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Abstract

Automated market makers (AMMs) are algorithms that pool liquidity and make it available to

liquidity takers by automatically and algorithmically determining an execution price of a trade.

In the recent markets for digital assets, a growing number of blockchain-based decentralized ex-

changes (DEX) have adopted a general class of AMMs, called Constant Function Market Makers

(CFMMs). In this paper, we build a model of coexisting exchanges with two different market-

making algorithms: a centralized exchange (CEX) with a traditional limit order book and a DEX

with a CFMM. Traders are either informed or uninformed and endogenously choose their trading

venue. We first analyze how the arrival of the CFMM affects adverse selection and liquidity on

both exchanges. Our result indicates that liquidity on the DEX has a positive spillover effect on

that on the CEX. Moreover, we derive the expected return of market makers who provide liquidity

via the CFMM algorithm. As in traditional limit-order markets, it constitutes the adverse selection

cost of informed trading and a profit from noise trading. We analyze market makers’ equilibrium

behavior and endogenize the amount of liquidity on the CEX and the DEX.
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1 Introduction

A limit order book has been a core trading mechanism in the modern electronic financial market.

Traders called market makers provide trading opportunities by placing limit orders—a quote at which

they are willing to buy or sell a certain amount of an asset. Limit orders are stored on a book (i.e., a

limit order book, an LOB) and publicly displayed. If other traders find a good deal on the book, they

try to consume the trading opportunities by placing marketable limit orders or market orders.1 An

incoming market order is matched with standing limit orders on the book, and a trade is executed at

the proposed price.

The recent hype in cryptocurrency and blockchain, however, changes the landscape of market

structure. Many exchange platforms have been built on smart contracts on the Ethereum blockchain,

and transactions are executed in a decentralized manner. Those platforms are called decentralized

exchanges (DEXs) in comparison with the traditional centralized exchanges (CEXs). They have at-

tracted a sizable trading share in transactions of digital assets, as the upper panel of Figure 1 sug-

gests.2 Moreover, DEXs have introduced pricing and matching algorithms called automated market

makers (AMMs), and they have been playing a substantial role in the prosperity of DEXs (the upper

panel of Figure 1).3 As a result, two different market-making algorithms coexist in the markets for

digital assets: the traditional limit order books and the AMMs. In this paper, we provide a theoretical

framework to analyze such a situation.

In contrast to a limit order market, on which traders trade with each other, traders on an au-
1A huge variety of sophisticated order types are used in the modern financial market, as analyzed by Li, Ye and Zheng

(2021), but it suffices to consider market and limit orders in our paper.
2Many decentralized exchanges (DEXs) attain a sizable trading share for cryptocurrency, such as Uniswap, Curve,

IDEX, 0x, Waves, EtherDelta, dYdX, Balancer, Sushiswap, and so on, where all transactions are settled P2P through users’

wallets and smart contracts. In the traditional centralized exchanges (CEXs), such as Coinbase, Bittrex, and Binance, a

centralized authority manages trader information and funds. Although CEXs have achieved large liquidity and trading

volume, they are vulnerable to cyber-attacks and single point of failures. In contrast, information on DEXs is recorded on

the blockchain with KYC (Know Your Customer) data and stays immutable, providing users with an efficient and robust

transaction method.
3The idea of AMMs has been previously proposed and implemented in the context of prediction markets to deal with

their lack of liquidity. However, before the advent of markets for digital assets, they are not adopted in markets with real

money, such as equity markets. See, for example, Hanson (2003), Chen, Fortnow, Lambert, Pennock and Wortman (2008),

and Abernethy, Chen and Wortman Vaughan (2011).
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Figure 1: Monthly trading volume on DEXs

Source: Dune Analytics (duneanalytics.com)

tomated market trade against liquidity pools, i.e., pools of assets reserved on an exchange. AMMs

determine asset prices (or exchange rates) following a single-function algorithm by taking the state

of the pools as an input. AMMs do not require the physical presence of active market makers or deal-

ers for pricing and order execution. As a result, trade execution via AMMs consumes much smaller

memory than the traditional order-book algorithm and allows a substantial part of trades to be on

the blockchain.4

AMMs are categorized into several important types according to the pricing function. The lower

panel of Figure 1 shows that Constant Product Market Makers (CPMMs; explained below) adopted

4Harvey, Ramachandran and Santoro (2021) propose 5 problems in the traditional centralized finance (CeFi) that de-

centralized finance (DeFi) may solve: inefficiency, limited access, opacity, centralized control, and interoperability. In this

paper, we take those motivations to adopt DeFi as given in order to focus on the economic consequences of the adoption

of DeFi to the traditional world.
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by Uniswap and Sushiswap have been a dominant market structure—they handle more than 70% of

transactions on the DEXs. Also, Balancer has attracted traders by adopting Constant Mean Market

Makers, and Curve has introduced a somewhat hybrid function. In light of this, we analyze a general

form of AMMs, called Constant Function Market Makers (CFMMs). CFMMs nest most of the real-

world implementations, such as CPMMs, CMMMs, and hybrid functions, and provide implications

with a broader generality.

Briefly, AMMs work as follows (Subsection 2.2 provides more details). On an automated mar-

ket, liquidity providers lock traded assets into the exchange, and AMMs aggregate them to create

liquidity pools. Suppose that the liquidity pools reserve x and y units of token X and token Y prior

to a trade. If a trader buys d unit of token Y by paying pd of token X, she moves liquidity pools

from (x, y) to (x0, y0) = (x + pd, y � d). For example, the CPMM algorithm requires the (squared)

geometric mean of the liquidity pools to be constant, k = xy = x0y0, with some pre-determined k.

This single equation derives the price of token Y in terms of X (or the exchange rate) as p = x
y�d . In

general, CFMMs determine the price by imposing f (x0, y0) = f (x, y) with a certain function f that

satisfies some regularity conditions.5 Liquidity on an automated market is measured by the amount

of assets locked in the platform, i.e., x and y. The incentive of liquidity providers stems from fluctu-

ations in the pools’ value caused by trade d (i.e., x0 � x and y0 � y), as they withdraw and liquidate

their contribution to the pools when they exit the market.

This paper studies how the introduction of CFMMs affects the liquidity of the entire market when

traders face an asymmetric information problem. Importantly, our model features the coexisting

exchanges with two different market-making algorithms: a DEX with the CFMM and a CEX with

a limit order book. There are informed for-profit traders, uninformed liquidity (noise) traders, and

market makers, and they are endogenously differentiated between two exchanges. We first analyze

the consequence of an exogenous variation in the DEX liquidity for traders’ behavior—in particular,

their venue choice—and its impact on the CEX liquidity. We then endogenize liquidity provision by

market makers on the DEX and describe how liquidity on the DEX and the CEX jointly reacts to a

more severe informational friction.

Our model shows that liquidity on the DEX complements that on the CEX. This is because in-

formed traders and liquidity traders exhibit disproportional reactions to an increase in liquidity

5The CPMM is a special case with f (x, y) = xy.

4



pools on the DEX. Larger liquidity pools mitigate the price impact of a liquidity-taking order. In-

formed traders can enjoy this effect, as they tend to cluster on the same side of the DEX and incur a

large price impact. Thus, larger liquidity pools attract more informed traders to the DEX. In contrast,

the reaction of liquidity traders to the additional liquidity tends to be weak. Their trading behav-

ior stems from exogenous random reasons, such as margin calls or hedging needs, and they expect

that their random buy and sell orders tend to cancel out each other on the DEX. It results in a small

expected price impact, and deeper liquidity on the DEX has only a limited effect. As a result, more

informed traders migrate from the CEX to the DEX than liquidity traders, leading to a less severe

adverse selection problem, a narrower bid-ask spread, and deeper liquidity on the CEX.

Moreover, we formulate the expected profit function for liquidity providers on the DEX with

asymmetric information. The existing theories of AMMs (e.g., Angeris and Chitra, 2020) argue that

liquidity provision via AMMs only suffers from a cost, called impermanent loss, and a platform needs

to pay some fees for liquidity providers to motivate them. As the literature suggests, liquidity provi-

sion in our model involves the impermanent loss, as an informed trader imposes an adverse selection

cost on uninformed liquidity providers (Glosten and Milgrom, 1985).

