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Abstract

In this paper, we study the mechanisms that govern price stability of MakerDAO’s
DAI token, the first decentralized stablecoin. DAI works through a set of autonomous
smart contracts, in which users deposit cryptocurrency collateral, typically Ethereum,
and borrow a fraction of their positions as DAI tokens. Using data on the universe of
collateralized debt positions, we show that DAI price covaries negatively with returns to
risky collateral. The peg-price volatility is related to collateral risk, while the stability
rate has little ability to stabilize the coin. The introduction of safe collateral types has
led to an increase in peg stability.
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1 Introduction
"I expect DAI (and newer alternatives eg. RAI) to have much higher survivability than

Tether long term."1 Vitalik Buterin, the cofounder of Ethereum

Cryptocurrencies enable peer-to-peer transactions on a public and decentralized network
without the need for intermediation. Stablecoins are a class of cryptocurrencies designed to
maintain a stable peg to USD. Stablecoins come in two predominant forms based on whether
they are backed by National currency or cryptocurrency collateral. For coins backed by
National currency, typically the US dollar, every token in circulation is backed by a dollar in
reserves. These stablecoins suffer from the drawback of having a centralized custodian of the
assets. For decentralized stablecoins led by MakerDAO’s DAI, on the other hand, issuance
of new tokens is decentralized through using autonomous smart contracts on the Ethereum
blockchain.2 DAI tokens are generated when an investor deposits a set amount of collateral,
typically Ethereum (ETH), into a collateralized debt position (CDP). Based on the value of
ETH collateral, the investor can borrow a fraction of their collateral as DAI tokens. While
DAI’s decentralized method of issuance eliminates custodial risk, it is exposed to other risks
associated with fluctuations in the price of collateral coins. In this paper we study the factors
affecting stability of DAI price.

In order to answer the question about the fundamental sources of stablecoin instability
in DAI, we start by developing a simple model of equilibrium price formation. In the model
there are three types of agents: speculators that deposit risky ETH collateral and borrow
a fraction as DAI tokens, arbitrageurs that short DAI when the peg trades at a premium,
and a demand shock for DAI from investors that seek DAI to earn savings and gain utility
from its use in Decentralized Finance (DeFi) applications. Speculators’ beliefs about future
performance of collateral follow a two-state process. The two states are a good and bad state,
and reflect speculator beliefs about the expected return of ETH. In equilibrium, DAI peg-
prices are dependent on the state of the collateral. Using this framework, we can investigate
the importance of collateral risk on stability of the DAI stablecoin peg. We find the model
generates peg premiums in the bad state, leading to a negative correlation between DAI prices
and returns to ETH collateral. The model also generates testable implications regarding the

1https://twitter.com/VitalikButerin/status/1263191590543253504
2A smart contract is a set of instructions, written in computer code, that defines the conditions of the contract
for each counterparty under different scenarios (default etc). Being managed by computer code and visible
on the blockchain, it can be verified publicly by all nodes in the blockchain.
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behaviour of DAI prices during periods of low and high demand, changes in ETH volatility
and the interest rate on DAI borrowings, which is known as the stability rate. Peg-premiums
in the bad state are higher in periods of high demand, high ETH volatility and when the
stability rate is higher. A comparative statics exercise shows that the peg volatility increases
with volatility of ETH collateral.

We then consider an extension to the model, by introducing an additional collateral type,
the USDC stablecoin, that has lower volatility than ETH. Arbitrageurs have an opportunity
to reduce their risk by issuing DAI with a lower volatility collateral type. To close a peg-
price premium, arbitrageurs deposit collateral, borrow DAI tokens and sell it in the secondary
market. We show that in equilibrium, arbitrageurs use the new collateral type to conduct
arbitrage. The share of USDC collateral used by arbitrageurs increases as the USDC volatility
declines. A comparative statics exercise shows that the addition of a stable collateral type
causes a decline in the DAI premium in the bad state, and a decline in the volatility of
the DAI peg. This is consistent with stable collateral leading to a decrease in the limits
to arbitrage. Arbitrageurs now require lower premiums to borrow DAI and sell it in the
secondary market.

We present empirical evidence to support model predictions. We use the entire history
of CDP transactions made by an individual CDP, including the amounts of ETH collateral
deposited, DAI borrowed, and the timestamp of each transaction. Consistent with model
predictions, we find leverage, the ratio of DAI borrowing to ETH collateral for an individual
CDP, responds negatively to an increase in ETH returns, volatility and the stability rate. We
show that a 1 per cent increase in ETH volatility decreases leverage of an individual CDP by
25 basis points, a 1 per cent increase ETH returns decreases leverage by 23 basis points, and
a 1 percent increase in annualized stability rate decreases leverage by 10 basis points. We
document a significant relationship between the volatility of DAI peg price deviations and
the volatility of ETH at a daily frequency, estimating an elasticity of 0.16, i.e. a 1 per cent
increase in ETH volatility increases DAI volatility by 0.16 percentage points. Furthermore,
consistent with our hypothesis, we document a significant negative correlation between DAI
prices and ETH returns. Large drops in ETH prices can result in a substantial decline in
DAI supply and significant per premiums. For example, on March 12th, 2020, known as
Black Thursday to the cryptocurrency community, ETH crashed by up to 50% in a single
day and resulted in a DAI peg-premium of 800 basis points. We estimate that on average,
a 1 USD Million increase in DAI liquidations is associated with a DAI price increase of 30
basis points.
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The two main stability tools used by the MakerDAO governance protocol to stabilize the
peg are the stability rate and mitigation of collateral risk. The stability rate is set by the
governance body and is a cost to dollar borrowings. We show that a shock to the stability
rate has positive effects on the DAI price, with an elasticity of approximately 30-40 basis
points with respect to a 100 basis point increase in the DAI stability rate. The leverage
ratio reduces by approximately 1 percentage point. While the stability rate has the intended
effect of lowering the leverage and increasing the price, it has limited scope in stability due
to delays in updating rates due to the voting procedure of the MakerDAO protocol, and the
existence of a lower bound on the stability rate.

To mitigate the collateral risk, MakerDAO attempted to increase the share of DAI bor-
rowing through stable collateral types since March 2020. The introduction of USDC collateral
was in direct response to the Black Thursday event of March 2020, to reduce the exposure of
the DAI peg to mass liquidations from a risk-off event in the crypto market. Empirically, we
find an increase in the share of stable collateral by 1 per cent reduces the DAI price by 1.9
basis points, and the volatility of the DAI peg by 2.1 basis points. This is consistent with
the model prediction of stable collateral increasing the capacity for arbitrageurs to step in
and absorb differences between the primary and secondary market rates.

In addition to depositing USDC collateral, the MakerDAO protocol introduced a peg
stability module (PSM) in December 2020. Investors can directly swap DAI for USDC at
a 1:1 rate.3 By eliminating liquidation risk for investors, the PSM incentivizes arbitrage
participants to swap USDC for DAI when DAI prices trade at a premium. The increase in
DAI supply by arbitrageurs pushes prices toward one. We document a decline in both the
magnitude of peg-price deviations and intra-day volatility of approximately 70 basis points
after the introduction of PSM on December 18th, 2020. To rule out the possibility of a
tighter peg due to idiosyncratic developments in the USDC stablecoin, we test a difference-
in-difference (DiD) design to determine how DAI/USD prices changed relative to a control
group of USDC/USD prices. The results of the test confirm the findings of an increase in
peg efficiency. Relative to the USDC/USD price, we find a decline in absolute peg-price
deviations of 101.8 basis points, and a 61.0 basis point decline in volatility following the
PSM.

The remainder of the paper is structured as follows. In section 2 we summarize the
contributions of our paper to related literature. In section 3 we summarize the properties

3A technical difference between the PSM and having stable collateral type is liquidation risk. For example, if
investors deposit USDC collateral into a vault, there is risk of a collapse of the USDC peg which can trigger
a sufficient decline in the value of collateral and a liquidation event.
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of DAI and describe the data sources for our empirical work. In section 4 we introduce the
model of DAI prices. We produce testable implications on the determinants of the price and
a discussion of stability tools. In section 5 we conduct our empirical analysis. Section 6
concludes.

2 Related literature
The empirical research most closely related to our paper focuses on investigating proper-

ties of stablecoins (Berentsen and Schär, 2019; Bullmann et al., 2019; BIS, 2019; Eichengreen,
2019; Dell’Erba, 2019; Arner et al., 2020; Frost et al., 2020; Force et al., 2020), arbitrage in
stablecoin and cryptocurrency markets (Lyons and Viswanath-Natraj, 2020; Makarov and
Schoar, 2019, 2020; Borri and Shakhnov, 2018; Pernice, 2021) and intraday price changes
to support the role of stablecoins as safe havens (Baur and Hoang, 2020; Baumöhl and Vy-
rost, 2020; Wang et al., 2020; Bianchi et al., 2020; Gloede and Moser, 2021). For example
Eichengreen (2019) comments on stablecoins being backed by either national currencies or
cryptocurrencies, and highlights that systems can be vulnerable to speculative attack if there
is perception that the peg is under-collateralized. Lyons and Viswanath-Natraj (2020) find
empirical evidence supporting an arbitrage mechanism for dollar-backed stablecoins: through
which private investors deposit (withdraw) dollars when the stablecoin trades at a premium
(discount), driving prices toward one. This arbitrage is central to our thesis of collateral risk:
stablecoins backed by risky collateral no longer have a functioning arbitrage mechanism to
stabilize the peg. Therefore collateral risk acts as a limit to arbitrage, and we find, both
empirically and through our model, that the addition of stable collateral types increases the
role of arbitrage in stabilizing the peg. We find empirical support for the volatility differ-
ences across stablecoin regimes in Jarno and Kołodziejczyk (2021). A comparison of volatility
of dollar-backed, crypto-backed and algorithmic (un-collateralized) stablecoins reveals that
peg-price deviations of crypto-collateralized stablecoins are larger and more dispersed.

Our paper contributes to an emerging literature on DeFi (Harvey et al., 2020; Schär,
2021). In addition to decentralized stablecoins, an alternative application is DeFi lending
protocols, such as Compound, set interest rates and allocate funds automatically through
algorithms (Gudgeon et al., 2020; Perez et al., 2020). Other DeFi applications that use the
Ethereum blockchain are automated market makers, which are exchanges that trade based on
algorithms without the need for a limit order book. The most common type of decentralized
exchange (DEX) uses an automated market-maker constant product algorithm (Angeris and
Chitra, 2020; Aoyagi and Ito, 2021; Lehar and Parlour, 2021). DAI’s main use cases are as
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a source of savings in lending protocols and in liquidity pools for trading in decentralized
exchanges. Perez et al. (2020) find lending protocols are susceptible to liquidation risk. We
complement their findings by examining how liquidation events for DAI affect dynamics of
the peg. In addition to understanding price-movement, we are the first paper to utilize rich
data on the universe of CDP positions to shed light on the determinants of an individual
CDP leverage and the probability of liquidation. We find that in the periods of positive ETH
returns, high volatility, and higher interest rates reduce the leverage ratio. Liquidations are
more likely in periods of extreme negative returns and high volatility of ETH collateral.

Turning to the theoretical research, recent work has modeled the price dynamics of stable-
coins (Routledge et al., 2018; Klages-Mundt and Minca, 2020; Li and Mayer, 2020; d’Avernas
et al., 2021). Routledge et al. (2018) adapt a model of fixed exchange rates with speculative
attacks to stablecoins, and point out that centralized stablecoin regimes can collapse due
to expectations of insufficient backing of dollar reserves. Klages-Mundt and Minca (2020)
model over-collateralized stablecoins and show that high liquidation costs can lead to CDPs
optimally creating a reserve buffer by posting excess collateral to insure against extreme nega-
tive price movements. They also model the dynamics of liquidation events on DAI peg-price
premiums. Li and Mayer (2020) examine a centralized issuer of dollar-backed stablecoins
that has autonomous control of token supply and maximizes the dividend of shareholders
that own a governance token. Through the lens of their model, the issuer conducts open
market operations to stabilize the price around its peg. Under this centralized arrangement,
they consider reserve management and over-collateralization as potential solutions to avoid
speculative attacks and peg discounts. d’Avernas et al. (2021) determine the equilibrium con-
ditions in which both dollar-backed and decentralized stablecoins backed by crypto collateral
can maintain parity in response to a negative demand shock or a liquidation of collateral.
With respect to decentralized stablecoins, they show that a buffer reserve maintained by
the governance protocol can be used as a stabilizing mechanism to restore peg stability in
response to peg-discounts, similar to reserve management of a central bank. We extend exist-
ing theoretical work on stablecoins by modelling the fundamental sources of peg-instability
in over-collateralized stablecoins like DAI. Our model generates a number of empirical prop-
erties: including negative correlation between DAI peg-prices and ETH returns, the positive
relationship between the volatility of peg-price deviations and the volatility of collateral. We
also model how stability mechanism and how multiple collateral types can diversify collateral
risk and decrease limits to arbitrage, thereby increasing peg stability.

Finally, we draw on a literature on the properties of arbitrage with financial constraints

6



(Gromb and Vayanos, 2002, 2018; Brunnermeier and Pedersen, 2009; Nyborg and Rösler,
2019). For example, Gromb and Vayanos (2018) show that shocks to arbitrage capital can
increase spreads and risk-premia, and Brunnermeier and Pedersen (2009) examine the role
of funding margins on asset prices and the feedback between funding and market liquidity.4

Nyborg and Rösler (2019) investigate the spread between unsecured and secured (repo) rates
in interbank markets. They observe that risk-free rates on secured collateral are higher than
unsecured rates. This spread is increasing in periods of increased volatility and negative
returns of collateral, and suggests collateral risk is a limit to arbitrage in pricing interbank
market rates. We contribute to this literature by focusing on an alternative limit to arbitrage:
by measuring the riskiness of capital via stable and risky collateral types. We model the
crucial role arbitrageurs play in the setup, and how risky collateral generates a limit to
arbitrage. We show that in equilibrium, arbitrageurs can use a stable collateral type to
conduct arbitrage, increasing relative supply in response to peg-price premiums and driving
prices back toward one. This finds empirical support through the introduction of stablecoin
collateral types in 2020, in which DAI can be swapped with USDC at a 1:1 rate. This led to
a significant decline in the absolute size and intra-day volatility of peg-price deviations.

3 Definitions and Data

DAI creation process

To open a collateralized debt position (CDP), an investor deposits a set amount of col-
lateral (eg. ETH), into a vault. The investor can borrow a fraction of their collateral as
DAI tokens. The vault is regulated through a set of autonomous contracts, that update in
real-time the valuation of collateral and DAI borrowings of the CDP. We outline three use
cases for DAI tokens. First, DAI may be deposited as savings in the DAI savings protocol.
5 Second, DAI is a popular currency to use in decentralized finance (DeFi) protocols, such
as Compound, that set interest rates and allocate funds automatically through algorithms.
As of May 10th, 2021, DAI savings lent in the Compound protocol total over 4 USD Billion,
and lending rates are approximately 3 per cent p.a. 6 Third, it may be used as a vehicle

4The liquidity spirals covered in Brunnermeier and Pedersen (2009) do not feature in our model, as we assume
an exogenous process for the collateral. If, however, there are sufficient feedback effects from DAI liquidations
to ETH prices, we can expect a feedback loop in which declines in ETH prices increase liquidations, causing
investor losses and further declines in the ETH price. We test this empirically in Appendix E and we find
liquidations do not have a statistically significant effect on ETH returns.

