’s) preferred chain is total

surplus maximizing.
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