In contrast to the literature, however, our model shows that liquidity providers also face lucrative

trading opportunities even without fees. In particular, the expected value of liquidity pools improves

when a trade is initiated by an uninformed liquidity trader. The profit opportunity is hard-wired in

the convexity of the CFMMs’ pricing algorithm: when the liquidity pools randomly fluctuate along

the convex curve, their expected value improves due to Jensen’s inequality. Therefore, liquidity

providers in our model endogenously determine their liquidity supply by weighing the imperma-

nent loss against the profit from noise trading. As in limit-order markets, liquidity on an automated

market is negatively affected by the activity of informed traders relative to uninformed liquidity

traders.

Our model proposes several important empirical implications. Since CFMMs are a class of con-

vex pricing, consuming liquidity involves a larger price impact than adding liquidity. In other words,

given the trading size, a “buy” order tends to be more costly than a “sell” order. Due to this asymmet-

ric price impact on the DEX, bid and ask prices on the CEX also tend to be asymmetrically distributed

around the expected value of the asset. The asymmetric bid and ask prices have been discussed in the

literature (e.g., Ho and Stoll, 1981; Bossaerts and Hillion, 1991), and our model proposes the advent

5



of CFMMs as a new source of asymmetric bid and ask prices. Also, our model suggests that a “sell”

order flow tends to be more informative than a “buy” order flow on the DEX when the asset volatility

increases. This is because informed sellers and buyers exhibit asymmetric reactions to increases in

asset volatility, while the asymmetric reactions of liquidity traders are relatively weak due to their

limited expected price impact.

The results in our model are indicative of the reaction of markets to listings of new cryptocur-

rency/token pairs on a DEX, such as Uniswap. For example, on Uniswap, there are several ERC-

20 tokens pegged to some heavily traded cryptocurrencies, such as Wrapped Bitcoin (WBTC) and

Wrapped Ethereum (WETH). We expect to observe a shrink in the bid-ask spread of BTC/ETH ex-

change rate on centralized exchanges (e.g., Coinbase, Bittrex, and more) when Uniswap announced

that it starts to trade WBTC/WETH.

This paper is built on the large body of literature on market microstructure. In particular, Glosten

and Milgrom (1985) and Kyle (1985) provide models of market liquidity with asymmetric informa-

tion. Following the idea of Bagehot (1971), they show that competitive liquidity providers try to

countervail the adverse selection cost of informed trading by making a market less liquid (i.e., post-

ing a wider bid-ask spread; increasing the price impact of order flows). This paper applies their

canonical idea to the new context of decentralized exchanges and shows that adverse selection still

plays a key role in explaining liquidity provision in a market with AMMs.

Also, the modern financial market has experienced substantial fragmentation of trading exchanges,

and several papers have addressed implications of coexisting exchange platforms with different mar-

ket microstructures. For example, Ye (2011), Zhu (2014), and Ye (2016) consider the addition of so-

called dark pools and analyze the reaction of informed and uninformed traders, as well as market

quality. Lee (2019) investigates traders’ behavior when multiple exchanges have different degrees

of latency and transparency. More recently, exchanges start imposing “speed bumps” to slow down

high-frequency trading and protect market makers against latency arbitrage. Brolley and Cimon

(2020) analyze the order flow segmentation with speed bumps to address the liquidity impact of the

slow market structure. Our model also sheds light on the liquidity impact of heterogeneous market

structures in the era of decentralization and blockchain.

Our model also contributes to the research on the blockchain, cryptocurrency, and decentralized

exchanges. The literature is expanding (see Harvey, 2016, Chen, Cong and Xiao, 2019, and Harvey,
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Ramachandran and Santoro, 2021 for comprehensive reviews), and many papers have analyzed the

blockchain protocol as a new method or a platform for value transfer, e.g., Chiu and Koeppl (2017),

Malinova and Park (2017), Cong, Li and Wang (2018), Pagnotta and Buraschi (2018), Schilling and Uh-

lig (2018), Abadi and Brunnermeier (2018), and Huberman, Leshno and Moallemi (2019). However,

those studies either consider only order book markets or abstract away from the formal description

of matching or pricing algorithm on decentralized platforms. We try to provide further insights by

incorporating the AMMs into the equilibrium analyses as a dominant market-making algorithm on

DEXs. Implementational details of decentralized exchanges are provided by, for example, Warren

and Bandeali (2017), Adams, Zinsmeister and Robinson (2020), and Zhang, Chen and Park (2018).

Although the research on AMMs is in its infancy, Angeris, Kao, Chiang, Noyes and Chitra (2019)

provide a model of the optimal arbitrage problem with constant product market makers, and An-

geris and Chitra (2020), Evans (2020), and Angeris, Evans and Chitra (2020) generalize analyses to

the case with CFMMs. Several complementary papers have also analyzed market microstructure

of AMMs. Lehar and Parlour (2021) document rich information on returns for liquidity providers

with competing limit order markets and automated markets. Capponi and Jia (2021) provide a game

theoretic model and data analyses of AMMs and conclude that the adoption of AMMs will be lim-

ited when assets are highly volatile. Also, Park (2021) points out that the pricing by AMMs harms

efficiency because the algorithmic pricing allows front-running behavior and is fundamentally de-

tached from a traditional pricing based on economic risk. Our model complements the above studies

by developing a theoretical framework to analyze coexisting AMMs and limit order markets.

2 Technology overview

This section is devoted to preliminary discussions. We briefly describe trade execution on decen-

tralized exchange platforms operated with the CPMM, a leading example of CFMM (or, in general,

AMMs). Appendix A provides overview of the blockchain technology.6

6Readers can refer to Antonopoulos (2014) and Antonopoulos and Wood (2018) for more details on the blockchain

technology.
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2.1 Decentralized exchanges

Building a trading platform on the blockchain—i.e., a decentralized exchange—looks a natural strat-

egy to extricate financial trading from a centralized information management and to make it robust

to cyber attacks or single point of failures. As suggested by Harvey, Ramachandran and Santoro

(2021), decentralization in finance is expected to improve traditional finance in many aspects, such

as efficiency, transparency, and limited access. However, maintaining a limit order book by a smart

contract on the Ethereum blockchain is costly and tends to be slow, due to the time-consuming min-

ing process, a complicated matching mechanism of limit order books, and the limited capacity of the

blockchain.

There are two major solutions: a hybrid system and the Automated Market Makers (AMM). Many

DEXs have adopted some “hybrid” mechanisms that involve both on-chain and off-chain features.

For example, 0x is built on so-called the relayer mechanism (see Warren and Bandeali, 2017). It pro-

vides an off-chain order book, on which traders can broadcast their trading intention and find their

counterparties, as in the traditional centralized limit order markets. Since the order book is main-

tained off-chain, it refreshes swiftly. Once traders agree on a trade (i.e., trade execution), the order is

settled on the blockchain via smart contracts. Note that the hybrid system still involves centralized

protocol to a certain extent, as the relayers reserve some centralized power.

The second type is the AMMs. As mentioned in the introduction, it is a single-function algorithm

that determines a price for order execution. As it is more simple than a limit-order matching mech-

anism, it requires much smaller computational capacity, making trade execution and settlement on

the blockchain easier and faster.

2.2 Constant Product Market Makers

This section briefly explains how constant function market makers (CFMMs) determine the execution

price of a trade by taking constant product market makers (CPMMs) as a leading example. It follows

the specification by Zhang et al. (2018) and more detailed discussions are provided by, for example,

Adams et al. (2020).

Liquidity pools and asset prices. Consider token X and token Y. Market makers inject tokens into

an exchange following a certain rule described below. The exchange aggregates locked tokens and
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Figure 2: Constant Product Market Makers

Note: This figure illustrates a change in the state of liquidity pools when an incoming market order is buying Dx unit
of token X. The CPMM requires the liquidity pools to stay on the convex curve by adjusting a change in token Y or,
equivalently, the execution price p.

creates a liquidity pool. Suppose that the exchange reserves x unit of token X and y unit of token Y. The

CPMM requires the geometric mean of the liquidity pools to be constant. That is, with some constant

k, it must hold that k = xy.

If a trader wants to buy Dx of token X by selling Dy = pDx of token Y at price p, she adds Dy of

token Y to the pool and withdraws Dx of token X from the pool. It triggers the following change in

the pools:

x ! x0 = x � Dx,

y ! y0 = y + Dy.