5Adjustments of the DAI savings rate is set by the MakerDAO protocol as a potential stability tool, which
we discuss in more detail in a following section.

6See https://compound.finance/markets for more details.
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currency to purchase other cryptocurrencies, for example BTC and ETH. To close a CDP
position, an investor must first redeem all DAI tokens, by either selling the investment cur-
rency for DAI tokens in the secondary market or removing their DAI savings from the DSR
or a DeFi lending protocol. Once all DAI tokens borrowed are redeemed, the smart contract
is regulated to unlock their collateral, closing the CDP.7

Leverage Ratio

A key feature of the CDP is that investors need to over-collateralize their borrowings.
The Leverage Ratio is the maximum required leverage for each collateral type before it is
considered under collateralized and subject to liquidation. We calculate the leverage ratio
in Equation (1). The leverage ratio is computed as the ratio of generated DAI (which has
a smart contract price of 1 USD), to the collateral value in USD. If ETH prices fall, then
an investor can either inject more ETH collateral, or alternatively redeem DAI to maintain
their level of collateral.

Leverage Ratio =
Generated DAI

Collateral Price× Collateral Amount
× 100 (1)

Liquidation Price

There is a limit on how much DAI one can borrow. Each vault has a maximum leverage
ratio, which we define as Leverage Ratiomax. For vaults with ETH collateral, the maximum
DAI that can be borrowed is equivalent to two thirds of the dollar value of the ETH collateral,
so Leverage Ratiomax = 2

3
. The Maker Protocol calculates a real-time liquidation price, which

is the price of collateral at which the Vault leverage is equal to the maximum leverage ratio,
calculated in Equation (2). If the price of collateral falls below the liquidation price, this will
trigger a liquidation event.

Liquidation price =
Generated DAI

Collateral Amount
× 1

Leverage Ratiomax
× 100 (2)

Liquidation Event

In a liquidation event, the investor is required to repay the debt of DAI tokens using their
remaining collateral, as well as pay a liquidation penalty. At an ETH price of 100 USD, DAI
borrowings of 100 USD, and 2 ETH, gives a leverage ratio of 50 per cent. The liquidation

7We outline the steps in creating DAI in a schematic in Appendix A
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price is calculated as DAI
ETH ×

1
Leverage Ratiomax

× 100 = 100
2
× 1

66.67
× 100 = 75USD. Suppose in

the following period, the ETH price falls below the liquidation price to 60 USD.8 As the new
ETH price is lower than the liquidation price, DAI borrowings are liquidated to zero. To pay
off the DAI loan, the investor is required to cover the total value of the loan through their
ETH collateral. The total value of ETH at the new price is 120 USD. Subtracting the value
of the DAI loan, gives a post liquidation amount of ETH collateral equal to 20 USD, which
is 1

3
ETH. To pay off the loan, the smart contract forces an auction of 5

3
ETH.

In addition to paying off the loan, investors are required to post penalty fees that are up
to 15% of DAI borrowed. These additional fees make liquidation costly, and cause investors
to post sufficient collateral as a buffer against extreme price movements. Extreme price
changes in collateral can therefore cause a large liquidation, contraction in DAI borrowings
and significant peg-price premiums, as evident in DAI premiums of up to 800 basis points
following a 50 per cent daily decline in ETH prices on March 12th, 2020.

Liquidation auction mechanism

The system of smart contracts enforces an auction mechanism to sell the system collateral
and burn DAI tokens. First, a set of agents called keepers detect an under-collateralized Vault
and triggers a Liquidation. All of the collateral is put up for auction to cover the outstanding
Dai and a liquidation penalty. Once the bid reaches the amount of the DAI loan including
any liquidation fees, the auction reverses and bidders now compete by offering to accept
less collateral for the DAI they bid in the previous phase. Once an auction settlement is
reached, the bidder receives the sold collateral, and an amount of DAI equal to the loan and
liquidation fees is burned from the system. The Vault owner receives leftover collateral if
any remains.

The MakerDAO system incentivizes vault owners to maintain leverage low in order to
prevent liquidation events. This includes setting up price alerts for the collateral asset(s)
being used, or developing a rule to recapitalize when the collateral price falls below a certain
level as an additional buffer. In Appendix D, we provide additional information on additional
safeguards put in place by MakerDAO governance in the event liquidation auctions do not
raise sufficient funds to cover the outstanding DAI and penalty fees.

DAI stability rate

The MakerDAO protocol has in place a series of tools can be used when a coin like DAI
trades systematically above or below parity. One tool that is used is the stability fee on DAI,

8We provide a schematic of the liquidation event in Appendix A

9



which is analogous to an interest rate on money implemented by a central bank. A critical
difference is that while central banks typically have a centralized arrangement for setting
rates, DAI has a decentralized, continuous-voting procedure for approval of a stability-fee
(i.e., rate) change. Voters can choose from a range of options for the future stability rate,
and if the number of votes surpasses the number of votes for the prior decision, the stability
rate will change. 9 The stability rate’s purpose is to target the peg through changing the
level of DAI borrowings, and in turn system leverage. All else equal, a higher a stability fee
increases the cost of DAI borrowings, and reduces total leverage of the system.

Multiple Collateral DAI and the peg stability module

A major change to the DAI protocol occurred on November 18th, 2020 with the intro-
duction of multiple collateral types. Users can lock alternative types of collateral, such as
WBTC, which is a token pegged to BTC prices that trades on the Ethereum blockchain. On
March 12th, 2020, the MakerDAO community decided to adopt stablecoin USDC as collat-
eral. Stablecoin collateral can have a leverage ratio of one, allowing a much higher degree of
leverage than with risky collateral types. To further encourage the use of stable collateral
types, the Maker Protocol introduced the peg stability module (PSM) in December 2020, in
which users are able to swap DAI with the USDC stablecoin. The PSM effectively anchors
the DAI/USD peg to the value of USDC, by allowing users to swap USDC with DAI at a 1:1
rate without needing to create a vault and deposit collateral. In this way, there is no liquida-
tion risk, however users need to make a one-off fee to use this. This increases the incentive for
arbitrageurs to close peg-price deviations using the PSM. A technical difference between the
PSM and having stable collateral type is liquidation risk. For example, if investors deposit
USDC collateral into a vault, there is risk of a collapse of the USDC peg which can trigger
a sufficient decline in the value of collateral and a liquidation event. In contrast, the PSM
transfers the liquidation risk to the Maker Protocol, which will be willing to exchange DAI
for USDC tokens at a 1:1 rate even when USDC prices are trading at a significant discount.
10

9Votes are based on staking the Maker Governance token MKR, where 1 MKR locked is equal to 1 vote.
Additional information on the fundamental valuation of the MKR token is provided in Appendix D.

10For more details on how the PSM works, we refer readers to https://community-development.makerdao.
com/en/learn/governance/module-psm/
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Data and summary statistics

To test the effects of collateral returns on the borrowing behavior of investors, we utilize
a data set that records every transaction made by an individual CDP, including amounts
of ETH collateral deposited, DAI borrowed, and the timestamp of each transaction. The
actions of depositing and closing the ETH CDP is defined as "lock" and "free" respectively.
The action of the investor borrowing and redeeming DAI tokens is classified as a "draw"
and "wipe" respectively. The sample starts in January 1st, 2017 and ends in November 17,
2019.11 For an individual CDP, we can trace the amounts of ETH collateral, and the amounts
of DAI borrowed and redeemed at any point in time. This allows us to calculate a real-time
leverage ratio, defined as the ratio of total DAI borrowed to the value of ETH Collateral.

Aggregate data on the amounts of DAI borrowed of each collateral type is obtained
at https://makerburn.com/#/. The dataset also provides policy parameters, such as the
stability rate on borrowings and the debt ceilings for each collateral type. For the to-
tal amounts of each type of collateral deposited in the system, we use data from Dune-
Analytics, an open source platform with statistics on decentralized finance applications
https://duneanalytics.com/hagaetc/maker-dao---mcd. Consolidating DAI borrowings
with total collateral, we can calculate the total system leverage, as well as the leverage of
each collateral type.

For price data on ETH, DAI and other collateral types, we use https://www.coinapi.

io/.Coinapi offers a monthly subscription with access to their data api, which gives historical
cryptocurrency OHLCV data. Where multiple cryptocurrency exchanges offer the same data,
we choose the exchange that (i) has the longest time series and (ii) is one of ten exchanges
that has "trusted volume" according to a report filed by the SEC.12 We use hourly data
for the pairs of ETH/USD, DAI/USD from the Bitfinex exchange from April 13th, 2018
to March 31st, 2021, and hourly data for the USDC/USD pair from the Kraken exchange
available from January 8th, 2020 to March 31st, 2020.

We present summary statistics in Table 1 for DAI, ETH returns and system parameters
of the stability rate and leverage, over the full sample from April 13th, 2018 to March 31st,
2021. Figure 1 plots the time-series of DAI price, ETH price, the leverage and stability rate.

11The ending date of November 17, 2019 corresponds to the date at which users migrated from the single to
multi collateral DAI system. The dataset obtained from mkr.tools.api only records investor transactions
for the single collateral version.

12See https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.
pdf.The report tests exchanges for fraudulent activities (e.g., suspicious variability in bid-ask spreads,
systematic patterns in histograms of transaction size) and finds that the exchanges we use price data from
do not have the telltale patterns in trading volume or spreads.
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DAI peg price premium is on average of 100 basis points over the full sample. The average
ETH return is 0.17 per cent, and the standard deviation of returns is 5.8 per cent. The
large declines in ETH returns peaked on March 12th, 2020, which recorded a -58.2 per cent
decline. Stability rates on borrowing DAI in ETH vaults are typically 3 per cent on average,
with periods of high interest rates of 20 per cent set in 2019. The leverage ratio for ETH
collateral is 0.3 over the full sample. This is much lower than the maximum leverage of two
thirds. Low system leverage provides a capital buffer in the event of a collapse in collateral
value. With a leverage ratio of 30%, the ETH price can crash by 50% in one day and the
CDP is still sufficiently collateralized.

To understand the interaction of prices with system parameters, we provide a correlation
matrix of all variables in Table 2. First, there is a negative correlation between DAI and ETH
returns of -0.05. Peg-price premiums are associated with negative ETH returns. Second, we
observe a negative correlation between DAI leverage and stability rate of -0.34. This indicates
that high borrowing rate on DAI is associated with a decline in DAI borrowings, and system
leverage. Finally, the stability rate is negatively associated with DAI price (-0.19). This is
interest-rate setting of DAI borrowing in response to peg-price deviations: stability rates are
increased in periods of discounts, and decreased in periods of premiums.

4 Model
Before turning to the empirical results, we first develop a model to structure our testable

hypotheses. As a starting point, we introduce three types of agents in the model, ETH spec-
ulators, arbitrageurs, and uninformed demand. Speculative investors deposit ETH (ETH)
collateral and borrow DAI tokens to invest in risky cryptocurrencies. Arbitrageurs take long
or short positions in DAI based on mispricing of the peg. Uninformed demand for DAI cap-
tures the token’s role in algorithmic lending and other DeFi applications, that enable users
to deposit DAI and accrue savings.

The primary goal of the model is in providing testable implications on the mechanisms
that govern leverage and peg stability. First, we show that peg-premiums differ conditional on
the level of uninformed demand. In periods of high uninformed demand, arbitrageurs require
significant peg premiums to short DAI and clear the market. We show that peg-premiums
occur precisely when collateral prices are in the bad state, generating a negative covariance
between peg-prices and returns on ETH collateral. Second, we show that in response to an
increase in the volatility of collateral, the model generates a higher peg-price premium, a
decline in investor borrowings and leverage, and an increase in the volatility of peg-price
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deviations. We then turn to a discussion of stability tools, such as the interest rate on DAI
borrowings and the introduction of stable collateral types. We show that the price increases
with a rise in the interest rate on DAI borrowings. Stable collateral reduces arbitrageurs’
exposure to collateral risk and they require smaller premiums to absorb uninformed demand
and clear the market.

Timing

We consider a model with four periods – 0, 1, 2 and 3. In period 0, investors open a
CDP by depositing non-stable collateral, ETH, into a MakerDAO vault. Periods 1 and 2 are
trading rounds. In period 1, DAI tokens are borrowed (issued), and secondary market trading
occurs. There are two crypto-currencies traded in the market: non-stable ETH and stable
DAI. Cash is in dollars and pays a constant rate of return r. We assume that the investors
are small enough to affect either the Dollar rate or ETH prices, which are exogenously given.
DAI is in zero-net supply. In period 2, either ETH speculators and/or arbitrageurs borrow
DAI tokens in response to a demand shock for DAI in the secondary market. Finally, in
period 3, all investors close their CDPs and redeem all DAI tokens. No secondary market
trading occurs in period 3. Market clearing conditions in periods 1 and 2 determine DAI
prices.

0

Open CDP

1

Investors Borrow DAI
Arbitrageurs Long DAI

2

DAI Demand Shock Close CDP

3

We denote the price of DAI in period t as pt and its variance as σ2
t . DAI is liquidated

in period 3 and is exchanged to USD at the risky rate p3 with mean 1 and variance σ2
3.13

We denote by iB the DAI stability rate and by iL the saving rate. We assume iL < iB. The
return on ETH in the period t is a random variable RE

t with mean µE and v ariance σ2
E.

Agents

The model includes three types of investors: ETH speculators, arbitrageurs and unin-
formed DAI demand. ETH speculators fully invest their wealth W s

t in ETH due to their
sentiments about investing in cryptocurrency. Modelling the part of their portfolio invested

13This assumption is motivated by the fact that MakerDAO does not guarantee 1:1 parity of DAI to USD
during the liquidation event. Moreover, it is possible that governance body can vole to change the target
rate of 1 in a case of instability episodes.
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in other asset classes is out of scope of this model. ETH speculators decide every period
how much to leverage their position in ETH via issuing DAI. They do this by maximizing
their mean-variance expected utility function. ETH speculators’ beliefs about the expected
return on ETH is affected by their sentiments. Specifically, they believe that the expected
return on ETH depends on the state of nature st = G or B which occur with probabilities
π and 1− π respectively and that µE(G) > µE(B). The state of speculators’ beliefs can, for
example, depend on the recent past performance of ETH.

Arbitrageurs observe DAI price and step in to profit from any discrepancy between the
DAI price and unity. We denote their wealth in period t by W a

t but they can finance their
positions by borrowing any amount in USD at the Dollar rate r. If the DAI is traded at a
discount, arbitrageurs buy DAI in the secondary market and earn iL on their DAI holdings.
If DAI is traded at premium, arbitrageurs issue DAI tokens and put ETH collateral at highest
possible leverage ratio θ̄. Arbitrageurs are not sentimental with respect to ETH and believe
that Ethereum returns are serially uncorrelated and the expected value of ETH returns is
µA = µE. Both speculators and arbitrageurs have the same mean-variance risk preferences
with the risk aversion coefficient γ.

We model uninformed demand as a deterministic aggregate demand D from customers
who have either some intrinsic needs to purchase a stablecoin currency.14 The assumption
on deterministic nature of the demand is for simplicity and is not essential for the model.
We include it in the model to demonstrate comparative static on how additional demand can
amplify the volatility and mispricing of DAI.

We describe the structure of the model and investors demands backwards starting from
period 3. In period 3 there is no trading. Each investor type convert their ETH positions
into USD according to the realization of the return distribution. Furthermore, DAI is being
liquidated at the final liquidation price p3.

In periods 1 and 2, speculators’ demand is formed in the following way. Speculators
leverage their ETH positions by borrowing DAI and converting it into ETH. Their leverage
ratio θt is optimally calculated by maximizing their expected utility function given their
beliefs at time t. Their wealth W s

t evolves as shown in Equation (3):

W s
t+1 = W s

t

(
RE
t+1(1 + θtpt)− θtpt+1 − θtiB

)
, for t = 1, 2. (3)

The first term of this expression is the return earned on the leveraged position of ETH, the
14Uninformed demand captures DAI’s use in decentralized finance (DeFi) protocols, such as Compound, that
set interest rates and allocate funds automatically through algorithms.
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second term is the USD price of DAI the speculators buy back to release their collateral, and
the third term is the DAI borrowing fee the speculators in period t.

The arbitrageurs’ wealth changes according to the following dynamics:

W a
t+1 =

 W a
t

(
ωt(1 + iL)pt+1/pt + (1− ωt)(1 + r)

)
, ωt ≥ 0,

W a
t

(
−ωt

θ̄
RE
t+1 + ωt(pt+1 − pt(1 + r) + iB) +

(
1 + ωt

θ̄

)
(1 + r)

)
, ωt < 0.

(4)

The first equation corresponds to the case when arbitrageurs buy DAI in the secondary
market. They invest a fraction 1 − ωt of dollar wealth in dollars at the risk-free rate. The
remaining fraction of wealth is used to purchase DAI at pt and earn the DAI savings rate
iL. In period t + 1, they re-convert DAI back to dollars at pt+1. The dollar profit they
make by going long in DAI is (1 + iL)pt+1/pt. They typically engage in a long position to
exploit mispricing when DAI traded at a discount. Theoretically, they can also buy DAI at
a premium if profit earned on the saving rate iL exceeds losses from buying DAI at premium
and the risk of holding it.

The second equation corresponds to the case when arbitrageurs find it more profitable to
short-sell DAI. They invest a fraction 1 + ωt

θ
in dollars at the risk-free rate r. The remaining

fraction of wealth is used to purchase ETH collateral. They post |ωt|W
a
t

θ̄
of ETH collateral,

borrowing |ωt|W a
t amount of DAI and selling it for dollars in the secondary market. They

then invest the proceeds at the dollar risk-free rate r, and reconvert back to DAI in the next
period to make a profit. The dollar profit they make by short-selling 1 unit of DAI is given
by the term pt(1 + r)− pt+1 − iB. 15

Both types of investors maximize their corresponding mean-variance utility functions
subject to the evolution of wealth in Equations (3) and (4), and constraints on the share of
DAI borrowing to be bounded between 0 and θ̄, which is the maximum level of leverage an
investor can take:

Ut(W
j
t+1) = Et[W

j
t+1]− 1

2
γV art[W

j
t+1], 0 ≤ θt ≤ θ̄, j = s, a. (5)

Speculators’ optimal leverage ratio for period t = 1, 2 is given by

θt = max

0,min


ptµE(st)−Et[pt+1]−iB

γW s
t

− ptσ2
E + ct

p2
tσ

2
E + σ2

t − 2ptct
, θ̄


 , (6)

15The DAI savings and borrowing rates iL and iB are dollar reference rates, as the wealth of the investor is
in dollars.
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where ct = Covt[R
E
t+1, pt+1] is the conditional covariance between the Ethereum returns and

the DAI price. Given that the liquidation value of DAI is independent of Ethereum, we set
c2 = 0, E2[p3] = 1. Although arbitrageurs know that the objective Ethereum returns are
independent of the state st, a non-zero covariance arises endogenously due to speculators’
beliefs and their corresponding actions.

Arbitrageurs’ optimal DAI portfolio weight ωt is:

ωt =


max

{
0,

(Et[pt+1](1+iL)/pt−(1+r))p2
t

γWa
t (1+iL)2σ2

t

}
, U+

t (W a
t+1) ≥ U−t (W a

t+1),

−max

{
0,

θ̄(µA−θ̄(Et[pt+1]−pt(1+r))+θ̄iB)
γWa

t (σ2
E+θ̄2σ2

t )

}
, U+

t (W a
t+1) < U−t (W a

t+1),
(7)

where

U+
t (W a

t+1) = max
ωt≥0

Ut(W
a
t+1) (8)

U−t (W a
t+1) = max

ωt<0
Ut(W

a
t+1). (9)

Proof: See Appendix B

Equilibrium

To clear the market, selling demand for DAI should equal to buying demand in each
period. In period t, speculators borrow θtW

s
t of DAI and sell it to convert to ETH. At the

same time, arbitrageurs buy ωtW a
t DAI (or short sell if ωt < 0) and, in addition to it, in

period 2 we have uninformed demand D. Since there is no trading in periods 0 and 3, we
focus on the market clearing conditions for periods 1 and 2:

0 = −θ1W
s
1 + ω1W

a
1 , (10)

0 = −θ2W
s
2 + ω2W

a
2 +D. (11)

We solve the model numerically to from testable predictions about equilibrium prices
and quantities in the model. We assign the following parameter values: γ = 0.5, π = 0.5,
W s

0 = $350, D = $50, θ̄ = 0.66, σ3 = 0.0188. We calibrate the rest of the primitive
parameters of the model to the sample. Specifically, we set daily rates of returns to: iB =

0.0324/252, iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668,
µE(B) = 1.0033. Here we take µA being equal to the full sample average of daily ETH return,
while we take µE(G) equals to the 90-th percentile of ETH return distribution. Finally, σE
equals to the sample standard deviation of ETH daily returns.
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Testable Implications

Baseline Specification

Figure 2 plots equilibrium DAI prices over the three periods for both good and bad
states of nature (e.g., high and low ETH returns). The model generates both discounts and
premiums of DAI price over the par value of 1. Speculators deposit ETH collateral in period
0 and borrow DAI in period 1. In period 1, which is the first round of trading, market
clearing requires that arbitrageurs take a long position in DAI to balance the supply of DAI
by speculators. To induce a long position in period 1, arbitrageurs buy DAI at a discount. In
period 2, there is public demand for DAI. We assume the demand from public is independent
to the performance of ETH. DAI prices in period 2 correlate negatively with the states of
nature of ETH collateral. When the market is in the bad state, speculators do not leverage
ETH aggressively due to their pessimistic beliefs. As a result, arbitrageurs have to absorb
positive demand shock from public investors and short sell DAI. Given shorting DAI is risky
due to valuation effects of collateral, arbitrageurs charge a premium and hence are willing
to short sell only at high prices. In contrast, DAI trades at discount during the good state
due to excessive price pressure coming from speculators leveraging ETH and selling DAI.
Speculator supply of DAI exceeds public demand; therefore arbitrageurs take a long position
in DAI. To induce a long position, arbitrageurs purchase DAI at a discount in the good state.
In summary, the model generates a large premium during the bad state and discount during
the good state of nature.

Demand Shock

We now look at DAI prices in periods of low and high public demand. Figure 3 plots the
time series of DAI prices with respect to the magnitude of public demand D. Through this
exercise, we capture in a stylized way the demand for DAI due to DeFi lending protocols such
as Compound. Similar to the baseline specification, we have secondary market trading in
periods 1 and 2, and public demand shock occurs in period 2. Panel A features low demand
and Panel B features high demand. When public demand is low, arbitrageurs do not have to
short sell very aggressively. Moreover, they short sell at discounted prices because they can
recover their potential losses due to small positive profits on ETH collateral. When public
demand is high, arbitrageurs are required to short sell DAI to clear the market. Arbitrageurs
have to absorb this demand during the bad state through a peg-price premium. Therefore,
peg-premiums are higher in states of high demand.
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Volatility of collateral

We next look at the stability of DAI price with respect to ETH volatility. Figure 4 presents
equilibrium peg-prices with respect to ETH volatility. Panel A features a low volatility regime
and Panel B features a high volatility regime. When volatility is low, speculators borrow
more DAI creating an excess supply of DAI in the market. Therefore, arbitrageurs purchase
DAI at a discount to induce a long position to clear the market. When volatility is high,
speculators deleverage and arbitrageurs are required to short sell DAI to clear the market
in the bad state of the world. Arbitrageurs have to absorb this demand through a peg-price
premium. To further illustrate the effect of ETH volatility, Figure 5 presents comparative
statics results for DAI prices (Panel A), period 2 DAI price volatility (Panel B) and leverage
ratios (Panel C). Consistent with short-selling pressure on arbitrageurs, DAI prices in period
2 are higher in the bad state as volatility of ETH increases, increasing volatility of the peg.
The channel through which DAI prices are affected is through deleveraging by speculators.
In panel C, we document a decline in the leverage ratio of speculators in response to increased
ETH volatility (see Panel C). To conclude, the stability of DAI deteriorates as the volatility
of ETH returns increases.

Stability rate

The stability rate iB of DAI price is set by the MakerDAO governance body to target DAI
prices. Figure 6 presents comparative statics results for DAI prices in period 2 (Panel A),
and the leverage ratio (Panel B). An increase in the interest rate on DAI borrowings reduces
leverage. The reduction in DAI borrowings by speculators requires arbitrageurs to short sell
DAI to clear the market in period 2 in the bad state of the world. Therefore, in principle, the
stability rate can be used as a policy instrument to control leverage and target DAI prices.
However, we note that quantitatively the stability rate has little effect in stabilizing the peg.
Holding all else constant, increasing the stability fate from 0 per cent to 20 per cent increases
DAI prices approximately 10 basis points based on the numerical calibration.

Model extension: multiple collateral types
We extend the model by introducing the stablecoin USDC as an additional collateral

type to be used by arbitrageurs in stabilizing the peg. We assume that the expected value
of USDC returns is equal to Et[RU

t+1] = 1 + r given that the coin is pegged to USD and we
denote by V art[R

U
t+1] = σ2

U the variance of its returns. Furthermore, we assume that the
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USDC returns are uncorrelated with ETH and DAI returns.16 Given our initial assumption
that the speculators invest their entire wealth into ETH and choose their optimal leverage
ratio θt, it is easy to see that they do not invest to USDC and their portfolio choice remain the
same as in (6). Arbitrageurs, however, have an opportunity to reduce their risk by borrowing
DAI via USDC collateral in addition to ETH. Hence, the arbitrageurs’ wealth in this case
changes according to the following dynamics:

W a
t+1 =


W a
t

(
ωt(1 + iL)pt+1/pt + (1− ωt)(1 + r)

)
, ωt ≥ 0,

W a
t

(
−ωEt

θ̄
REt+1 − ωUt RUt+1 + (ωEt + ωUt )(pt+1 − pt(1 + r) + iB)

+
(

1 +
ωEt
θ̄

+ ωUt

)
(1 + r), ωUt , ω

E
t < 0.

(12)

Here, in the first equation, ωt ≥ 0 is the amount of DAI arbitrageurs purchase as a fraction
of wealth, while in the second equation arbitrageurs short sell −ωt fraction of their wealth,
where ωt = ωEt +ωUt < 0, ωEt < 0 is the amount of DAI arbitrageurs issue via ETH collateral
and ωUt < 0 is the amount of DAI arbitrageurs issue via USDC collateral. A negative sign
indicates that arbitrageurs sell DAI after issuing it. Note that the maximum leverage ratio in
USDC collateral is 1. The optimal fractions of DAI borrowing via ETH and USDC collateral
in the arbitrageurs’ portfolio are determined as:

ωt =

 max

{
0,

(Et[pt+1](1+iL)/pt−(1+r))p2
t

γWa
t (1+iL)2σ2

t

}
, U+

t (W a
t+1) ≥ U−t (W a

t+1),

ωUt + ωEt , U+
t (W a

t+1) < U−t (W a
t+1),

(13)

where the precise values of ωEt and ωUt are provided in Appendix B.
To demonstrate the effect of introduction of multiple collateral types on DAI prices, we

calculate the equilibrium DAI price assuming the expected return on USDC is equal to
µU = 1 + r = 1.015 and the standard deviation of USD returns σU = 0.0013. Figure 7
plots DAI prices over the three periods for both good and bad states of nature. With the
introduction of the stable collateral type, we note that premiums are smaller in the bad state
relative to the baseline specification in Figure 2. The intuition is as follows. In period 2,
there is public demand for DAI. When the market is in the bad state, speculators do not
leverage ETH aggressively due to their pessimistic beliefs. As a result, arbitrageurs have to

16The assumption of zero correlation between the USDC and DAI returns can be justified by the fact that
the speculators do not have sentiments about USDC as such; moreover, we show below that speculators
do not use USDC as collateral which reduces the dependency of DAI on USDC fluctuations. We provide
a proof that speculators only use ETH collateral instead of USDC in Appendix B
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absorb positive demand and short DAI. They can now short DAI through depositing USDC
collateral. An arbitrageur’s risk profile is reduced due to smaller volatility of USDC as well
as through diversification benefits as the two collateral types are uncorrelated. Therefore,
the extra arbitrage capital implies arbitrageurs charge a smaller premium and hence are
willing to short sell at lower premiums relative to the baseline equilibrium with only ETH
collateral. In the good state, however, speculator supply of DAI exceeds public demand;
therefore arbitrageurs take a long position in DAI. To induce a long position, arbitrageurs
purchase DAI at a discount in the good state. The discount in a good state is similar to
the discounts observed in an equilibrium with only ETH collateral. The reason for this
asymmetry is because the addition of USDC collateral provides additional arbitrage capital
for the case when arbitrageurs are required to short sell DAI, but not when they take a
long position. In summary, the model with USDC collateral generates smaller premiums and
peg-price deviations relative to single collateral case.

To illustrate the effect of USDC volatility, Figure 8 presents comparative statics results
for the share of USDC collateral (Panel A) and DAI price volatility (Panel B). The share
of stable collateral, which we define as ωUt

ωUt +ωEt
, is a decreasing function in USDC volatility.

As the share of USDC collateral falls, so does the ability of arbitrageurs to provide sufficient
capital to eliminate peg-price deviations, resulting in higher peg-price volatility.

5 Empirical Evidence

Individual CDP Data

We start our analysis with investigating investors’ behaviour in response to changes in
ETH returns, volatility and policy rates. In order to do this we use the entire history of CDP
transactions for single collateral DAI. This records every transaction made by an individual
CDP, including amounts of ETH collateral deposited, DAI borrowed, and the timestamp of
each transaction. There are 8 types of actions an investor can execute. Actions using ETH
collateral involve opening and closing the vault, depositing and withdrawing collateral, and an
action to transfer ownership of the ETH vault across digital wallet addresses. Actions using
DAI involve borrowing and redeeming DAI tokens, and when the vault is under-collateralized
it triggers a "bite" action in which the collateral is liquidated to pay off the DAI loan.

Using each individual CDP, we calculate a real-time leverage ratio for each CDP, as
illustrated in Equation (14). We take the total stock of collateral ETHi,t locked in a CDP i at
time t, and the amount of borrowings DAIi,t locked in the CDP at time t. We then calculate
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the dollar prices of DAI borrowings and ETH collateral, PDAI,t and PETH,t respectively, to
obtain the dollar value of each component.

LRi,t =
PDAI,t ×DAIi,t
PETH,t × ETHi,t

× 100 (14)

To prevent investors from over-leveraging, the system has a "bite" action which is a
liquidation event. A bite occurs when the leverage ratio calculated in Equation (14) is above
the maximum allowable leverage of ETH, which is 2

3
× 100 per cent.17 Table 3 documents

summary statistics of DAI borrowing, ETH collateral, the leverage ratio and liquidations.
The sample contains a total of 11,718 CDPs. The average leverage is 30.55 per cent, well
below the threshold leverage of 66.67 per cent. 7,097 CDPs have liquidated at least once
during their lifetime, with a maximum number of liquidations of 14 for a single CDP.