Note that the price of token X in terms of token Y is p = Dy
Dx . Since the geometric mean of the pool

must be constant, the price must satisfy the following equation.

k = x0y0 = (x � Dx)(y + pDx).

Thus, the above equation determines p as a function of the current state of the pool, (x, y), and the
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trading quantity Dx. In particular, we obtain

p =
y

x � Dx
.

Thus, the larger quantity the trader wants to buy (Dx > 0), the higher price she must pay, i.e., the

price is an upward-sloping curve against the trading quantity. The price impact is mitigated when

the exchange has a large amount of tokens in its liquidity pool.

Also by considering a small trading volume, Dx ! 0, the execution price for an infinitesimal trade

is given by p = y/x, that is, the relative size of liquidity pools. Figure 2 shows a change in the pools’

state caused by the above transaction: the exchange rate for an infinitesimal trade is determined by

the slope of the curve specified by k = xy. Importantly, this implies that the price is convex in the

trading volume.

Moreover, the pricing algorithm of the CPMM (or AMMs, in general) satisfies the property called

path independence, i.e., when the liquidity pools move from one state to another state, the expected ex-

ecution price is independent of the paths that the pools move. In the context of our paper, this means

that trading a certain amount of assets all at once is equivalent to splitting orders and sequentially

trading.7 Appendix D provides a formal proof for this point.

Liquidity providers. When a market maker (or a liquidity provider) supplies liquidity via the CPMM,

she is required to lock both token X and token Y. The amount of supplied liquidity must be adjusted

following the current asset price on the DEX. For instance, suppose that the liquidity pools have x

and y. Then, the price of token X in terms of token Y for an infinitesimal trade is y
x . If market maker

i wants to supply xi unit of token X, she must also supply the corresponding amount of token Y so

that the slope of the CPMM does not change. This means that she also locks yi such that y+yi
x+xi

= y
x or,

equivalently, yi =
y
x xi. According to this rule, market makers inject liquidity to the pools.

Although the geometric mean of the liquidity pools stays constant, a transaction causes a change

in the liquidity pools, i.e., (x, y) ! (x0, y0). The change in the value is the source of the profit and

the cost of liquidity provision. In particular, if market maker i injects (xi, yi) before a trade, and

the aggregate size of the pools is (x, y), she obtains the share of the pools, w = yi+xi
x+y . Once a trade is

7As discussed by Angeris et al. (2019), splitting orders costs more than trading all at once if a trader must pay a fee for

trade execution.
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executed, the market maker can withdraw her share from the liquidity pools and realizes her returns.

Since the post-trade pool state is (x0, y0), the market maker obtains the gross return of p = w(x0 + y0).

Constant Function Market Makers. A CFMM is a broader class of AMMs that is specified by a

certain function f : R2
++ ! R++ that maps the current state of the liquidity pools to some constant.8

With the above example, the execution price p is determined by

f (x, y) = f (x � Dx, y + pDx).

f must satisfy some regularity conditions so that p � 0 is uniquely determined by the above equation

and well behaved (see Subsection 3.2 for formal analyses). Note that the CPMMs are the special case

of the CFMMs with f (x, y) = xy.

3 The model

Consider a one-shot trading game in a two-period economy. A single risky asset with common value

ṽ is traded between three types of traders: for-profit traders, liquidity traders, and market makers.

Throughout the paper, we use the term “asset” to underscore the model’s broader generality, and

cash (or a fiat currency) serves as numeraire. Alternatively, we can think of the asset as a digital

token (e.g., some ERC-20 token) and cash as another token where ṽ is their relative value. With this

interpretation, the asset price is translated into the exchange rate between tokens.

Events and traders. One of two possible event types triggers a trade at t = 1: either an innovation

in the fundamental value of the asset (a common-value shock) or a liquidity shock (a private-value

shock).9 With probability h 2 (0, 1), the common value of the asset experiences an innovation and

becomes ṽ = v0(1+ s̃), where s̃ is the stochastic growth rate of the asset’s value and s̃ = ±s with the

same probability. v0 represents the prior expected value of the asset and, without loss of generality,

we normalize v0 = 1.
8We assume that the automated market deals with exchanges of two assets but, in general, it can be defined with n � 2

assets by considering f : Rn
++ ! R++.

9See, for example, Menkveld and Zoican (2017) and Brolley and Zoican (2020) for models with these shocks as a trigger

of transactions.
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There is a continuum of risk-neutral for-profit traders with a unit measure. When a common-value

shock hits ṽ, they immediately observe the realized value of the shock and choose their trading venue

(defined below). A for-profit trader sends a single-unit market order to take an arbitrage opportunity.

They represent sophisticated institutional investors in the real financial market and are referred to as

informed traders.

With probability 1 � h, a shock hits the private value of liquidity traders. Liquidity traders are

impatient investors with no material information. A private-value shock triggers their needs for im-

mediacy, such as hedging motives, margin constraints, and other immediate borrowing and lending

requirements, exogenously making them want to trade. We assume that mass zbuy of liquidity traders

are hit by a positive shock and buy one unit of the asset by sending a market order, whereas mass

zsell of liquidity traders are hit by a negative shock and try to sell one unit of the asset. The mass

of liquidity traders is stochastic and uniformly distributed, zi ⇠ U[0, z] for i 2 {buy, sell}. Upon

arriving at the market, each liquidity trader immediately places a single-unit market order to fulfill

her trading needs.

In the following section, we first assume that the liquidity traders need to decide on where to

place their order at t = 0 before they enter the market. This is because they are unsophisticated retail

investors, and maintaining multiple accounts at both exchanges (or subscribing to a smart order

router) is costly for them.10 In Appendix B we relax this assumption and allow liquidity traders to

choose trading venues contingent on the sign of a private-value shock.

There also exist a continuum of uninformed market makers with a sufficiently large measure. At

the beginning of the game, competitively many market makers either post limit orders, each with a

single unit, on a limit order market or locks one unit of assets in the liquidity pools of an automated

market. Their behavior will be formally defined below.

Figure 3 illustrates the timeline of the game and possible outcomes of the trigger event.

Exchange platforms. There are two exchange platforms: a CEX and a DEX. The CEX is a traditional

centralized exchange and operated with a continuous limit order book (LOB). Market makers on the

CEX competitively provide quotes by submitting a single-unit limit order with bid and ask prices,

10As of March 2021, there exist only a limited number of cryptocurrency exchanges that provide order routine services

across CEXs and DEXs. An investor may trade via institutional brokers, but a large portion of cryptocurrency trades are

directly done by retail investors.
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Figure 3: Timeline of the game

as in Glosten and Milgrom (1985). The CEX is based on the centralized matching algorithm with

high-speed information processors. Thus, it provides ultra-fast trade execution, causing almost no

delays.11

In contrast, the DEX is operated with the CFMM. As explained in Subsection 2.2, market makers

competitively lock one unit of the asset (and the corresponding value of cash) into the exchange,

generating liquidity pools. A liquidity taker who wants to buy (resp. sell) the asset subtracts (resp.

adds) the asset from the asset liquidity pool by adding (resp. subtracting) cash to the cash liquidity

pool. The execution price is determined by the CFMM algorithm instead of quotes by market makers.

Trading with the CFMM involves smart contracts on Ethereum blockchain, and it takes much

lower throughput than the CEX, causing a delay in completion of a transaction. We assume that all

incoming orders placed at t = 1 are simultaneously processed at the end of the first period. However,

transactions are stored in the mempool of the blockchain and wait for validation and execution by

blockchain miners. Following Zhu (2014), a delay in transactions weighs negatively on the private

utility of liquidity traders, as they are impatient and eager to fulfill their trading needs immediately.