We plot the time series of the leverage ratio, DAI borrowings and ETH collateral for two
individual CDPs in Figure 9. In the top panel (CDP id 5199), we plot the time series for
the CDP with the maximum DAI borrowings and ETH collateral over the full sample. This
CDP is an example of an investor who maintains a leverage ratio averaging 30 to 40 per
cent. This is well below the threshold level of 66%. In the bottom panel of Figure 9, we
have an investor (CDP id 1272) that has the maximum number of liquidation events (14) in
our sample. For this CDP, we observe that the leverage ratio calculated based on end-of-day
ETH and DAI prices rises above the threshold. In each case, this triggers a liquidation event,
when DAI borrowings are reset to zero and the investor’s ETH collateral value declines to
pay off the debt. ETH collateral value declines by more due to liquidation fees, that amount
up to 15% of the value of DAI borrowings.

We plot the density of leverage ratios for CDPs over the full sample from January 2017
to November 2019 in Figure 10. In the top panel, we stratify our sample based on periods of
extreme positive returns (greater than +2 std) and extreme negative returns (less than -2 std).
We find that periods of negative extreme events are associated with a higher leverage ratio,
all else equal, with the density shifted to the right. The effects of extreme negative returns
on system leverage is mechanical: negative returns result in a decline in ETH collateral, and
an increase in system leverage, all else equal. In the bottom panel, we stratify the sample
into high and low interest rates, where high interest rates are above 18 per cent, where the
peak stability rate is 20.52 per cent. Low interest rates are below 1 per cent. Noticeably,

17For more details on the nomenclature of each CDP action, we refer readers to MakerDAO documentation
https://docs.makerdao.com/DAI.js/single-collateral-DAI/collateralized-debt-position.

21

https://docs.makerdao.com/DAI.js/single-collateral-DAI/collateralized-debt-position


we find a bimodal distribution with high interest rates, with a much higher density toward
small loans when interest rates are excessively high. This is intuitive: high DAI rates choke
DAI borrowings and contract leverage.

We now formalize determinants of DAI leverage through a panel regression specification
in Equation (15):

LRi,t = αi + β1RETH,t + β2σETH,t + β3SFeet + ut, (15)

where the dependent variable is the leverage ratio LRi,t for CDP i at time t. The set of
independent variables include the daily ETH return (RETH,t), intra-day volatility of collateral
(σETH,t) defined as the standard deviation of hourly returns, and the stability rate on DAI
borrowing. Individual CDP fixed effects is captured by αi, and controls for idiosyncratic
risk preferences of an individual CDP. For example, more risk averse investors typically
have a much lower leverage ratio (typically 30 per cent) to avoid liquidation events. Risk-
loving investors are likely to have a leverage close to the maximum and face a much higher
probability of liquidation. To create a panel with sufficient observations for all CDPs, we
filter CDPs that have transactions over 30 days in the sample.18 This gives us a total of 456
individual CDPs with at least 30 daily observations each.

The results are summarized in Table 4. The dependent variable is the leverage ratio. In
column (I), a 1 per cent increase in returns reduces CDP leverage by 0.22 and 0.19 percentage
points respectively. In column (II), we replace RETH variable with dummy variables R+

ETH

and R−ETH that capture extreme positive (>+2std) and negative (<-2std) returns in ETH.
The results indicate leverage is sensitive to periods of extreme positive and negative returns,
with a difference in leverage of approximately 6 percentage points between low and high
return states. In column (III), a 1 per cent increase in ETH volatility reduces leverage by 0.19
percentage points. In column (IV), a 1 per cent increase in the stability rate reduces leverage
by 0.11 percentage points. This elasticity is quantitatively small: a maximum stability rate
of 20 percentage points in the sample leads to only a 2 percentage point decline in leverage,
all else equal. In column (V), the results are robust to a specification including ETH returns,
intra-day volatility and the stability rate. The CDP data allows us to measure effects on
other outcome variables, including a liquidation event for an individual CDP, known as a
"bite", and the total amounts of DAI borrowing and ETH collateral. We conduct a panel
analysis of the determinants of CDP liquidation, borrowing and collateral in Appendix C.

18Statistical bias can occur due to an unbalanced panel with individual CDPs having too few observations.
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Fundamentals of peg-price deviations

Figure 11 documents a scatter plot of DAI intra-day volatility and ETH intra-day volatil-
ity, and documents a relationship between peg stability is a function of collateral risk.
Through the lens of the model, an increase in collateral risk reduces the capacity of ar-
bitrageurs to deposit ETH collateral, borrow DAI tokens and sell them in the secondary
market at a premium. The limits to arbitrage cause peg-price deviations to persist, and an
increase in peg volatility.

A second model prediction is that DAI peg-price premiums occur precisely in periods of
negative ETH returns. Declines in the price of collateral result in liquidation events. The
corresponding decline in supply causes peg-prices to increase, all else equal. We empirically
test the contemporaneous negative correlation between the DAI price and ETH returns in
Equation (16):

Yt = β0 + β1RETH,t + β2σETH,t + β3SFeet + ut (16)

Here, the outcome variable Yt is the DAI peg-price deviation ∆, and the intra-day volatil-
ity σDAI . Intra-day volatility is calculated as the square root of the average sum of squared
hourly returns over the trading day. The explanatory variable is RETH and σETH , which
are measures of returns and intra-day volatility of ETH. All variables are measured in basis
points and the stability fee is annualized and in percentage points. The results are summa-
rized in Table 5. In columns (I) through to (IV), the outcome variable is peg-price deviations.
In columns (V) through to (VIII), the outcome variable is intra-day volatility. In a specifica-
tion controlling for ETH returns and intra-day volatility and the stability rate, a 1 per cent
(100 basis point) increase in ETH returns is associated with a 2.3 basis point decline in DAI
prices, and a 2.4 basis point increase in DAI volatility. A 1 per cent increase in ETH volatil-
ity increases DAI prices and volatility by 6.4 basis points and 15.7 basis points respectively.
In columns (II) and (VI), we replace RETH , t with R−ETH and R+

ETH . We estimate a more
negative correlation between DAI prices and ETH returns in periods of extreme negative
ETH returns. Periods of extreme negative returns are associated with a price increase of
72.4 basis points, all else equal To understand the mechanism behind extreme negative ETH
returns and DAI peg-price premiums, we turn to the liquidation mechanism.
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DAI liquidation mechanism

Periods of extreme negative collateral returns result in forced liquidation and a penalty.
On March 12th, 2020, in an extreme crypto market event ETH collapsed by 50%. We plot
in Figure 12 the USD price response, the ETH price and DAI liquidations. Congestion
on the blockchain led to high gas prices, which in turn led to delays for Vault owners to
attempt to add more collateral and redeem DAI tokens to their Vaults within the Protocol’s
one-hour window.19 The drop in collateral value triggered liquidation auctions for around
1,200 Vaults, and led to a peak liquidation value of approximately 10 million USD on March
12th. Pressure on the DAI peg is due to the failure of the auction mechanism. Keepers,
who sell DAI tokens for collateral from the auctions, did not have sufficient DAI liquidity to
participate in the auctions. To burn DAI from liquidations, the governance body decided to
auction MakerDAO tokens (MKR) as an effective open market operation, diluting MKR’s
value. 20

To formally test the effects of liquidations on the DAI-ETH return correlation, we test
the regression specification in Equation (17). The outcome variable Yt are peg-price premi-
ums and DAI intra-day volatility. The results are summarized in Table 6. In columns (II)
and (III), the dependent variable is peg-price deviations, and in columns (IV) and (V), the
dependent variable is intra-day volatility. The baseline specification regresses on the mea-
sure of liquidations, measured in millions USD. Consistent with our hypothesis: a 1 USD
million increase in liquidations is associated with an increase in the DAI price of 30.5 basis
points and a 42.5 basis point increase in intra-day volatility. Controlling for ETH returns,
intra-day volatility and the stability rate in column (III), a 1M USD increase in DAI liq-
uidations increases DAI prices by 28.7 basis points, all else equal. Using this estimate, the
March 12th, 2020 liquidation auction of 10 USD Millions leads to an approximate 290 basis
point premium. DAI prices increased from 1.02 to 1.08 USD from March 11th to March
12th. A back-of-the envelope calculation suggests that up to 50 per cent of the DAI price

19Gas is a measure of the amount of ether (ETH) a user pays to perform a given activity, or batch of
activities, on the ETH network. These transaction costs are analogous to commissions on exchanges,
however these costs are paid to the miners who authenticate the transactions on the Ethereum blockchain.
These prices are denominated in GWEI which is equivalent to one-billionth of one ETH, and they are
typically an average of 10 GWEI per transaction. The average gas prices temporarily spiked to over 100
GWEI per transaction from the 10 GWEI average seen just one day prior. Critically, these units of GWEI
provide a proxy for transactions’ latency time. Gas prices, as well as daily amounts of Ether Gas used,
are provided in https://ethgasstation.info/. For more information see https://blockonomi.com/
ETH-gas-prices-surged/

20We provide more detail on dynamics of the MKR price in Appendix D. For more details on the MakerDAO
liquidations in March 2020, see MakerDAO’s public release on the event https://blog.makerdao.com/
the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/.

24

https://ethgasstation.info/
https://blockonomi.com/ETH-gas-prices-surged/
https://blockonomi.com/ETH-gas-prices-surged/
https://blog.makerdao.com/the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/
https://blog.makerdao.com/the-market-collapse-of-march-12-2020-how-it-impacted-makerdao/


increase on March 12th, 2020 is due to liquidations. The remaining premiums are likely due
to demand-side factors for DAI, such as its role as a store of value, investor demand for safety
and liquidity benefits that stablecoins provide. In Appendix C, we use the individual CDP
data to conduct a panel analysis of the determinants of CDP liquidation. In Appendix E, we
conduct further tests of the liquidation mechanism, including testing for the dynamic effects
of liquidations on DAI prices and ETH returns.

Yt = β0 + β1Liquidationt + β2RETH,t + β3σETH,t + ut (17)

Secondary market demand

We identify two sources of secondary market demand. The first source of demand we
test is the demand for DAI in DeFi lending protocols such as Compound. In Figure 13, we
report the total borrowing and lending of DAI on the Compound protocol, and the ratio of
borrowing and lending, which is measured as the utilization rate.21 Defining utilization Du in
Table 7, we regress the utilization rate on ETH returns and volatility. We find utilization is
positively related to ETH volatility. In columns (III) and (IV), we regress peg-price deviations
on the utilization rate. We find a 1 per cent change increase in utilization is associated with
a 1.7 basis point increase in the DAI premium. This is robust to controlling for ETH returns
and volatility. A second source of demand measures growth in aggregate trading volume in
exchanges. DefiningDv as the per cent change in aggregate trading volume of DAI, in column
(II) we find trading volume growth increases in periods of negative ETH returns and high
ETH volatility. In column (V), we find a 1 per cent increase in trading volume is associated
with a 0.19 basis point increase in the DAI premium. This effect, however, is insignificant
after controlling for ETH returns and volatility.

DAI Stability rate

The stability rate, which is a cost on DAI borrowings, is implemented by the MakerDAO
protocol as a way to control system leverage. We found previously that using the cross-
section of CDPs that a 100 basis point increase in the stability rate reduces leverage by 10
basis points. We now estimate price effects of the stability rate using the method of local

21We focus on Compound as it is the largest DeFi lending protocol for DAI. The size of the borrowing
and lending as a fraction of DAI tokens is significant, and total supply of DAI in compound can exceed
DAI tokens in circulation due to borrowers re-depositing DAI tokens in the protocol. See https://www.
coindesk.com/there-are-more-DAI-on-compound-now-than-there-are-DAI-in-the-world for more
details.

25

https://www.coindesk.com/there-are-more-DAI-on-compound-now-than-there-are-DAI-in-the-world
https://www.coindesk.com/there-are-more-DAI-on-compound-now-than-there-are-DAI-in-the-world


projections Jordà (2005). The outcome variables include the leverage ratio, the DAI/USD
price. The change in the outcome variable, Yt+h − Yt−1, is projected on the level of the
interest rate SFee in Equation (18).

Yt+h − Yt−1 = α + βhSFeet +
L∑
k=1

δkSFeet−k +
L∑
k=1

γk(Yt−k−1 − Yt−k−2) + controlst + ut

h = 0, 1, 2, ... (18)

The specification allows for feedback effects using lagged values of the explanatory variable
and outcome variable and additional controls.22 We use 1 lag in the baseline specification.
Tracing the effects of βh provides an impulse response of the stability rate on the DAI price
and the leverage ratio. The results of a positive 100 basis point shock is presented in Figure
14. Consistent with our hypothesis, we find a positive effect on DAI prices over a long
horizon, with a 100 basis point hike in the stability rate increasing DAI prices by 30-40 basis
points, and reducing aggregate leverage by a peak long-run effect of 1 per cent.23

Multiple Collateral types and peg stability

The MakerDAO protocol introduced USDC collateral in response to the mass liquidations
and peg-price stability of the ETH price collapse on March 12th, 2020. The peg stability
module (PSM) was introduced on December 18th, 2020, and is indicated by the dotted line
in Figure 15. In the PSM, there is a smart contract that always enforces a peg of 1 USDC=1
DAI. This allows users to swap USDC with DAI at a 1:1 rate without needing to create a
vault and deposit collateral. In this way, there is no liquidation risk, however users need
to make a one-off fee to use this. We hypothesize the introduction of the USDC collateral
and the swap arrangement of USDC for DAI at a 1:1 rate increase peg stability through
decreasing limits to arbitrage. This increases the incentive for arbitrageurs to close peg-price
deviations using the PSM.24

22For testing price effects, we use lagged and contemporaneous values of ETH returns and the leverage ratio.
For testing the leverage ratio, we use lagged and contemporaneous values of ETH returns and the DAI
price.

23We rationalize differences between the panel regression specification and the local projections due to (i)
cross-section versus aggregate system leverage and (ii) the time horizon of the effect. While the panel
regression specification estimated in Equation (15) is examining the daily change in leverage, the local
projections allows us to examine the long-run effects of an increase in the stability interest rate.

24To understand why, note that investors can swap USDC for DAI in the event of a DAI premium. However,
in the case of risky ETH collateral, there is no similar arbitrage motive. This is because the realtime value
of the underlying collateral that would be released or absorbed is uncertain. A risky arbitrage investor that
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We test three implications of the introduction of stable collateral. First, we hypothesize
that DAI volatility is strongly correlated with USDC volatility and peg-prices in the post
USDC collateral period. We empirically test the muted correlation between the DAI price
and ETH returns in Table 8. We divide our sample into a pre and post USDC collateral period
based on the introduction of USDC collateral by the MakerDAO governance on March 12th,
2020. We run a baseline specification regressing peg-price deviations and intra-day volatility
on ETH returns, ETH volatility, USDC peg-prices and USDC volatility, and the stability
rate. Columns (I) and (II) are estimated for the pre USDC collateral period, and columns
(III) and (IV) for the post USDC collateral period. The results suggest a high sensitivity of
DAI prices and volatility to USDC volatility in the post USDC collateral period. A 1 basis
point increase in USDC volatility increases DAI peg-prices and volatility by 5.04 and 7.68
basis points respectively.

Second, we hypothesize that the introduction of USDC collateral led to an increase in
peg-sustaining arbitrage. Figure 15 plots the decomposition of DAI borrowing by collateral
type. To construct the share of stablecoin collateral, we combine both stablecoin collateral
and stablecoin borrowing via the PSM. This accounts for up to 30% of DAI borrowing over
the sample of March 12th, 2020 to March 31st, 2021. The variable share which is equal
to DAI borrowings from stable collateral types as a fraction of aggregate DAI borrowings.
Stable collateral types include stablecoins USDC, TrueUSD and Tether. We also construct
a variable Ratio which measures the per cent change in ETH volatility relative to USDC
volatility. In Equation (19), we regress the share of stablecoin collateral against Ratio.

sharestablecoin,t = α + β1Ratiot + β2RETH,t + ut (19)

where

sharestablecoin =
DAIusdc +DAIusdt +DAItusd

DAItotal
× 100, (20)

Ratio =

(
σETH
σUSDC

− 1

)
× 100. (21)

In this specification, we determine the fundamentals driving the share of stablecoin col-
lateral. The main determinant is the ratio of ETH to USDC volatility, and tests the model
prediction that arbitrageurs choose to increase the share of USDC collateral in response to

borrows DAI via ETH collateral would lose money if the market value of ETH has fallen over the period.
Valuation losses on their ETH collateral are larger than DAI secondary-market price deviations from the
peg.
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a relative increase in ETH volatility. The results are summarized in Table 9. In column (I),
we run a baseline specification regressing the share on ratio. A 1 per cent change in the
ratio of ETH to USDC volatility increases the share of stable collateral by 0.01 percentage
points. To test the effect on peg efficiency, we run equation (22), which regresses an outcome
variable Yt on the share of stable collateral. Columns (II) through to (IV) examine the effect
of the share of stable collateral on peg-price deviations, and columns (V) through to (VII)
examine effects on intra-day volatility of the DAI peg. A 1 percentage point increase in the
share of stable collateral reduced peg-prices by 2.1 basis points, and intra-day volatility by
2.4 basis points. These results are robust to adding controls such as returns and volatility of
ETH, however, get absorbed by adding controls for USDC peg prices and volatility.

Yt = α + β1sharet + β2RETH,t + β3σETH,t + ut. (22)

Our final test of the effects of introducing USDC collateral is through documenting a
convergence of the DAI/USD price to the USDC/USD price. Figure 16 plots the stablecoin
prices and intra-day volatility for USDC and DAI. A visual inspection of Figure 16 shows that
DAI peg-price deviations and intra-day volatility are larger than USDC. While the volatility
decline occurred immediately after the PSM launch date, we note a decline in absolute peg-
deviations began 2 to 3 months prior, which is coincident with an increase in the share of
USDC collateral in September 2020. To assess the increase in peg efficiency, we test a DiD
design in Equation (23), where the outcome variable Yt is either the absolute level of peg
deviations, |∆|, or the intra-day volatility of peg deviations σt, both measured in basis points.
The indicator for treatment Ti takes on a value of 1 for DAI and 0 for USDC. The coefficient
δ measures the net effect of peg stabilization relative to any trends observed in USDC.

Yt = α0 + βTi + γpostt + δpostt × Ti + ut (23)

The results are summarized in Table 10. In columns (I) and (II), we impose a standard
structural break test by regressing the absolute size and volatility of USDC peg-price devi-
ations on a post dummy, which takes a value of 1 on December 18th, 2020, which was the
date of the PSM launch. We observe on average a 67.9 basis point decline in the absolute
level of peg deviations, and a decline in intra-day volatility of 71.3 basis points. The results
of our differences-in-differences analysis for the full sample are reported in columns (III) and
(IV) of Table 10. There is a net convergence in the stability of peg deviations during the
post PSM period, with a DiD coefficient of post × T of -83.8 basis points. Similarly, we
observe a decline in intra-day volatility of 72.0 basis points relative to USDC. The results
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are robust to using a balanced sample, starting on January 8th, 2020. In columns (V) and
(VI), we find a decline in the absolute size of peg-price deviations of 101.8 basis points, and
a decline in intra-day volatility of 61.1 basis points, relative to USDC over the balanced
sample. The results suggest the increase in peg efficiency is attributed to reduced limits to
arbitrage. The swap arrangement enables arbitrageurs to short sell DAI when it trades at a
premium through swapping USDC for DAI. In Appendix F we provide further econometric
tests to show the peg is dynamically more stable in the post PSM period.

6 Conclusion
In this paper we investigate the importance of collateral risk for stability of the DAI

stablecoin peg. To shed light on the fundamentals of peg-price dynamics, we introduce a
model setup that has three agents: investors that deposit risky collateral and borrow a
fraction as DAI tokens, arbitrageurs that short DAI when the peg trades at a premium,
and a demand shock for DAI in period 1 from investors that seek DAI to earn savings and
gain utility from its use in DeFi applications. In equilibrium, DAI peg-prices are dependent
on investors’ beliefs about the state of the collateral. The model generates peg premiums
(discounts) in the bad (good) state, and a positive relationship between volatility of the peg
and volatility of the collateral. Leverage of investors falls in the bad state, and peg-deviations
are dampened through increased arbitrage capital, and an introduction of stable collateral
types for arbitrageurs to borrow against.

We provide empirical evidence to support model predictions. First, we document the
negative correlation between DAI prices and ETH returns. Negative correlations are higher
in periods of extreme returns. Second, we find evidence of deleveraging in periods of high
volatility. Using the universe of collateralized debt positions, we find that leverage is lower in
periods of extreme negative returns and high volatility of collateral. Third, at the aggregate
level, we find a hike in the stability rate, which is the interest charged on DAI borrowings,
has effects of reducing aggregate system leverage and increasing DAI prices. Fourth, we
document a trend toward peg-price stability since the advent of the peg stability module
in December 2020. Stable collateral increases the capacity for arbitrageurs to step in and
absorb differences between the primary and secondary market rates.

For future research, we point to implications for regulations of stablecoins with cryp-
tocurrency collateral. Both the model and empirical evidence point to stable collateral as
a necessary condition for a stable peg. While alternative tools like rates on borrowing the
stablecoin can in principle induce an effective change in supply, risky collateral leads to an
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increased volatility of the peg. A tokenized digital version of the dollar, such as a central
bank digital currency issued by the Federal Reserve, can in principle provide a dominant so-
lution for stable collateral that minimizes custodial risk. The relationship between volatility
of the peg and collateral risk can also shed light on how global stablecoins, like Facebook’s
Libra/Diem, should be designed. Our bottom line: stablecoins need to be backed by liquid,
risk-free reserves.
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Figures

Figure 1: DAI price, ETH price, Leverage, Stability rate
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Note: This figure plots Panel A: DAI price, Panel B: ETH price Panel C: leverage in ETH vaults, and Panel
D: the interest rate on DAI borrowings. Sample period is from April 13th, 2018 to March 31st, 2020.
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Figure 2: DAI prices across good and bad states of ETH collateral
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Note: This figure plots DAI prices over the three periods for both good and bad states of nature. The primitive
parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350, D = $50, θ̄ = 0.66, σ0 = 0.0188, iB = 0.0324/252,
iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of
the parameters in the models are computed numerically by optimizing the expected utilities (5) subject to
wealth dynamics (3) and (4) and solving the model backwards in time.
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Figure 3: DAI prices for low and high uninformed demand in period 2
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Note: This figure plots DAI prices over the three periods for both good and bad states of nature. Panel
A corresponds to low demand case D = $10, panel B corresponds to high demand case D = $80. The
primitive parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350, θ̄ = 0.66, σ0 = 0.0188, iB = 0.0324/252,
iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of
the parameters in the models are computed numerically by optimizing the expected utilities (5) subject to
wealth dynamics (3) and (4) and solving the model backwards in time.

36



Figure 4: Peg-Price Dynamics: High and Low Volatility of Collateral
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Note: This figure plots DAI prices over the three periods for both good and bad states of nature. Panel
A corresponds to low volatility case σE = 0.02, panel B corresponds to high volatility case σE = 0.046.
The primitive parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350, D = $50, θ̄ = 0.66, σ0 = 0.0188,
iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest
of the parameters in the models are computed numerically by optimizing the expected utilities (5) subject
to wealth dynamics (3) and (4) and solving the model backwards in time.
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Figure 5: DAI prices, volatility and leverage across different parameterization of volatility of
ETH collateral
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Note: This figure plots DAI prices, volatility and leverage as a function of ETH volatility, holding all other
parameters constant. Panel A corresponds to DAI prices in the good and bad states respectively. Panel B
corresponds to peg-price volatility, calculated as the standard deviation of peg-prices across the two states
of collateral. Panel C corresponds to DAI leverage, calculated in per cent. The primitive parameters are as
follows: γ = 0.5, π = 0.5, W s

0 = $350, D = $50, θ̄ = 0.66, σ0 = 0.0188, iB = 0.0324/252, iL = 0.0139/252,
r = 0.015/252, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models
are computed numerically by optimizing the expected utilities (5) subject to wealth dynamics (3) and (4)
and solving the model backwards in time.
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Figure 6: DAI price and leverage ratio across different parameterization of stability rate on
DAI borrowings
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Note: This figure plots DAI prices and leverage as a function of the interest rate on DAI borrowings. Panel
A corresponds to DAI prices in the good and bad states respectively. Panel B corresponds to DAI leverage,
calculated in per cent. The primitive parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350, D = $50,
θ̄ = 0.66, σ0 = 0.0188, iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668,
µE(B) = 1.0033. The rest of the parameters in the models are computed numerically by optimizing the
expected utilities (5) subject to wealth dynamics (3) and (4) and solving the model backwards in time.
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Figure 7: DAI price for Multiple Collateral System
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Note: This figure plots DAI prices over the three periods for both good and bad states of nature. In addition
the ETH collateral, arbitrageurs now have access to USDC collateral, with volatility σU = 0.0013. The
primitive parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350, D = $50, θ̄ = 0.66, σ0 = 0.0188, iB =
0.0324/252, iL = 0.0139/252, r = 0.015/252, σE = 0.0459, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033.
The rest of the parameters in the models are computed numerically by optimizing the expected utilities (5)
subject to wealth dynamics (3) and (4) and solving the model backwards in time.
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Figure 8: Comparative statics with respect to USDC volatility: Panel A: Share of stable
Collateral used by arbitrageurs Panel B: Volatility of DAI peg
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Note: This figure plots the share of USDC collateral and the DAI volatility as a function of the USDC
volatility. Panel A corresponds to the share of USDC collateral deposited by the arbitrageur. Panel B
corresponds to DAI volatility. The primitive parameters are as follows: γ = 0.5, π = 0.5, W s

0 = $350,
D = $50, θ̄ = 0.66, σ0 = 0.0188, σU = 0.0013, iB = 0.0324/252, iL = 0.0139/252, r = 0.015/252,
σE = 0.0459, µA = 1.0033, µE(G) = 1.0668, µE(B) = 1.0033. The rest of the parameters in the models are
computed numerically by optimizing the expected utilities (5) subject to wealth dynamics (3) and (4) and
solving the model backwards in time.
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Figure 9: Time Series of Leverage Ratio, DAI borrowings and ETH collateral for two CDPs.
Top panel: CDP id: 5199. Bottom panel: CDP id: 1272
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Note: Top panel: Time series of leverage ratio (left) and DAI borrowings and ETH collateral for CDP 5199.
Bottom panel: Time series of leverage ratio (left) and DAI borrowings and ETH collateral for CDP 1272.
CDP transactions are aggregated to a daily frequency, with sample period from April 13th, 2018 to November
18th, 2019.

42



Figure 10: Distribution Conditional on ETH Returns
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Note: This figure plots the kernel density of the leverage ratio for all CDPs. Top panel: Distributions are
conditioned on periods of high and low returns of ETH, where high returns corresponds to returns that
exceed +2std of ETH returns, and low returns corresponds to returns that are less than -2 std of ETH
returns. Bottom panel: Distributions are conditioned on periods of high and low interest rates. High interest
rates correspond to the distribution of CDP leverage when the DAI stability rate reached its peak of 19.0%.
Low interest rates correspond to the distribution of CDP leverage when the DAI stability rate is at the floor
of 0%. CDP liquidations, when the action is "bite" and DAI borrowings are zero, are excluded from the
sample. CDP transactions are aggregated to a daily frequency, with sample period from April 13th, 2018 to
November 18th, 2019.
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Figure 11: DAI and ETH intra-day volatility
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Note: This figure plots a scatter plot of intra-day volatility of DAI and ETH. Intra-day volatility is measured
in basis points. Price data for currencies obtained from coinapi and use intra-day prices from the Bitfinex
exchange. Sample period is from November 18th, 2019 to March 31st, 2021, corresponding to the period of
Multi Collateral DAI.
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Figure 12: DAI price and liquidations response to negative price shock of ETH in March
2020
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Note: DAI price in USD, ETH price in USD and DAI liquidations during the month of March 2020. Shaded
areas indicate the period when the price of ETH fell approximately 50% from March 12th to March 13th.
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Figure 13: DAI borrowing and lending in Compound Protocol
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Note: Total DAI borrowing, lending and utilization rate in DeFi protocol Compound. Utilization rate is
defined as the ratio of total borrowing to total lending. Sample period is from January 1st, 2020 to March
31st, 2021.
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Figure 14: Local Projections of a 100 basis point shock to the stability rate on the DAI price
and the leverage ratio
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Note: This figure illustrates the response of aggregate system leverage and the DAI price to a positive 100
basis point shock to the stability rate, using the method of local projections. Leverage ratio is based on
aggregate measures of DAI borrowings and ETH collateral. Stability rate is cost of borrowing DAI from
ETH vaults. Sample period is from November 18th, 2019 to March 31st, 2021, corresponding to the period
of Multi Collateral DAI. 1 lag is included in the baseline specification. Gray area denotes 95% confidence
interval using White heteroscedasticity-robust standard errors.
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Figure 15: DAI/USD Prices
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Note: Left: This figure plots the deviations of the DAIUSD peg from parity. A positive deviation indicates
DAIUSD trades at a premium. Sample period is from 11/19-03/21. Right: This figure plots the breakdown
of total DAI borrowing by Vault. DAI borrowing is denominated in USD Million. Vault types include ETH,
USDC, WBTC (synthetic BTC) and other. Sample period is from 18th November, 2019 to March 31st, 2020
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Figure 16: DAI vs. USDC: Absolute peg-price deviations and volatility
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Note: This figure plots average monthly stablecoin prices and intra-day volatility for the treatment (DAI)
and the control group stablecoins. The treatment stablecoin is DAI. The control stablecoin is USDC. The red
dotted line indicates the date of structural change of December 18th, 2020 used in the baseline specification.
Sample is April 13th, 2018 through to March 31st, 2021.
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Tables

Table 1: Summary statistics

count mean std min 25% 50% 75% max

RETH(%) 798.0 0.17 5.80 -58.22 -2.34 0.11 3.02 23.31
∆ (USD) 798.0 0.01 0.01 -0.04 0.00 0.01 0.01 0.08
Stability Rate (%) 798.0 3.24 6.34 0.00 0.02 0.04 2.50 20.52
Leverage Ratio (%) 798.0 29 5 17 26 30 33 44

Note: This table presents summary statistics of key variables in empirical analysis. RETH measures daily
returns in ETH in per cent. ∆ measures deviations from the peg and are expressed in USD (1 USD=100 basis
points). The stability rate is an interest rate on DAI borrowing and is expressed in per cent (annualized).
The leverage ratio is the ratio of total DAI borrowings to total ETH collateral. Sample period is from April
13th, 2018 to March 31st, 2021.