In the model, a liquidity trader on the DEX incurs gs of delay costs per unit of trade, where g is a

random parameter that measures the aversion toward a delay (or needs for immediacy) and drawn

11From the high-frequency traders’ perspective, even a centralized exchange with cutting-edge technologies causes a

microsecond or nanosecond delay that may affect trading profits. However, the primary focus of this paper is on the

trading on the CEX compared to that on the DEX, and ignoring delays in order of microseconds or nanoseconds does not

harm our discussions, as a delay on the DEX is the order of seconds or minutes, which is much longer than that on the

CEX.
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from g ⇠ U[0, 1].12

Differentiation. The informed traders buy (resp. sell) the asset when the asset value experiences a

positive jump s̃ = +s (resp. a negative jump, s̃ = �s). It becomes clear in the following discussion

that the behavior of informed traders is asymmetric and depends on the trade direction due to the

convex nature of the execution price on the DEX. Therefore, conditional on s̃ = +s, bbuy 2 [0, 1]

fraction of informed traders participate in the DEX to buy the asset. In contrast, with s̃ = �s,

measure bsell 2 [0, 1] of informed traders sell on the DEX, where we allow bbuy , bsell . We denote

the measure of liquidity traders on the DEX as a 2 [0, 1], which is not contingent on the sign of a

private-value shock, as they decide on trading venues at t = 0 (see Appendix B for the case with

asymmetric a).

3.1 Trading on the CEX

The partial equilibrium on the CEX with the limit order book is quite standard and follows the model

by Zhu (2014). We denote the equilibrium bid and ask prices on the CEX as

Ask = 1 + a, Bid = 1 � b.

We sometimes call the deviation of Ask and Bid from the expected value of the asset the ask (a) and

bid (�b) prices. Also, the (effective) bid-ask spread is defined as S = a + b.

Given the differentiation of traders, the expected profits for a market maker on each side of the

market are given by

pC
M,ask =

1
2
⇥
h(1 � bbuy)(a � s) + (1 � h)(1 � a)za

⇤
,

pC
M,bid =

1
2
[h(1 � bsell)(b � s) + (1 � h)(1 � a)zb] .

In both equations, the first term represents a trade with an informed trader, which happens with

expected amount 1
2 h(1� bi), and the second term shows the case of liquidity trading, which happens

with expected amount 1
2 (1� h)(1� a)z. Following Zhu (2014), we focus on the equilibrium in which

12The delay cost that is proportional to the asset volatility s can be seen as margin constraints or unmodeled risk aversion

(e.g., Brunnermeier and Pedersen, 2009).
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a market maker breaks even on the both sides of the market. Then, the break-even condition yields

the following competitive bid and ask prices.

a = a(bbuy, a) = s
(1 � bbuy)h

(1 � bbuy)h + (1 � h)(1 � a)z
, (1)

b = b(bsell , a) = s
(1 � bsell)h

(1 � bsell)h + (1 � h)(1 � a)z
. (2)

Note that the above prices are potentially asymmetric, as we allow bbuy , bsell . Otherwise, the com-

parative statics of the bid-ask spread are the same as the traditional models of market microstructure

with asymmetric information. That is, the bid-ask spread is positively (resp. negatively) affected

by the intensity of informed (resp. liquidity) trading, as it exacerbates (resp. mitigates) the adverse

selection cost for a market maker.

Accordingly, the expected profits for an informed trader who trades on the CEX are given by

pC
I (s̃) =

8
>><

>>:

s � a if s̃ = +s and buys the asset,

s � b if s̃ = �s and sells the asset.
(3)

Note that the informed trader’s profits are computed conditional on the realized value of s̃. Similarly,

a liquidity trader’s (ex-post) profits from trading on the CEX are given by13

pC
L,k =

8
>><

>>:

�a if k = buy,

�b if k = sell,
(4)

where subscript k indicates whether the private-value shock induces a trader to buy or sell the asset.

Since zbuy and zsell measures of liquidity traders are hit by “buy” and “sell” private-value shocks, the

aggregate ex-ante expected trading cost for a liquidity trader at t = 0 is equivalent to the effective

bid-ask spread:

E

"

Â
k=buy,sell

zkpC
L,k

#
= � z

2
S. (5)

13We implicitly assume that a liquidity trader obtains private utility u if she fulfills her trading needs, with u being

sufficiently large (e.g., u > 1 + s). Therefore, all liquidity traders participate in the market upon hit by a shock. u does not

affect the equilibrium conditions because a liquidity trader obtains u no matter where she trades.
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3.2 Trading on the DEX

Pricing by Constant Function Market Makers. For this section, we assume that the liquidity pools

have an exogenous and sufficiently large amount of cash and the asset, denoted as C and X, while

Section 4 considers endogenous C and X.

Suppose that an incoming market order tries to trade d unit of the asset (e.g., d > 0 means a

“buy” market order with mass d). By denoting the execution price for the order as p, the state of the

liquidity pools changes as follows after the trade:

C ! C0 = C + pd (6)

X ! X0 = X � d. (7)

For example, if a trader is buying the asset (d > 0), she subtracts d unit of the asset from the asset

liquidity pool, X, by adding the corresponding amount of cash pd to the cash pool, C.

In our model, the CFMM is defined by function f : R2
++ ! R++ that determines the state of the

liquidity pools, (c, x). In turn, with some regularity conditions, f uniquely pins down the pricing

function, denoted as p. In what follows, we discuss the conditions that the pricing function satis-

fies, instead of enumerating the regularity conditions for f , as analyzing p conveys clearer intuition.

Appendix C provides the regularity conditions for f .

The CFMM sets the execution price p so that the post-trade state of the pools satisfies

f (C, X) = f (C + pd, X � d).

The regularity conditions for f in Appendix C guarantee that p is uniquely determined as a function

of (d, C, X).

Firstly, to establish the model with the coexisting exchanges, we assume that there is no arbitrage

when the trading game starts at t = 1.

Assumption 1. At the beginning of the trading game, there is no arbitrage, and an infinitesimal trade cannot

make a strictly positive profit.
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Note that an infinitesimal trade (d ! 0) is executed at price

p0 ⌘ fx(C, X)
fc(C, X)

, (8)

where we denote the partial derivative of f (c, x) with respect to j = c, x as f j. Therefore, the non-

arbitrage condition implies that p0 = E[ṽ] = 1. Moreover, p0 = 1 and equation (8) determine the

relationship that the initial liquidity pools, (C, X), must satisfy. In particular, there exists a differen-

tiable and increasing function, denoted as g : R++ ! R++, such that

C = g(X).

As explained in Subsection 2.2, the above equation determines the rule for liquidity providers when

we endogenize (C, X) in Section 4.

Secondly, we characterize a set of reachable states, (c, x), on the CFMM curve. Namely, if state

(c, x) is on the CFMM curve with the initial condition (C, X), the value of c is expressed by using

monotonically decreasing function h : R++ ! R++ as

c = h(x; C, X). (9)

By using the above functions, we can translate the regularity conditions for f in Appendix C into

the conditions for the pricing equation . Proofs for the following results are provided in Appendix C.

Lemma 1. Given the initial state of the liquidity pools (g(X), X) and function h defined by the CFMM (9),

the execution price for a trade with size d , 0 is given by

p(d, X) =
1
d

Z d

0

fx(h(X � d̃), X � d̃)

fc(h(X � d̃), X � d̃)
dd̃. (10)

Price function p satisfies the following conditions.

(i) p0 = p(0, X) = 1;

(ii) p is increasing in d;

(iii) p is decreasing in X if and only if d > 0;

(iv) p is differentiable with respect to both elements, and ∂2 p
∂d∂X < 0;
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(v) pd(b, X) > pd(�b, X) holds for all b, X > 0;

(vi) A(d, X) ⌘ |p(d, X)� 1| is log-submodular in (d, X) for d , 0.

Given the initial liquidity X, conditions in Lemma 1 only requires monotonicity and convexity

of the price function with respect to trade size d. They imply that p(d, X) has typical properties as

a price function. Firstly, condition (i) is the repetition of the non-arbitrage condition. Secondly, the

larger quantity the trader intends to buy (resp. sell), the higher (resp. lower) the execution price

becomes (condition [ii]). We can also check that ample liquidity lowers the price level given the size

of a trade (condition [iii]).

Moreover, we can define the price impact of a trade, and condition (iv) defines its behavior.

Lemma 2. The price impact of a market order with measure d is defined by k(d, X) = d log p(d,X)
dx . k is

decreasing in X and increasing in d.

The above lemma characterizes the market depth on the DEX. When the DEX has a larger quantity

in its liquidity pools (X), the market becomes deeper, and a market order of a given size has a smaller

price impact. Therefore, Lemma 2 suggests that it is appropriate to use the pool size (X) as the

measure of liquidity on the DEX.