Table 2: Correlation matrix
RETH ∆ Stability Rate Leverage Ratio

RETH 1.000 -0.044 -0.015 -0.209
∆ -0.044 1.000 -0.190 0.250
Stability Rate -0.015 -0.190 1.000 -0.340
Leverage Ratio -0.209 0.250 -0.340 1.000

Note: This table presents pairwise correlation of key variables in empirical analysis. RETH measures daily
returns in ETH in per cent. ∆ measures deviations from the peg and are expressed in USD (1 USD=100 basis
points). The stability rate is an interest rate on DAI borrowing and is expressed in per cent (annualized).
The leverage ratio is the ratio of total DAI borrowings to total ETH collateral. Sample period is from April
13th, 2018 to March 31st, 2021.
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Table 3: CDP Summary Statistics

count mean std min 25% 50% 75% max

DAI (USD Million) 11,718 .015 0.16 0.00 0.00 0.00 0.002 7.87
ETH (USD Million) 11,718 0.04 0.50 0.00 0.00 0.00 0.005 24.96
Leverage Ratio (%) 11,718 30.55 19.01 0.00 13.43 33.02 44.79 84.49
Liquidations 7,097 1.06 0.40 1 1 1 1 14

Note: This table presents summary statistics of key variables of individual CDP data. DAI and ETH measure
the total DAI borrowings and ETH collateral of each individual CDP, measured in USD million. The leverage
ratio is the ratio of total DAI borrowings to total ETH collateral. Liquidations measures the number of times
a CDP leverage ratio is above the threshold governed by the liquidation price. Only CDPs with at least 30
days of observations are included in the sample. Sample period is from April 13th, 2018 to November 17th,
2019, which corresponds to the period of single collateral DAI.
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Table 4: Determinants of CDP Leverage
I II III IV V
LR LR LR LR LR

RETH -0.22*** -0.23***
(0.02) (0.02)

R+
ETH -3.84***

(0.36)
R−ETH 2.07***

(0.55)
σETH -0.19*** -0.25***

(0.05) (0.05)
SFee -0.11** -0.10**

(0.05) (0.05)
Intercept 40.90*** 41.01*** 42.01*** 41.95*** 43.13***

(0.42) (0.43) (0.55) (0.51) (0.56)
R-Squared 0.010 0.006 0.002 0.003 0.016
Observations 24,977 25,002 25,002 25,002 24,977
Number of id 456 456 456 456 456
id Fixed Effects Yes Yes Yes Yes Yes

Note: This table regresses the leverage ratio on ETH returns, intra-day volatility and the stability fee on
DAI. The dependent variable in columns (I) through to (V), LR measures the leverage ratio of an individual
CDP, and is the ratio of DAI borrowing to ETH collateral in per cent. Explanatory variables include RETH ,
which is daily ETH returns measured in per cent. Dummy variables R+

ETH and R−
ETH which take a value

of 1 when ETH returns are greater (less) than 2 standard deviations respectively. σETH measures daily
intra-day volatility of ETH returns in per cent. SFee is the interest rate on DAI borrowings (per cent per
annum). The sample runs from April,13th 2018 to November 17th, 2019, which corresponds to the period of
single collateral DAI. White heteroscedasticity-robust standard errors are reported in parentheses, and are
clustered at the individual CDP level. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.
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Table 5: DAI ETH Return correlations

I II III IV V VI VII VIII
∆ ∆ ∆ ∆ σDAI σDAI σDAI σDAI

RETH -0.024*** -0.021** -0.023*** 0.014 0.024** 0.024**
(0.008) (0.008) (0.007) (0.011) (0.010) (0.010)

R+
ETH 35.61 182.4***

(28.99) (38.52)
R−ETH 72.39** 89.21**

(33.89) (45.04)
σETH 0.045*** 0.064*** 0.160*** 0.157***

(0.014) (0.012) (0.018) (0.018)
SFee -17.89*** 2.72

(1.43) (2.09)
Intercept 84.87*** 81.48*** 64.31*** 102.1*** 166.8*** 162.1*** 93.94*** 88.20***

(4.278) (4.340) (7.715) (7.360) (5.837) (5.766) (9.870) (10.81)
R-squared 0.02 0.01 0.04 0.27 0.00 0.05 0.14 0.14
Observations 498 499 498 498 498 499 498 498

Note: This table regresses peg-price deviations and intra-day volatility on ETH returns, intra-day volatility and the stability rate. The dependent
variable in columns (I) through to (IV), ∆ measures the DAI peg-price deviation pDAI − 1 in basis points. The dependent variable in columns
(V) through to (VIII) σDAI measures the intra-day volatility of DAI prices in basis points. Explanatory variables include RETH , which is
daily ETH returns measured in basis points. Dummy variables R+

ETH and R−
ETH which take a value of 1 when ETH returns are greater (less)

than 2 standard deviations respectively. σETH measures daily intra-day volatility of ETH returns in basis points. SFee is the interest rate on
DAI borrowings (per cent per annum). The sample runs from November 18th, 2019 to March 31st, 2021, corresponding to the period of Multi
Collateral DAI. White heteroscedasticity-robust standard errors are reported in parentheses. *** denotes significance at the 1 percent level, **
at the 5 percent level, and * at the 10 percent level.
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Table 6: DAI ETH Return correlations: Liquidations

I II III IV V
Liquidation ∆ ∆ σDAI σDAI

Liquidation 30.57*** 28.71*** 42.53*** 15.09
(5.89) (6.39) (7.96) (9.56)

RETH -0.0003*** -0.013* 0.029***
(0.0000) (0.007) (0.011)

σETH 0.0012*** 0.029* 0.139***
(0.0001) (0.014) (0.022)

SFee 0.012 -18.26*** 2.439
(0.010) (1.398) (2.090)

Intercept -0.483*** 80.62*** 115.9*** 163.6*** 95.30***
(0.0507) (4.192) (7.845) (5.671) (11.731)

R-squared 0.37 0.05 0.30 0.05 0.15
Observations 499 500 499 500 499

Note: This table regresses peg-price deviations and intra-day volatility on ETH returns, intra-day volatility
and the stability rate. The dependent variable in column (I) is Liquidation, which is the value (in millions
USD) of liquidations, which is when a CDP ’bite’ is called and DAI debt is paid off through a reduction in
collateral. The dependent variable in columns (II) and (III) ∆ measures the DAI peg-price deviation pDAI−1
in basis points . The dependent variable in columns (III) and (IV) σDAI measures the intra-day volatility
of DAI prices in basis points. Explanatory variables include RETH , which is daily ETH returns measured in
basis points. σETH measures daily intra-day volatility of ETH returns in basis points. SFee is the interest
rate on DAI borrowings (per cent per annum). Liquidation is the value (in millions USD) of liquidations,
which is when an individual CDP ’bite’ is called. The sample runs from November 18th, 2019 to March 31st,
2021, corresponding to the period of Multi Collateral DAI. White heteroscedasticity-robust standard errors
are reported in parentheses. *** denotes significance at the 1 percent level, ** at the 5 percent level, and *
at the 10 percent level.
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Table 7: DAI peg and Demand Shocks: DeFi Lending Protocol and Secondary Market
Volume

I II III IV V VI
Du Dv ∆ ∆ ∆ ∆

Du 1.71*** 1.63***
(0.35) (0.35)

Dv 0.19* 0.11
(0.10) (0.10)

RETH 0.001 -0.0095** -0.025*** -0.022***
(0.001) (0.004) (0.008) (0.008)

σETH 0.006*** 0.026*** 0.027* 0.035**
(0.002) (0.007) (0.015) (0.015)

Intercept 72.82*** -3.313 9959*** 9955*** 10088*** 10074***
(1.077) (3.829) (27.189) (27.092) (4.647) (8.302)

R-squared 0.02 0.05 0.05 0.08 0.01 0.04
Observations 454 454 454 454 454 454

Note: Table presents regressions of DAI peg-price premiums and intra-day volatility on the share of stable
collateral. The variable Du measures the utilization of DAI on the DeFi lending protocol Compound. It
is the ratio of total borrowing in DAI to total lending in DAI. The variable Dv measures aggregate growth
in secondary market volume across major exchanges. In columns (I) and (II), we test determinants of
Compound utilization and secondary market growth. The dependent variable in columns (III) to (VI) is the
DAI premium ∆, which measures the DAI peg-price deviation pDAI − 1 in basis points. In columns (III)
and (IV), the DAI premium is regressed on Du and controls for ETH returns and volatility. In columns (V)
and (VI), DAI premium is regressed on Dv and controls for ETH returns and volatility. The sample runs
from January 1st, 2020 to March 31st, 2021. White heteroscedasticity-robust standard errors are reported
in parentheses. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at the 10
percent level.
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Table 8: DAI ETH Return correlations in the Pre and Post USDC Collateral Periods

I II III IV
∆ σDAI ∆ σDAI

RETH -0.061*** 0.072** 0.002 0.021***
(0.012) (0.029) (0.007) (0.008)

σETH 0.133*** 0.259*** 0.011 0.135***
(0.026) (0.067) (0.013) (0.013)

∆USDC -0.54 -3.10**
(1.49) (1.55)

σUSDC 5.04*** 7.68***
(0.643) (0.672)

SFee 3.639 29.13*** -19.70*** -12.72***
(3.155) (7.94) (2.486) (2.597)

Intercept -47.44** -67.00 5490 31042**
(18.63) (46.91) (14889) (15555)

R-squared 0.56 0.30 0.41 0.54
Observations 115 115 183 183
Pre USDC Yes Yes No No
Post USDC No No Yes Yes

Note: This table regresses peg-price deviations and intra-day volatility on ETH returns, intra-day volatility
and the stability rate. The dependent variable in columns (I) and (III), ∆ measures the DAI peg-price
deviation pDAI − 1 in basis points. The dependent variable in columns (II) and (IV) σDAI measures the
intra-day volatility of DAI prices in basis points. Explanatory variables include RETH , which is daily ETH
returns measured in basis points. σETH measures daily intra-day volatility of ETH returns in basis points,
∆USDC and σUSDC which measure daily peg-price deviations and intra-day volatility of USDC in basis
points. SFee is the interest rate on DAI borrowings (per cent per annum). The sample is divided into
the Pre-USDC Collateral and Post-USDC Collateral period. The Pre-USDC Collateral sample runs from
November 18th, 2019 to March 11th, 2020. The Post-USDC Collateral sample runs from March,12th 2020 to
March 31st, 2021. White heteroscedasticity-robust standard errors are reported in parentheses. *** denotes
significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table 9: Determinants and peg efficiency effects of an increase in the stable collateral share

I II III IV V VI VII
share ∆ ∆ ∆ σDAI σDAI σDAI

share -2.121*** -2.071*** -0.448 -2.436*** -2.376*** -0.405
(0.247) (0.244) (0.286) (0.279) (0.244) (0.271)

σETH
σUSDC

0.010***
(0.002)

RETH 0.002 -0.021** -0.022*** 0.015* 0.013*
(0.002) (0.008) (0.008) (0.008) (0.007)

σETH 0.032** 0.008 0.154*** 0.123***
(0.014) (0.013) (0.014) (0.0124)

∆USDC -0.0401 -1.209 -3.139**
(0.379) (1.684) (1.595)

σUSDC 7.214*** 8.765***
(0.802) (0.759)

Intercept 421.0 150.5*** 135.9*** 12117 212.0*** 137.9*** 31396**
(3787) (7.427) (9.978) (16845) (8.376) (9.993) (15954)

R-squared 0.05 0.16 0.19 0.33 0.17 0.36 0.53
Observations 385 385 385 385 385 385 385

Note: This table regresses peg-price deviations and intra-day volatility on the share of stable collateral, ETH and USDC returns and intra-day
volatility. The variable share measures the share of total stable collateral deposited in vaults: this includes stablecoins USDC, Tether and
TrueUSD. In column (I), the dependent variable is the share of stable collateral. σETH

σUSDC
is measured as the per cent change in the ratio of

intra-day volatility of ETH to DAI. The dependent variable in columns (II) through to (IV), ∆ measures the DAI peg-price deviation pDAI − 1.
The dependent variable in columns (V) through to (VII) σDAI measures the intra-day volatility of DAI prices. Explanatory variables include
RETH , which is daily ETH returns measured in basis points. σETH measures daily intra-day volatility of ETH returns in basis points, ∆USDC

and σUSDC which measure daily peg-price deviations and intra-day volatility of USDC in basis points. The sample runs from March,12th 2020
to March 31st, 2021. White heteroscedasticity-robust standard errors are reported in parentheses. *** denotes significance at the 1 percent level,
** at the 5 percent level, and * at the 10 percent level.
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Table 10: Tests of a structural break in DAI peg deviations

I II III IV V VI
|∆| σDAI |∆| σDAI |∆| σDAI

post -67.86*** -71.30*** -2.73*** -9.29*** -2.73*** -9.29***
(2.63) (2.89) (0.59) (0.55) (0.59) (0.55)

T 96.64*** 108.29*** 114.63*** 97.36***
(3.10) (2.71) (5.14) (4.17)

post ×T -83.84*** -72.00*** -101.83*** -61.07***
(3.26) (3.47) (5.23) (4.70)

Intercept 74.99*** 95.12*** 3.45*** 14.97*** 3.45*** 14.97***
(2.54) (2.37) (0.59) (0.49) (0.59) (0.49)

R-squared 0.07 0.08 0.26 0.37 0.47 0.48
Observations 1532 1532 1532 1532 897 897
Sample Full Full Full Full Balanced Balanced

Note: Table presents regressions of the absolute level and volatility of deviations of the peg. The absolute
level of deviations is denoted by |∆|, which measures the absolute size of DAI peg-price deviation |pDAI −1|,
and σt is calculated based on a measure of intra-day volatility of the price, both measured in basis points.
The post dummy Postt takes a value of 1 from December 18th, 2020, which is the launch date of the PSM
(swap arrangement in which USDC is swapped with DAI at a 1:1 rate). The Treatment dummy T takes a
value of 1 for DAI/USD, and 0 otherwise. Control-group currency is USDC/USD. Full sample for columns
(I) through to (IV) is November 18th, 2019 to March 31st, 2021, corresponding to the period of Multi
Collateral DAI. Balanced panel for columns (V) and (VI) is from January 8th 2020 to March 31st 2021.
White heteroscedasticity-robust standard errors are used in estimation. *** denotes significance at the 1
percent level, ** at the 5 percent level, and * at the 10 percent level.
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Online Appendix to
"Decentralized Stablecoins and Collateral Risk"

(Not for publication)
We provide a roadmap of each section of our appendix.

1. Appendix A provides supplementary Figures on DAI creation and liquidation dynamics.

2. Appendix B provides model proofs.

3. Appendix C provides supplementary analysis using individual CDP data, including de-
terminants of the probability of liquidation, total DAI borrowings and ETH collateral.

4. Appendix D provides details on the MKR governance token supply and price dynamics.

5. Appendix E provides additional analysis on the effects of liquidations on DAI prices,
ETH returns and leverage.

6. Appendix F provides additional evidence on the arbitrage mechanism using a self-
exciting auto regressive model (SETAR) to identify an asymmetry in the arbitrage
process.



Appendix A: Definitions: CDP and Liquidation Process

Figure A1: Process of DAI creation
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Note: This figure illustrates the steps of depositing dollar wealth into a collateralized debt position (CDP)
to create DAI tokens. In borrowing a fraction of ETH collateral as DAI to invest in an alternative currency.
At the conclusion of the investment horizon, the investor sells investment for DAI tokens, redeems their DAI
tokens and frees their ETH collateral.



Figure A2: DAI Liquidation Mechanism
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Note: This figure illustrates the steps of liquidation for a hypothetical CDP. In the initial state, the investor
deposits 2 ETH in a vault, and borrows 100 DAI tokens. At prices of PETH = 100 USD and PDAI = 1
USD, the leverage of the CDP is 0.50. In the liquidation period, the price of ETH declines to 60 USD. This
triggers liquidation as the price is less than the liquidation price of 75 USD. DAI borrowings are forced to
zero. Keepers auction off 100 USD worth of collateral to pay off the DAI loan, this is equal to 5

3 ETH at the
new price of 60 USD. The new amount of ETH in the vault is 1

3 ETH. This example is a simplified setting
as it ignores additional liquidation costs, such as a liquidation penalty or the potential for fire sale auction
prices of ETH.



Appendix B: Model
Derivation of speculators’ demand
To solve the speculators’ optimization problem in Equation (5), we specify the following

Lagrangian function:

L(θt) = Et[W
s
t+1]− 1

2
γV art[W

s
t+1] + λ1θt + λ2(θ̄ − θt)

= W s
t

[
µE(st)(1 + θtpt)− θtEt[pt+1]− θtiB

]
− γW s2

t

2

[
σ2
E(1 + θtpt)

2 + θ2
t σ

2
t − 2θt(1 + θtpt)ct

]
+ λ1θt + λ2(θ̄ − θt), (24)

for λ1, λ2 ≥ 0. The first order conditions are:

0 = W s
t

[
µE(st)pt − Et[pt+1]− iB

]
− γW s2

t

[
σ2
E(1 + θtpt)pt + θtσ

2
t − (1 + 2θtpt)ct

]
+ λ1 − λ2, (25)

0 = λ1θt, (26)

0 = λ2(θ̄ − θt). (27)

We consider the following cases of variable and Lagrange multipliers values:

1. θt = 0.

Condition θt = 0 implies that λ1 ≥ 0 and λ2 = 0. The first-order condition (25) becomes
λ1 = −W s

t

[
µE(st)pt − Et[pt+1]− iB

]
− γW s2

t [σ2
E − ct]. Hence, λ1 ≥ 0 is equivalent to

µE(st)pt − Et[pt+1]− iB ≤ γW s
t

[
σ2
E − ct

]
.

2. 0 < θt < θ̄

In this case, λ1 = λ2 = 0 and the first-order condition (25) becomes

θt =

ptµE(st)−Et[pt+1]−iB
γW s

t
− ptσ2

E + ct

p2
tσ

2
E + σ2

t − 2ptct
. (28)

In order to satisfy the initial restriction 0 < θt < θ̄, it should hold:

ptσ
2
E − ct <

µE(st)pt − Et[pt+1]− iB

γW s
t

< ptσ
2
E − ct + θ̄

(
p2
tσ

2
E + σ2

t − 2ptct
)
.

3. θt = θ̄.



In this case λ1 = 0 and the first-order equation (25) implies

λ2 = W s
t

[
µE(st)pt − Et[pt+1]− iB

]
− γW s2

t

[
σ2
E(1 + θ̄pt)pt + θ̄σ2

t − (1 + 2θ̄pt)ct
]
≥ 0

which holds whenever

µE(st)pt − Et[pt+1]− iB

γW s
t

≥ ptσ
2
E − ct + θ̄

(
p2
tσ

2
E + σ2

t − 2ptct
)
.

Combining the three cases, we get Equation (6).
Q.E.D.

Derivation of arbitrageurs’ demand: single collateral
To solve the arbitrageurs’ optimization problem in Equation (5), we optimize the expected

utility function in each region ωt ≥ 0 and ωt ≤ 0 separately.

1. ωt ≥ 0.

For this case we specify the following Lagrangian function:

L(ωt) = Et[W
a
t+1]− 1

2
γV art[W

a
t+1] + λ1ωt

= W a
t

[
ωt(1 + iL)

Et[pt+1]

pt
+ (1− ωt)(1 + r)

]
− γW a2

t

2p2
t

ω2
t (1 + iL)2σ2

t + λ1ωt,(29)

for λ1 ≥ 0. The first order conditions are:

0 = W a
t

[
(1 + iL)

Et[pt+1]

pt
− (1 + r)

]
− γW a2

t ωt(1 + iL)2σ2
t

p2
t

+ λ1, (30)

0 = λ1ωt. (31)

We consider the following cases of values of ωt:

a). ωt = 0.

Condition ωt = 0 implies that λ1 ≥ 0. The first-order condition (30) becomes

λ1 = −W a
t

[
(1 + iL)Et[pt+1]

pt
− (1 + r)

]
.

Hence, λ1 ≥ 0 is equivalent to

(1 + iL)Et[pt+1] ≤ (1 + r)pt.



b). ωt > 0 In this case, λ1 = 0 and the first-order condition (30) becomes

ωt =

(
Et[pt+1](1 + iL)/pt − (1 + r)

)
p2
t

γW a
t (1 + iL)2σ2

t

. (32)

In order to satisfy the initial restriction ωt > 0, it should hold:

Et[pt+1](1 + iL) > (1 + r)pt.

Now we consider the maximum of the expected utility function of the short-selling
region.

2. ωt ≤ 0.

For this case we specify the following Lagrangian function:

L(ωt) = Et[W
a
t+1]− 1

2
γV art[W

a
t+1]− λ1ωt

= W a
t

(
−ωt
θ̄
µA + ωt(Et[pt+1]− pt(1 + r) + iB) +

(
1 +

ωt
θ̄

)
(1 + r)

)
− γW a2

t ω
2
t

2

[
σ2
E

θ̄2
+ σ2

t −
2ct
θ̄

]
− λ1ωt, (33)

for λ1 ≥ 0. The first order conditions are:

0 = W a
t

[
−µA
θ̄

+ (Et[pt+1]− pt(1 + r) + iB) +
1 + r

θ̄

]
− γW a2

t ωt

[
σ2
E

θ̄2
+ σ2

t −
2ct
θ̄

]
− λ1, (34)

0 = −λ1ωt. (35)

We consider the following cases of values of ωt:

a). ωt = 0.

Condition ωt = 0 implies that λ1 ≥ 0. The first-order condition (34) implies

λ1 = W a
t

[
−µA
θ̄

+ (Et[pt+1]− pt(1 + r) + iB) +
1 + r

θ̄

]
.

Hence, λ1 ≥ 0 is equivalent to

µA ≤ θ̄(Et[pt+1]− pt(1 + r) + iB) + 1 + r.

b). ωt < 0



In this case, λ1 = 0 and the first-order condition (34) implies

ωt = −θ̄
[
µA − (1 + r)− θ̄(Et[pt+1]− pt(1 + r) + iB)

]
γW a

t (σ2
E + θ̄2σ2

t + ctθ̄)
. (36)

In order to satisfy the initial restriction ωt < 0, it should hold:

µA > θ̄(Et[pt+1]− pt(1 + r) + iB) + 1 + r.

Combining the cases and comparing the maxima values of the expected utility function
in each region, we get Equation (7).

Q.E.D.

Derivation of arbitrageurs’ demand: two types of collateral
To solve the arbitrageurs’ optimization problem in the case of two collateral, we optimize

the expected utility function in ωt ≤ 0 region and compare it with the maximum of the
expected utility in ωt ≥ 0 region (the latter case is the same as in the single collateral
case). Denote by Nt = Et[pt+1]− pt(1 + r) + iB and M = µA−(1+r)

θ̄
. In order to simplify the

calculations we make the following assumptions about the parameter values that are justified
by the sample estimations in the main body of the paper and are verified in the equilibrium
above: σ2

E > σ2
t , and ct > 0.

For this case we specify the following Lagrangian function:

L(ωEt , ω
U
t ) = Et[W

a
t+1]− 1

2
γV art[W

a
t+1]− λ1ω

E
t − λ2ω

U
t

= W a
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[
−ω

E
t
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µA − ωUt (1 + r) + (ωEt + ωUt )Nt +

(
1 +

ωEt
θ̄
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]
− γW a2
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2
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t σ2
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]
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E
t − λ2ω

U
t ,(37)

for λ1, λ2 ≥ 0. The first order conditions are:

0 = W a
t [Nt −M ]− γW a2

t

[
ωEt
θ̄2
σ2
E + (ωEt + ωUt )σ2

t −
(2ωEt + ωUt )ct
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]
− λ1, (38)

0 = W a
t Nt − γW a2
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ωUt σ

2
U + (ωEt + ωUt )σ2

t −
ωEt ct
θ̄

]
− λ2, (39)

0 = −λ1ω
E
t (40)

0 = −λ2ω
U
t . (41)

We consider the following cases of values of ωEt and ωUt :

a). ωEt = ωU = 0.



Conditions ωEt = 0 and ωUt = 0 imply that λ1 ≥ 0 and λ2 ≥ 0. The first-order
conditions (38) and (39) become

λ1 = W a
t [Nt −M ] ,

λ2 = W a
t Nt.

Hence, λ1 ≥ 0 and λ2 ≥ 0 are equivalent to Nt ≥M and Nt ≥ 0.

b). ωEt = 0 and ωU < 0

Conditions ωEt = 0 and ωU < 0 imply that λ1 ≥ 0 and λ2 = 0. The first-order
conditions (38) and (39) become

λ1 = W a
t [Nt −M ]− γW a2

t ω
U
t

[
σ2
t −

ct
θ̄

]
,

ωUt =
Nt
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t (σ2
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σ2
U + ct
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and ωUt < 0 is equivalent to Nt < 0.

c). ωEt < 0 and ωU = 0

Conditions ωEt < 0 and ωU = 0 imply that λ1 = 0 and λ2 ≥ 0. The first-order
conditions (38) and (39) become
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Nt −M
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t

[
σ2
E

θ̄2 + σ2
t − 2ct
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] ,
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.

Inequality λ2 ≥ 0 is equivalent to
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σ2
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θ̄
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σ2
E

θ̄2 − ct
θ̄

and ωEt < 0 is equivalent to Nt < M .

d). ωEt < 0 and ωU < 0



In this case, λ1 = λ2 = 0 and the first-order conditions (38) and (39) become
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In order to satisfy the initial restrictions ωUt < 0 and ωEt < 0, it should hold:
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U + ct

θ̄

.
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<
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Simple calculations verifies the following summary of the results:

• If Nt ≥ 0 and Nt ≥M then

ωEt = 0, (42)

ωUt = 0. (43)

• If Nt < 0 and M ≤ δNt then

ωEt = 0, (44)

ωUt =
Nt

γW a
t (σ2

U + σ2
t )
, (45)

where
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σ2
U + ct

θ̄

σ2
U + σ2

t

.

• If Nt ≥ 0 and Nt < M ≤ ∆Nt then
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Nt −M
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t

[
σ2
E

θ̄2 + σ2
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θ̄

] , (46)

ωUt = 0, (47)
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∆ =
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σ2
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.

• If Nt ≥ 0 and M > ∆Nt or Nt < 0 and M > δNt then
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Q.E.D.



Appendix C: Additional Panel CDP Regression Specifica-

tions
In this section, we provide supplementary regressions using the individual CDP data.

Yi,t = αi + β1RETH,t + β2σETH,t + β3SFeet + ut, (50)

In regression 50 where the dependent variable Yi,t is a dummy variable indicating a "bite"
(liquidation event), the amount of DAI borrowings and ETH collateral for a CDP at time t.
The set of independent variables include the daily ETH return (RETH,t), intra-day volatility
of collateral (σETH,t) and the stability rate on DAI borrowing. Intra-day volatility is calcu-
lated as the square root of the average sum of squared hourly returns over the trading day.
Individual CDP fixed effects is captured by αi, and controls for idiosyncratic risk preferences
of an individual CDP.

In Table A1, the dependent variable is a dummy variable indicating a liquidation event.
We use a panel probit specification to estimate the effect of a change in the explanatory
variable on the probability of liquidation. In column (I), a one percentage point increase
in ETH returns reduces the probability of liquidation by 0.08 percentage points. In column
(II), the results indicate the probability of liquidation is higher in extreme negative states to
ETH collateral. In column (III), a one percentage point increase in intra-day ETH volatility
increases the probability of liquidation by 0.10 percentage points. In column (IV) a 1 per
cent increase in the stability rate increases the probability of liquidation by 0.01 percentage
points. In column (V), the results are robust to a specification including ETH returns,
intra-day volatility and the stability rate.

In Tables A2 and A3, we extend our outcome variables to the amount of DAI borrowing
and ETH collateral of each position. To control for serial correlation, we include the first lag
as a control. For both DAI borrowings and ETH collateral, robust predictors include ETH
returns and the DAI stability. For example, a 1 per cent increase in ETH returns increases
DAI borrowing and ETH collateral by 442 USD and 3,300 USD respectively. A 1 per cent
increase in the stability fee reduces DAI borrowing and ETH collateral by 620 USD and 1600
USD respectively.



Table A1: Determinants of CDP Probability of Liquidation
I II III IV V

liquidation liquidation liquidation liquidation liquidation

RETH -0.08*** -0.05***
(0.01) (0.01)

R+
ETH -0.45

(0.31)
R−ETH 1.03***

(0.19)
σETH 0.10*** 0.10***

(0.01) (0.02)
SFee 0.01*** 0.01

(0.00) (0.01)
Intercept -2.80*** -2.68*** -3.38 -2.91*** -3.46

(0.33) (0.30) (0.00) (0.06) (0.00)
Observations 26,047 26,047 26,074 26,074 26,047
Number of id 456 456 456 456 456
id Fixed Effects Yes Yes Yes Yes Yes

Note: This table regresses the probability of liquidation on ETH returns, intra-day volatility and the stability
fee on DAI. The dependent variable in columns (I) through to (V), Liquidation is a dummy variable that
is equal to 1 when an individual CDP calls a "bite" action, which requires the CDP to liquidate all DAI
borrowings. Explanatory variables include RETH , which is daily ETH returns measured in per cent. Dummy
variables R+

ETH and R−
ETH which take a value of 1 when ETH returns are greater (less) than 2 standard

deviations respectively. σETH measures daily intra-day volatility of ETH returns in per cent. SFee is
the interest rate on DAI borrowings (per cent per annum). The sample runs from April,13th 2018 to
November 17th, 2019, which corresponds to the period of single collateral DAI. A panel probit specification
is used. White heteroscedasticity-robust standard errors are reported in parentheses, and are clustered at
the individual CDP level. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at
the 10 percent level.