Examples. When an automated market is operated by the CPMM, we have f (C, X) = CX. The

attainable states on f is characterized by c = h(x; C, X) = XC
x . Also, the pricing algorithm is given by

p(d, X) =
X

X � d

where we applied the non-arbitrage condition to obtain C = g(X) = X for the initial condition. The

price impact for a trade with size d is k = 1
X�d , which is increasing in d and decreasing in X. Also, p

is a convex function of d.

One of the other popular CFMMs is the Constant Mean Market Makers (CMMMs) defined by

f (C, X) = CwX1�w

with some parameter w 2 (0, 1). It holds that c = h(x; C, X) = C
�X

x
� 1�w

w , and the initial condition
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becomes C = g(X) = w
1�w X. The price is given by

p(d, X) =
w

1 � w
X

1
w
(X � d)

w�1
w � X w�1

w

d
.

It is easy to check that the above price satisfies all conditions in Lemmas 1 and 2.

Profits of informed traders on the DEX. Now, we go back to the general CFMM and use p in equa-

tion (10). For brevity, we omit X in the price function and denote it as p(d).

When a jump in the asset’s value occurs, each informed trader knows s̃ = ±s, which also implies

that she is aware of the trading attempts of other informed traders. More precisely, she knows that

a positive (resp. negative) jump triggers buy (resp. sell) market orders of aggregate size bbuy (resp.

bsell). Therefore, conditional on s̃ = ±s, the execution price on the DEX is given by

p =

8
>><

>>:

p(bbuy) when s̃ = +s,

p(�bsell) when s̃ = �s.
(11)

For simplicity, we assume that all incoming orders are aggregated and executed all at once, but Ap-

pendix D shows that the expected execution price is the same as (11) when we consider uniform

arrivals and sequential execution of orders due to the path independence. As a result of (11), the in-

formed trader’s expected profit from trading on the DEX is

pD
I (s̃) =

8
>><

>>:

1 + s � p(bbuy) if s̃ = +s

p(�bsell)� (1 � s) if s̃ = �s.
(12)

We can think of p(d) and p(�d) as the ask and the bid prices on the DEX but p(d)� 1 , 1� p(�d)

as long as d , 0. This is because of the convexity in the CFMM’s pricing algorithm, stipulated in

Lemma 1.

Figure 4 illustrates intuition by taking the CPMM as an example. Suppose that a buy or a sell

order with quantity d = Dx moves the state of the liquidity pools from LP0 (the initial condition) to

LP1 in the figure. If it is a buy order (Dx > 0), LP0 slides upward to LP1,buy, while a sell order moves

LP0 downward to LP1,sell , both along the curve C = X�1. Since the curve is convex, even if the buy
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Figure 4: Asymmetric price impact

Note: This figure discribes the price impact of buy and sell orders with the same size, Dx. Starting from (X0, C0), a buy
market order with size Dx causes an upward shift of the liquidity pools, while a sell order triggers a downward shift. The
execution price must keep (C, X) on the CPMM curve (C = 1/X). Since the curve is convex, an addition of Dx to X requires
a smaller adjustment of the value of C than the case of reduction of X, meaning that the price impact is larger for a buy
order.

and the sell orders have the same size, the buy order requires a larger adjustment of the cash pool

than the sell order, Dcbuy > Dcsell . Hence, a trader must pay a higher price p to buy the asset than the

price payment she obtains when she sells the asset.14

The above discussion is true even if we switch the role of cash and the asset. Economically,

the convexity of the CFMM implies that the execution price or the exchange rate between assets

is determined so that adding the liquidity to the pool bears a smaller price impact compared to

consuming liquidity in the pool. This hard-wired asymmetry is absent in the limit order market

because, without frictions or risk aversion, a buy and a sell market order bear the same trading cost,

i.e., a bid and ask prices are symmetric around the mid point.

Profits for liquidity traders on the DEX. With probability 1 � h, the trigger event is a private-value

shock on the needs for immediacy of liquidity traders. Conditional on the direction of the private-

14Although the curve y = k/x is symmetric around x = y, the reaction of y is asymmetric to x ± d as long as d > 0.
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value shock, the profits for a liquidity trader with the delay cost g are given by

pD
L,k(g) =

8
>><

>>:

1 � EDz[p(aDz)]� gs if k = buy,

EDz[p(aDz)]� 1 � gs if k = sell.
(13)

The aggregate order size, Dz = zbuy � zsell , is uncertain for each liquidity trader, and EDz is the

expectation over Dz. Compared to the informed trading, the price impact of liquidity trading tends

to be weak in expectation because their trading direction is random, and buy and sell orders are

netted out.

3.3 Equilibrium venue choice

We define the equilibrium with exogenous DEX liquidity (C, X) as follows:

Definition 1. The equilibrium of the model is defined by the measure of informed and liquidity traders who

participate in the DEX, {(bi)i=buy,sell , a}, the bid-ask prices, (a, b), and the execution prices on the DEX, p,

such that (i) the informed traders are indifferent between trading on the CEX and the DEX given the occurrence

of a jump in ṽ and the information about s̃, (ii) the liquidity traders are differentiated by comparing the ex-ante

expected profits on the CEX and the DEX, (iii) the market makers on the CEX break even at the bid and the ask

prices, and (iv) the prices on the DEX follows the CFMM algorithm given the initial pools condition (C, X).

With the profit functions for each trader on each venue given by (3), (4), (12), and (13), the indif-

ference conditions for traders pin down the equilibrium mass of traders on the DEX.

Informed traders. Firstly, the measure of informed traders on each exchange is characterized by

the following.

Proposition 1. (i) Given a, the equilibrium measures of informed traders on the DEX, b⇤
buy and b⇤

sell , are the

solution of the following equations, respectively:

1 + s
(1 � b)h

(1 � b)h + (1 � h)(1 � a)z
= p(b),

1 � s
(1 � b)h

(1 � b)h + (1 � h)(1 � a)z
= p(�b).
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The solutions exist and are unique.

(ii) b⇤
i is monotonically increasing in a, X, C, and s.

(iii) b⇤
buy < b⇤

sell for all a 2 (0, 1).

b⇤
buy and b⇤

sell are both a unique solution for each indifference condition in b 2 (0, 1), and they are

stable, i.e., they do not diverge even if a small perturbation happens to parameter values. Intuitively,

an increase in the measure of DEX informed traders b⇤ causes a larger price impact on the DEX and a

narrower bid-ask spread on the CEX. Thus, the CEX becomes more attractive than the DEX, meaning

that a marginal informed trader on the CEX has no incentive to switch her trading venue.

Moreover, the trading intensity of the informed traders exhibits anticipated reactions to a change

in parameter values. If a larger set of liquidity traders participate in the DEX (a increases), it ex-

acerbates adverse selection for market makers on the CEX. It widens the bid-ask spread, and more

informed traders are willing to participate in the DEX (b⇤
i increases). Also, a larger X (and thus C)

attenuates the price impact of informed trading (see Lemma 2), inviting more informed traders to the

DEX. Finally, a higher volatility of the asset (s) also attracts informed traders to the DEX, as the bid-

ask spread on the CEX becomes proportionally wider when s increases, while the execution price at

the DEX is not directly affected.

One of the novel features of the CFMM algorithm emanates from asymmetry in execution prices

due to its convexity explained above. Since buying the asset incurs a larger cost than the return

of selling the asset, a negative innovation in the asset’s value induces a disproportional reaction

of informed sellers to informed buyers, leading to b⇤
buy < b⇤

sell . This asymmetry provides some

empirical implications, as discussed later.

Liquidity traders. A liquidity trader with cost parameter g participates in the DEX if and only if

the profits from trading on the DEX dominate that from trading on the CEX:15

z
2 Â

k=buy,sell
pD

L,k �
z
2 Â

k=buy,sell
pC

L,k = � z
2

S,

where the last equality uses (5). The above inequality is reduced to

g < g⇤ ⌘
S(bbuy, bsell , a)

2s
.

15We assume that a liquidity trader participates in the DEX when she is indifferent.
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The LHS is the expected trading cost on the DEX. Since a liquidity trader buys or sells with the same

probability, the execution price does not affect the expected cost. However, the delay cost matters

because a liquidity trader on the DEX bears it regardless of the trading direction. In contrast, the

RHS represents the expected trading cost on the CEX, i.e., the bid-ask spread. Since g ⇠ U[0, 1], we

obtain the following result.

Proposition 2. (i) Given (bbuy, bsell), the equilibrium mass of liquidity traders on the DEX is determined by

a = Pr(g < g⇤) =
S(bbuy, bsell , a)

2s
. (14)

If z > z⇤, equation (14) has two solutions: â = 1 and a⇤ 2 (0, 1). â is unstable and a⇤ is stable. If z < z⇤,

â = 1 is a unique (unstable) solution. The threshold value z⇤satisfies :

z⇤ =
2h

1 � h

(1 � bbuy)(1 � bsell)

2 � bbuy � bsell
.

(ii) a⇤ is monotonically decreasing in bbuy and bsell .

In what follows, we assume that the condition holds for multiple solutions and focus on the stable

solution.

The measure of liquidity traders on the DEX is decreasing in the measure of informed traders on

the DEX. When informed traders migrate away from the CEX to the DEX (b⇤
i increases), the bid-ask

spread on the CEX tightens. Since the execution price on the DEX for liquidity trading is not di-

rectly affected by the measure of informed traders, the CEX becomes more attractive for the liquidity

traders, and a⇤ declines.

3.4 Liquidity implications of the CFMM

It is not trivial whether an additional liquidity on the DEX improves or deteriorates liquidity on the

CEX. Since the bid-ask spread on the CEX is determined by the ratio of informed trading to liquidity

trading, we need to investigate the reaction of (bbuy, bsell) relative to that of a to a change in DEX

liquidity, X.

By putting Propositions 1 and 2 together, we obtain the following result.
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Proposition 3. (i) The equilibrium measures of liquidity traders and informed traders on the DEX, (a⇤, b⇤
buy, b⇤

sell),

solve the following equations.

a =
S(bbuy, bsell , a)

2s
, (15)

bi =

8
>><

>>:

b⇤
buy(a) for i = buy,

b⇤
sell(a) for i = sell,

where b⇤ is given by Proposition 1. There is a unique stable interior solution for the above equations.

(ii) The equilibrium measure of liquidity traders on the DEX a⇤ is a decreasing function of DEX liquidity X.

(iii) The equilibrium measure of informed traders who buy on DEX b⇤
buy is an increasing function of X. More-

over, the expected measure of informed traders on DEX in equilibrium
b⇤

buy+b⇤
sell

2 is increasing in X.

(iv) The equilibrium bid-ask spread on the CEX is a decreasing function of X.

Proposition 3 shows that informed traders are more inclined to participate in the DEX when it

becomes more liquid, whereas liquidity traders tend to trade on the CEX.

Firstly, informed traders are concerned about the price impact on the DEX, and it is decreasing

in X. Thus, larger liquidity pools render informed trading on the DEX less costly and attract more

informed traders to the DEX. In turn, more active informed traders on the DEX mitigate the adverse

selection cost for CEX market makers, and the bid-ask spread declines.

Secondly, a change in X does not have a direct impact on liquidity traders’ behavior, as the exe-

cution price on the DEX does not matter in expectation. Hence, facing a narrower bid-ask spread on

the CEX, more liquidity traders participate in the CEX.

This process involves a decline in the bid-ask spread or improved market liquidity on the CEX,

as demonstrated by point (iv) in Proposition 3. Therefore, our model suggests that liquidity on the

DEX complements that on the CEX.

Remark. Although we do not model underling blockchain mechanisms for the DEX in detail,

some exogenous variations in blockchain parameters may cause a change in DEX liquidity and affect

CEX liquidity. For example, the amount of Ethereum locked in Uniswap has experienced a sub-

stantial drop (about 40%) in November 2020 after the announcement of a change in the platform’s

parameter.16 The above result can be used as a simple building block to analyze the liquidity impact

16See, for example, https://cointelegraph.com/.
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of such an event and helps discuss the broader implications of blockchain environment by incorpo-

rating its cross-market effects.

4 Liquidity provision with the CFMM

This section considers liquidity provision by market makers on the automated market and analyzes

how X is determined and affected by traders’ behavior.

4.1 Market makers’ profits on the DEX

Prior to the trading game (at t = 0), each market maker decides on whether to supply liquidity.

Since the market-making sector on the CEX is competitive and yields the zero profit in expectation,

it works as an outside option for market makers on the DEX.

If a market maker provides liquidity on the DEX, she injects one unit of the asset and c = g(X +

1) � g(X) unit of cash to the liquidity pools. She must follow this rule so that the non-arbitrage

condition remains true. By locking liquidity with value c + 1 into the DEX, the market maker obtains

w = c+1
C+X share of the aggregate liquidity pools. With a trade of size d, the post-trade liquidity pools

have C0 and X0 in equations (6) and (7). After a trade, the market maker earns w share of (C0, X0),

realizing the difference from the initial cost as her net profit.

Since the order type and the trigger event are uncertain for market makers at the liquidity provi-

sion stage, the expected liquidation value of the liquidity pools is

VLP = E
⇥
g(X) + p(d̃)d̃ + ṽ(X � d̃)

⇤

where E is the expectation operator regarding the type of traders (i.e., informed or uninformed)

captured by d̃ and the innovation in the value of the asset, if any.

The impermanent loss. With probability h, information-driven traders take liquidity where they are

buying and selling with measure b⇤
buy and b⇤

sell , respectively, with the same probability. In this case,
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the expected profit for a market maker, net of the initial cost of injecting assets, is given by pD
IT below.

pD
IT =

w
2

2

64

if s̃ = +sz                                                       }|                                                       {
g(X) + p(b⇤

buy)b⇤
buy + (1 + s)(X � b⇤

buy) +

if s̃ = �sz                                                         }|                                                         {
g(X)� p(�b⇤

sell)b⇤
sell + (1 � s)(X + b⇤

sell)

3

75� (c + 1)

=
w
2

h⇣
p(b⇤

buy)� (1 + s)
⌘

b⇤
buy + ((1 � s)� p(�b⇤

sell)) b⇤
sell

i
.

The first line represents the post-trade value of the liquidity pools, which is comprised of the cases

with positive and negative shocks, net of the initial cost. It reduces to the second line and leads to the

following result.

Proposition 4. (i) When the trade is triggered by a common-value shock, the market maker’s expected net

profit on the DEX is negative, i.e., pD
IT < 0. (ii) Given X, pD

IT is decreasing in s.

The negative profit from informed trading is called the impermanent loss (see, for example, Angeris

and Chitra, 2020). The fact that liquidity is taken by an informed trader implies that the value of

liquidity pools inevitably declines. This is because an informed trader always subtracts one of the

more valuable assets from the liquidity pools by adding a less valuable asset. As a result, a market

maker ends up having a larger amount of a less valuable asset by giving up a more valuable one. This

result highlights the similarity of the CFMM to the market making on the limit order book, where

informed trading involves adverse selection for market makers due to information asymmetry (e.g.,

Glosten and Milgrom, 1985; Kyle, 1985).

Moreover, the adverse selection cost for DEX market makers (pD
IT) magnifies when s increases.

The more volatile the asset becomes, the more informational advantage the for-profit traders obtain

by knowing s̃ = ±s. Thus, s represents the degree of adverse selection and the cost of liquidity

provision on the DEX.

Profits from noise. When a trade is triggered by a shock on the private value of liquidity traders, it

causes noise trading, i.e., the traders’ behavior is independent of the value of the asset. It results in

the market orders with stochastic size Dz = zbuy � zsell . We denote the pdf and the cdf of Dz as q and
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Q, respectively.17

The expected net profit of a market maker, when a private-value shock triggers a trade, is given

by

pD
LT = w

Z z

�z
[g(X) + p(aDz)aDz + (X � aDz)] dQ(Dz)� (c + 1)

= w
Z z

�z
p(aDz)aDzdQ(Dz).

Proposition 5. (i) When the trade is triggered by a private-value shock, the market maker’s expected net profit

on the DEX is positive, i.e., pD
LT > 0.

(ii) pD
LT is increasing in a and decreasing in X. Furthermore, given X, it is decreasing in s.

As in the case of limit order markets, market makers on the DEX gain from trading with liquidity

traders because uninformed liquidity trading improves the value of the liquidity pools. Firstly, since

liquidity buy and sell orders are netted out and they are independent of s̃, liquidity trading does

not change the expected value of the asset pool (E[X0] = X � aE[Dz] = X), leading to zero net

profits from X ! X0. The strictly positive profits emanate from the liquidity pool of cash. Since the

execution price adjusts the post-trade liquidity pools along with the convex curve f (C, X), Jensen’s

inequality implies that

E[p(aDz)aDz] > 0.