Table A2: Determinants of CDP DAI Borrowing
I II III IV V

DAI DAI DAI DAI DAI

L.DAI 0.99*** 0.99*** 0.99*** 0.99*** 0.99***
(0.00) (0.00) (0.00) (0.00) (0.00)

RETH 442.06** 460.24**
(206.40) (221.49)

R+
ETH 16,778.53

(10,661.00)
R−ETH -8,314.51*

(4,516.87)
σETH -332.40 -254.01

(337.44) (347.49)
SFee -620.10* -631.95*

(328.90) (331.98)
Intercept 2,106.81*** 1,840.59*** 3,880.99** 7,658.53** 9,178.37***

(744.43) (623.40) (1,585.24) (3,504.92) (2,633.46)
R-Squared 0.90 0.90 0.90 0.90 0.90
Observations 11,197 11,197 11,197 11,197 11,197
Number of id 456 456 456 456 456
id Fixed Effects Yes Yes Yes Yes Yes

Note: This table regresses DAI borrowing on ETH returns, intra-day volatility and the stability fee on DAI.
The dependent variable in columns (I) through to (V), DAI measures the individual DAI borrowing of
a CDP in USD. Explanatory variables include RETH , which is daily ETH returns measured in per cent.
Dummy variables R+

ETH and R−
ETH which take a value of 1 when ETH returns are greater (less) than 2

standard deviations respectively. σETH measures daily intra-day volatility of ETH returns in per cent. SFee
is the interest rate on DAI borrowings (per cent per annum). The sample runs from April,13th 2018 to
November 17th, 2019, which corresponds to the period of single collateral DAI. A panel probit specification
is used. White heteroscedasticity-robust standard errors are reported in parentheses, and are clustered at
the individual CDP level. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at
the 10 percent level.



Table A3: Determinants of CDP ETH Collateral
I II III IV V

ETH ETH ETH ETH ETH

RETH 3,338.61** 3,434.18**
(1,347.09) (1,441.33)

R+
ETH 83,445.08*

(46,078.92)
R−ETH -39,218.78***

(12,894.32)
σETH -379.54 259.77

(1,796.75) (1,952.28)
SFee -1,600.66** -1,684.43**

(702.25) (734.62)
Intercept 10,615.95*** 9,089.49*** 12,415.87 24,702.44*** 24,310.62**

(3,189.50) (2,511.30) (9,987.61) (9,095.06) (11,248.10)
R-Squared 0.86 0.86 0.86 0.86 0.86
Observations 11,197 11,197 11,197 11,197 11,197
Number of id 456 456 456 456 456
id Fixed Effects Yes Yes Yes Yes Yes

Note: This table regresses ETH collateral on ETH returns, intra-day volatility and the stability fee on DAI.
The dependent variable in columns (I) through to (V), ETH measures the individual ETH collateral of
a CDP in USD. Explanatory variables include RETH , which is daily ETH returns measured in per cent.
Dummy variables R+

ETH and R−
ETH which take a value of 1 when ETH returns are greater (less) than 2

standard deviations respectively. σETH measures daily intra-day volatility of ETH returns in per cent. SFee
is the interest rate on DAI borrowings (per cent per annum). The sample runs from April,13th 2018 to
November 17th, 2019, which corresponds to the period of single collateral DAI. A panel probit specification
is used. White heteroscedasticity-robust standard errors are reported in parentheses, and are clustered at
the individual CDP level. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at
the 10 percent level.



Appendix D: MakerDAO Auctions and Governance
The Maker Governance protocol is in charge of adding new collateral types, the regulation

of the smart contracts enforcing collateralized debt positions, and adjusting risk parameters
of the protocol, such as the liquidation ratio, debt ceilings and the stability and savings rate.

The MKR governance token is used for voting on the management of the protocol and
DAI. For example, to change the stability rate, each user places a vote on their preferred
stability rate by staking their MKR tokens. Each MKR token equals one vote when locked in
a voting contract. Users commit their Maker tokens to a proposal, with the outcome being
decided by the number of MKR tokens it receives. MakerDAO token launched with a supply
of 1 million MKR, but the supply will change as MKR are minted or burned by the Maker
ecosystem based on the success of the DAI peg.

For example, consider an extreme price movement in ETH, such as the Black Thursday
crash on March 12th, 2020. This triggered a liquidation event, which requires collateral
to be auctioned off to pay off the DAI loan and penalty fees. If the sale of collateral is not
sufficient to pay off the DAI loans triggered in liquidation, the Protocol triggers a MKR Debt
Auction. MKR is minted by the system, increasing the amount of MKR in circulation, and
then sold to bidders for DAI. 25 As well as minting MKR tokens to pay off DAI loans during
liquidation, the MKR tokens are burned by the system in response to growth in the system
Surplus, which is the amount of DAI generated from system fees, including Stability Fees
and Liquidation Fees set by Maker governance. For example, the MakerDAO governance
sets a safety buffer in DAI as a contingency against a significant devaluation of the DAI
peg. When the system surplus exceeds the safety buffer, any additional DAI is auctioned off
for MKR, the governance token of the Maker Protocol, in lots of 10,000 DAI in a Surplus
Auction. The system then burns the MKR it receives in the Surplus Auction, reducing the
total supply. The economics of the MKR governance token is that it appreciates in value
when MKR tokens are burned due to growth in the system surplus, and it depreciates in
value when MKR tokens are minted in response to MKR debt auctions to cover losses on
liquidating DAI loans. Therefore, the valuation of the MKR token is analogous to a dividend
that is paid to MKR stakeholders for supporting the governance protocol in maintaining the
DAI peg.

25An additional safeguard of Maker Governance is a process called global settlement. When global settlement
is triggered, the entire system freezes and all holders of DAI and CDPs are returned the underlying
collateral. A global settlement can be triggered by a select group of trusted individuals who hold the global
settlement keys. If these signatories see something going horribly wrong, they will enter their keys initiate
the process ofÂ winding down the system.



Figure A3 documents the MKR price, total supply in circulation, MKR tokens burned
and system surplus. The MKR token features some of the dynamics of mints and burns.
During the March 12th Black Thursday Crypto crash, MKR tokens were minted to pay off
the DAI debt triggered by liquidations. In 2021, strong growth in the system surplus due
to stability and liquidation fees has led to a net reduction of MKR tokens through surplus
auctions. Strong growth in the system surplus has also coincided with appreciation of the
MKR token.

Figure A3: MKR price, MKR Supply, Burned/Minted Tokens and System Surplus
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Note: This figure plots Panel A: MKR price, Panel B: MKR Supply Panel C: MKR Burned, and Panel D:
System Surplus. Sample period is from April 13th, 2018 to March 31st, 2020.



Appendix E: Liquidation Mechanism
In this section we provide supplementary tests to understand the liquidation mechanism

and how it determines DAI and ETH return correlations. In Table A4, we test the regression
specification in Equation (16), and condition our sample for days with positive and zero liq-
uidations. In columns (I) and (II), we run on the sample of positive liquidations. We observe
a significant negative correlation between DAI premiums and ETH returns. In columns (III)
and (IV), we condition on a sub-sample of zero liquidations. We find the correlation is still
negative, but insignificant. This suggests that the liquidation mechanism is quantitatively
significant in accounting for the observed negative correlation between ETH returns and DAI
peg-premiums.26

To identify the dynamic effects of ETH returns and volatility on DAI prices, liquidations
and leverage, we use the method of local projections Jordà (2005). The outcome variables
include the DAI/USD price, aggregate liquidations and the leverage ratio. The change in
the outcome variable, Yt+h − Yt−1, is projected on the explanatory variable Xt, in Equation
(51). The specification allows for feedback effects using lagged values of the explanatory
variable and outcome variable and additional controls, including the stability rate and ETH
volatility. We use 1 lag in the baseline specification. Tracing the effects of βh provides an
impulse response of a shock to the explanatory variable ETH returns on the DAI price and
the leverage ratio. The results of a negative 100 basis point shock to ETH returns is presented
in Figure A4. We observe DAI premiums, and an initial positive increase in liquidations and
a decrease in the leverage ratio. This is consistent with the empirical results in the main
body of the paper using individual CDP data, where we find negative ETH returns increase
the probability of liquidation, and decrease leverage.

Yt+h − Yt−1 = α + βhXt +
L∑
k=1

δkXt−k +
L∑
k=1

γk(Yt−k−1 − Yt−k−2) + controlst + ut

h = 0, 1, 2, ... (51)

We can also test for the feedback effects from a liquidation shock to DAI prices, ETH
returns and leverage. The liquidation event on March 12th, 2020 led to a fire-sale of ETH
collateral to pay off the DAI debt. If the ETH collateral is a substantial fraction of total ETH
in circulation, then fire sales of ETH collateral would cause further declines in ETH prices

26Based on the two subsamples, we observe a correlation of DAI prices and ETH returns of -0.14 over the
sample with positive liquidation, and a correlation of -0.04 over the sample with zero liquidation.



and a liquidation spiral, which is is put forward theoretically in Klages-Mundt and Minca
(2020). Using aggregate liquidations as the explanatory variable in equation 51, the results
of a 1 million USD positive shock to liquidations presented in Figure A5. We observe DAI
premiums, a contemporaneous negative ETH return but that dissipates within one day. We
also observe an increase in leverage of about 20 basis points that gradually dissipates over a
30 day horizon. Based on the results, we find weak evidence for a liquidation spiral. The lack
of persistent effects of liquidations on ETH returns is due to DAI in circulation being a small
fraction of the market cap of ETH. For example, based on data from coinmarketcap.com,
the marketcap of ETH at the end of the sample on March 12th, 2020 is approximately 12.4
USD Billion, and the marketcap of DAI is 0.11 USD Billion. The ratio of DAI to ETH
marketcap is less than 1 per cent.

Table A4: DAI ETH Return correlations: Liquidations

I II III IV
∆ σDAI ∆ σDAI

RETH -0.040*** 0.028 -0.001 0.016
(0.014) (0.018) (0.014) (0.017)

σETH 0.055*** 0.174*** -0.049* 0.021
(0.021) (0.026) (0.029) (0.035)

R−ETH -56.04 -51.13 0.00 0.00
(47.88) (60.98) (0.00) (0.00)

R+
ETH 95.43** 65.97 0.063 87.44

(47.16) (60.06) (44.26) (54.21)
Intercept 61.30*** 103.82*** 90.19*** 119.62***

(11.15) (14.19) (11.77) (14.41)
R-squared 0.07 0.18 0.02 0.04
Observations 305 305 194 194
Liquidations Yes Yes No No

Note: This table regresses intra-day DAI returns and volatility on ETH returns, volatility and the interaction
of ETH returns with volatility. The dependent variable in columns (I) and (III), ∆ measures the individual
DAI borrowing of a CDP in USD. The dependent variable in columns (II) and (IV) σDAI measures the intra-
day volatility of DAI prices. Columns (I) and (II) are estimated for the sub-sample of days with a positive
amount of liquidations. Columns (III) and (IV) are for the sub-sample of days with zero liquidations. The
sample runs from November 18th, 2019 to March 31st, 2021, corresponding to the period of Multi Collateral
DAI. White heteroscedasticity-robust standard errors are reported in parentheses. *** denotes significance
at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.

coinmarketcap.com


Figure A4: Effect of ETH returns on the DAI peg, liquidation and leverage
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Note: This figure illustrates the response of the DAI price, aggregate liquidations and leverage, to a negative
100 basis point shock to ETH returns, using the method of local projections. Leverage ratio is based on
aggregate measures of DAI borrowings and ETH collateral. Sample period is from November 18th, 2019
to March 31st, 2021, corresponding to the period of Multi Collateral DAI. 1 lag is included in the baseline
specification. Gray area denotes 90% confidence interval using White heteroscedasticity-robust standard
errors.



Figure A5: Effect of Liquidations on DAI Price, ETH returns and leverage
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Note: This figure illustrates the response of aggregate system leverage, ETH returns and the DAI price to
a positive 1 million USD shock liquidation, using the method of local projections. Leverage ratio is based
on aggregate measures of DAI borrowings and ETH collateral. Sample period is from November 18th, 2019
to March 31st, 2021, corresponding to the period of Multi Collateral DAI. 1 lag is included in the baseline
specification. Gray area denotes 90% confidence interval using White heteroscedasticity-robust standard
errors.



Appendix F: Testing Peg Arbitrage Mechanism
In this section we document additional properties of the DAI peg following the peg stabil-

ity mechanism (PSM) introduced on December 18th, 2020. The PSM is an arrangement in
which MakerDAO is willing to swap USDC for DAI at a 1:1 rate. In Table A5, we document
summary statistics of peg-price deviations. The distribution is much more compact in the
post peg stability mechanism (PSM) period. This is evident in a lower range of peg-price
deviations, ranging from -20 to 50 basis points in the post PSM period, in contrast to a range
of -84.8 to 800 basis points during the pre PSM period. The half-life of peg-price deviations
has reduced from 5.95 days to 1.76 days.27 The declining half-life is attributable to the PSM
facilitating arbitrage and making it easier to short sell DAI when it trades at a premium.
Histograms of the distribution of peg-price deviations is plotted in Figure A6. As well as
being more compact, it is notable that there is right skew in peg-price deviations with most
of the density occurring at premiums.

Table A5: Summary statistics

period count mean std min 25% 50% 75% max half-life (days)

Pre-PSM 396.0 101.95 98.83 -84.8 33.75 85.5 153.5 800.0 5.95
Post-PSM 103.0 11.27 12.38 -20.0 3.0 11.0 20.0 50.0 1.76

27To measure the half-life, we run an auto-regressive process of order 1 on the deviations, ∆ = ρ∆t−1 + ut.
The half-life, or the time it takes for a shock to dissipate by 50%, is T = log(0.5)

log(ρ) .



Figure A6: Distribution of Peg-Price Deviations, Pre and Post PSM
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Note:Figure plots a histogram of deviations of the DAI/USD price from parity for sub-samples corresponding
to pre and post PSM. A positive deviation indicates DAI/USD trades at a premium. The pre PSM sample
is from November 18th, 2019 to December 18th, 2020. The post PSM sample is from December 18th, 2020
to March 31st, 2021.

To test the stabilizing properties of the pre and post-PSM periods, we conduct a self-
exciting threshold auto-regressive (SETAR) analysis. In equation 52, peg-price deviation ∆

is characterized by three auto-regressive processes. Each process is based on a low,middle
and high regime, where the low regime is given by the threshold of deviations ranging from
[−∞, ∆L], the middle regime is [∆L,∆U ] and the high regime is [∆U ,∞]. The middle regime
can be interpreted as a band of inaction in which peg-price deviations are sufficiently small
compared to transaction costs and the risk of conducting arbitrage. We estimate the SETAR
for the sub-samples pre and post PSM in equations 53 and 54. There is a large band of
inaction for peg-premiums ranging from 24 to 290 basis points, in which peg deviations are
persistent and approximate a random walk. This is consistent with a significant risk in short
selling DAI in response to peg-price premiums. Once premiums exceed 290 basis points,
the model estimates a half-life of 2.51 days. In the post-PSM sample, the band of inaction
is much smaller, [∆L,∆U ] is now between 1 and 27 basis points. The addition of a swap
arrangement with USDC facilitates a risk-free arbitrage opportunity by swapping USDC for
DAI when DAI trades at a premium. Therefore for deviations in excess of 27 basis points,
the half-life is only 0.78 days. In summary, we observe an increase in peg efficiency and the
ability to short sell DAI as we proceed from the pre to post PSM.



∆t =


ρL∆t−1 + εt, ∆t−1 < ∆L

ρM∆t−1 + εt, ∆L ≤ ∆t−1 ≤ ∆U

ρU∆t−1 + εt, ∆t−1 > ∆U

(52)

∆t =


0.840∆t−1 + εt, ∆t−1 < 24bps

1.011∆t−1 + εt, 24bps ≤ ∆t−1 ≤ 290bps

0.759∆t−1 + εt, ∆t−1 > 290bps

(53)

∆t =


−0.228∆t−1 + εt, ∆t−1 < 1bps

0.913∆t−1 + εt, 1bps ≤ ∆t−1 ≤ 27bps

0.412∆t−1 + εt, ∆t−1 > 27bps

(54)