Therefore, the positive impact of liquidity trading is hard-wired in the CPMM’s convex pricing algo-

rithm and works as an implicit reward for liquidity providers on the DEX.

The profit from noise trading is magnified when the volatility of liquidity trading is large. For

example, both a larger set of liquidity traders on the DEX (a) and a wider variation in liquidity

trading (i.e., Var(zi)) improve pD
LT. In contrast, a larger liquidity size (X) diminishes a variation in

the liquidity trading and reduces pD
LT. These properties are easily derived from Jensen’s inequality.

The profit mechanism in Proposition 5 is absent in the literature of automated market makers.

17Since Dz = zbuy � zsell with zi ⇠ U[0, z], the pdf of Dz is

q(Dz = u) =

8
>><

>>:

0 if u < [�z, z],

1
z2 (z � |u|) if u 2 [�z, z].
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The existing theory has analyzed how the price on an automated market converges to an exogenous

reference price, where arbitragers play their role to facilitate the price’s convergence. We introduce

liquidity or noise traders following the microstructure literature (e.g., Grossman and Stiglitz, 1980;

Black, 1986; De Long et al., 1990) and show that they play an important role to motivate liquidity

provision even without fee rebates to market makers.

4.2 Equilibrium with endogenous DEX liquidity

The expected profit from providing liquidity on the DEX is

pD
M(X) = hpD

IT(X) + (1 � h)pD
LT(X). (16)

To endogenize liquidity on the DEX, we focus on the equilibrium with a free entry condition for

market makers. Moreover, we assume that there exist a set of passive liquidity providers on the DEX

who provide some exogenous amount xpassive > 1 + 1+
p

1+s
s . This assumption guarantees that the

equilibrium is well defined, i.e., even if the active liquidity providers provide zero liquidity, the DEX

has a sufficiently large pools compared to the potential size of liquidity-taking orders.

Proposition 6. (i) Given b⇤
i and a⇤, the market maker’s expected profit is decreasing in X for pD

M � 0.

(ii) Given b⇤
i and a⇤, there is a unique and stable X = X⇤ such that pD

M(X) = 0. that solves the break-even

condition in (16).

(iii) X⇤ is increasing in a⇤ and weakly decreasing in b⇤
i .

Given the behavior of traders, the expected profit for each market maker is monotonically de-

creasing in the amount of the asset locked (for pD
M � 0). As a larger number of liquidity providers

participate and supply liquidity, the individual profit dilutes more.

Due to the free entry condition and the zero expected profits on the CEX, the equilibrium X = X⇤

is determined by the break-even condition, pD
M(X⇤) = 0, and Proposition 6 suggests that there is a

unique and stable X⇤. As long as pD
M > 0, more liquidity providers participate in the DEX and pushes

up the value of X, reducing pD
M. This process continues until it holds that pD

M  0. In contrast, if

pD
M < 0, liquidity providers stop supplying liquidity, and X declines until pD

M � 0 holds. Therefore,

the equilibrium is determined by the break-even condition, pD
M = 0, and it is stable.

Moreover, Proposition 6 implies that the size of the liquidity positively reacts to an exogenous
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Figure 5: Reaction of informed traders to s

Note: These figures are illustrated by using z = 2.0. The solid line shows bbuy, the dotted line shows bsell , and the dashed
line shows bbuy + bsell .

change in a, whereas it declines when b⇤
i increases. Intuition follows the traditional discussions on

adverse selection: informed trading relative to liquidity trading makes it more costly for market

makers on the DEX to supply liquidity.

Comparative statics. We want to gauge a joint reaction of the traders’ behavior and market liquid-

ity to variations in an exogenous parameter. In what follows, we take the volatility of the asset s

(or the measure of asymmetric information) as a source of variations and numerically analyze the

general equilibrium by taking the CPMM ( f (C, X) = CX) as the leading example of CFMMs.

A higher volatility of the asset implies that informed traders possess a more informational ad-

vantage over market makers, and the adverse selection problem worsens both on the DEX and the

CEX. Therefore, it confounds liquidity provision by DEX market makers, leading to a decline in X⇤,

as well as a wider effective bid-ask spread on the CEX. The above changes directly affect informed

trading (b⇤
buy, b⇤

sell ; via Proposition 1), whereas the measure of liquidity trading (a⇤) is only indirectly

affected by s.

As both the DEX and the CEX become more costly to trade, the reaction of b⇤
buy and b⇤

sell can be

ambiguous. Figure 5 shows that the impact of DEX liquidity (X⇤) dominates that of CEX liquidity (S;

the bid-ask spread) for buying informed traders, leading to a decline in b⇤
buy. In contrast, b⇤

sell shows

the opposite reaction to s. Moreover, since bsell exhibits a stronger (positive) reaction to s than a
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negative reaction of bbuy, the DEX involves more informed trading in expectation, i.e., b⇤
buy + b⇤

sell

increases.

Numerical result 1: When the asset becomes more volatile, informed sellers tend to cluster on the DEX and

informed buyers tend to cluster on the CEX. The net effect is positive in the sense that outflow of buyers

is dominated by inflow of sellers to the DEX.

The above result is intuitive because the convexity of the CFMM makes it less costly for a liquidity

taker to add liquidity to the pool than consume liquidity in the pool. The asymmetric price impact

means that an incentive to migrate to (or stick to) the DEX is stronger for selling informed traders

when the amount of DEX liquidity declines. As a result, informed traders on the DEX exhibit asym-

metric reaction to a volatility shock: when selling (resp. buying) the asset, informed traders tend to

cluster on the DEX (resp. the CEX).

Next, consider the behavior of liquidity traders. Figure 6 shows that liquidity traders tend to

cluster on the CEX when the asset becomes more volatile. They compare the delay cost on the DEX

(gs) to the expected trading cost on the CEX (S; the bid-ask spread). Since both of them are pro-

portional to the asset volatility, s has no direct impacts on liquidity traders’ venue choice. Instead,

what matters is the normalized bid-ask spread, S
2s , which captures the adverse selection problem for

the CEX market makers that emanates from informed traders’ venue choice.

In the above discussion, we have established that informed traders tend to cluster on the DEX

in expectation (i.e., bbuy+bsell
2 increases), and it imposes more severe adverse selection on DEX market

makers, while mitigating that for CEX market makers. It tightens the normalized bid-ask spread on

the CEX and attracts liquidity traders to the CEX.

Numerical result 2: When the asset becomes more volatile, liquidity traders tend to cluster on the CEX.

Finally, Figure 7 summarizes the reaction of market liquidity to a change in the asset volatility in-

corporating the above behavior of traders. Through their venue choice, traders’ reactions may have

indirect effects and undermine the direct impact of s on market liquidity, but they cannot offset or

dominate the direct effect.

Numerical result 3: When the asset becomes more volatile, liquidity on the DEX, measured by the amount

of cash locked in the pool, and liquidity on the CEX, measured by the bid-ask spread, both deteriorate.

The normalized bid-ask spread on the CEX, however, improves.
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Figure 6: Reaction of liquidity traders to s

Note: These figures are illustrated by using z = 2.0.

The normalized bid-ask spread becomes narrower because informed traders, in expectation, tends to

cluster on the DEX, while liquidity traders are more likely to trade on the CEX.

DEX trading share. The share of the DEX in terms of trading volume can be used as a measure of

traders’ activity on the DEX. The expected trading volumes on the CEX and the DEX, as well as the

aggregate volume, are defined by the following.

VCEX = h

 
1 � 1

2 Â
i=buy,sell

bi

!
+ (1 � h)(1 � a)z,

VDEX = h
1
2 Â

i=buy,sell
bi + (1 � h)az,

V = VCEX + VDEX = h + (1 � h)z.

Note that the aggregate trading volume, V, is perfectly determined by the probability of the trigger

event (h) and the expected size of liquidity trading z = 1
2 E[zbuy + zsell ]. So the question is how it is

allocated across two exchanges.

Figure 8 plots the trading volumes on the DEX and the CEX (VDEX, VDEX) against the asset volatil-

ity. The behavior of trading volumes on exchanges are not robust and dependent on the probability

of the trigger event h. When the asset becomes more volatile, the measure of DEX liquidity traders
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Figure 7: Reaction of market liquidity to s

Note: These figures are illustrated by using z = 2.0 and h = 0.3. They are rbust to other parameter values as long as
h < C

1+xpassive
is satisfied to guarantee the existence of the stable equilibrium.

increases, while that of informed traders declines in expectation. From the above equations for Vi,

these two effects compete against each other with h being the weight on the informed traders’ be-

havior. Thus the DEX trading volume (as well as its share) tends to decrease when a common value

shock is more likely to be the trigger of transactions (the right panel), while it tends to increase when

transactions are motivated by private values.

5 Discussion

5.1 Empirical implications

We can derive novel empirical implications from our model. We consider a change in the asset volatil-

ity s (or the degree of adverse selection) and the addition of a DEX with the CFMM to the traditional

financial market as an exogenous variation in financial market to propose testable implications. More

concretely, the addition of a DEX can be seen as a change in the status quo, in which all transactions

are conducted via centralized exchanges. It is a relevant measure of the impact of DEXs because, in

reality, many ERC-20 tokens are cross-listed between some CEXs and DEXs. Also, we have several

tokens that replicate some major cryptocurrencies. For example, Uniswap has listed the ETH/WBTC

pair on December 2020. WBTC is an ERC-20 token that is pegged to Bitcoin. Thus, the listing of
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Figure 8: Trading volumes

Note: These figures are illustrated by using z = 2.0, h = 0.3 and s = 0.05. They are rbust to other parameter values as long
as h <

xpassive
1+xpassive

is satisfied to guarantee the existence of the stable equilibrium.

WBTC on Uniswap can be seen as the advent of a DEX for the Ethereum and Bitcoin pair, which is

previously traded mostly on the centralized exchanges, such as Coinbase and Binance.

Firstly, the equilibrium prices of the asset on the CEX is affected by an automated market.

Conjecture 1. The addition of the DEX with the CFMM induces or strengthens asymmetry in the bid and

the ask prices.

The first conjecture is a natural consequence of the convex pricing of the CFMM. It generates

asymmetry in the price impact on the DEX for buy and sell orders. The asymmetry, in turn, must

affect bid and ask prices on the CEX with different magnitudes via traders’ venue choice. There is a

large body of literature for the asymmetric bid and ask prices, such as Ho and Stoll (1981) and Stoll

(1989). In terms of the bid-ask spread that stems from adverse selection, studies have highlighted the

asymmetry due to some microstructure constraints, such as a discrete tick size (Anshuman and Kalay,

1998), and the asymmetric distribution for the value of assets (Bossaerts and Hillion, 1991). Our

model proposes a new market structure that brings about the asymmetric prices on the traditional

limit-order markets.

Conjecture 2. All else being equal, an increase in the asset volatility (or the degree of adverse selection) is

associated with a higher order informativeness on the DEX and a lower order informativeness on the CEX.
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This conjecture is the result of Subsection 4.2. A higher degree of adverse selection makes it costly

to trade on both venues. Informed traders tend to cluster on the same side of the market on the DEX,

bearing a larger price impact, compared to liquidity traders with random trading behavior. Thus,

order flow on the DEX tends to be information driven, while that on the CEX tends to be private-

value driven.

As the literature on the CFMM is still in its infancy, an empirical measure of informativeness

on the DEX is yet to be constructed. In contrast, we have some metrics of informed trading on the

traditional markets, such as PIN by Easley and O’hara (1987). Our model suggests that the addition

of a DEX with the CFMM strengthens a positive reaction of informativeness of order flow to a change

in the volatility of the asset.

Related to the informativeness of order flow, our model suggests that buy and sell orders may

react in the different ways even if the magnitude of a trigger event is the same. This, in turn, implies

that return predictability of order flow is asymmetric between sell and buy orders.

Conjecture 3. Buy orders on the DEX are more likely to be followed by a positive innovation in returns than

sell orders followed by a negative innovation. The opposite is true on the CEX.

Moreover, the above prediction regarding the informativeness of order flow has a direct implica-

tion for market liquidity.

Conjecture 4. All else being equal, an increase in the asset volatility (or the degree of adverse selection) is

associated with a decline in the amount of assets locked in the DEX (e.g., Uniswap), a wider effective bid-ask

spread, and a narrower normalized bid-ask spread on the CEX.

In terms of the above-mentioned example, our model predicts that the correlation between the ef-

fective bid-ask spread for the ETH/BTC pair on centralized exchanges (e.g., Coinbase) and its return

volatility tends to be stronger after Uniswap starts covering the ETH/WBTC pair compared to that

prior to Uniswap.

5.2 Limitations of the model

Information horizon. One of the limitations of our model is that it does not accommodate informed

traders with a longer information horizon. In our model, we consider a one-shot trading game, in
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which informed traders try to exploit their informational advantage knowing that the information is

perfectly revealed (or the asset is liquidated) after a trade.

When traders act on some long-lived private information, we need to incorporate some other

important features of the information management on the DEX, namely, public nature of blockchain

information. As mentioned in Subsection A, trading intentions on the DEX are stored in the mem-

pool and wait for validation by blockchain miners. In most cases, the state of the mempool is publicly

disseminated and observable for miners and traders. As suggested by Malinova and Park (2017), a

trader may extract private information of other traders by observing publicly available information

on the mempool, generating the front-running risk. Our current model with competitive traders can-

not fully address the long-run issues, and a strategic aspect of informed trading must be embedded

in the future research.

Endogenous delay. In our model, we cut corners in introducing a trading delay on the DEX by

assuming that a liquidity trader incurs a linear delay cost per transaction. It can be thought of as a

situation where the mass of liquidity trading is sufficiently small compared to the block capacity so

that all trades are settled with a constant (and deterministic) delay, i.e., the block time.

In general, however, a trader can shorten the expected waiting time by paying a higher transac-

tion fee to blockchain miners. Since a miner tends to process transactions with higher fees, proposing

a higher fee can put trader’s transaction forward in a queue. For example, Huberman et al. (2019)

formulate the expected delay cost (the sum of the waiting time and fee payment) as an increasing

function of the measure of traders waiting for verification.

Endogenizing the delay cost will certainly add new implications to our model. At the same

time, however, we also believe that the endogenous delay cost strengthens our results. If the delay

cost is an increasing function of the measure of liquidity traders on the DEX (a), as suggested by

Huberman et al. (2019), liquidity traders are discouraged to participate in the DEX, leading to even

larger outflow of liquidity traders from the DEX to the CEX. Thus, the endogenous delay cost may

work as an additional driving force to mitigate adverse selection for CEX market makers and improve

CEX market liquidity.
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6 Conclusion

This paper studies the equilibrium impact of the adoption of a decentralized exchange (DEX) with a

novel market-making algorithm called the Constant Function Market Makers (CFMMs). In the real

financial market, DEXs with the CFMM and the traditional centralized exchanges (CEXs) with the

limit order mechanism interact with each other. We construct a model to describe such a coexistence

where traders are endogenously differentiated between the DEX and the CEX depending on their

trading motives—informed or uninformed.

We first derive the equilibrium measure of informed and uninformed traders who trade on the

DEX and the CEX. The model shows that the amount of liquidity locked in the DEX has a positive

impact on the liquidity measure on the CEX, i.e., the bid-ask spread on the CEX shrinks when the

DEX has more liquidity. We also characterize the profit function of market makers on the DEX who

supply the asset and cash following the CFMM algorithm. As suggested by the literature, they face

the impermanent loss. In addition, we show that they also have a chance to earn profits from noise

trading, which is absent in the literature of automated markets. Thus even without fee rebates for

market makers, they have an incentive to provide liquidity. Based on the derived profit function, we

endogenize the amount of liquidity on the DEX and conduct some comparative statics.

In our model, we focus on a one-shot trading environment and abstract away from long-lived

private information. When information horizon becomes longer, informed traders must incorporate

the speed of information revelation via their trading orders (as in Kyle, 1985). Moreover, price dis-

covery in the long-run is one of the two pillars that determines trader welfare. Thus, constructing a

long-run model based on the current analyses is the topic for future research.
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A Blockchain technology

The blockchain can be seen as a novel way of managing and tracking transactions information. In

the traditional world, we typically maintain a ledger that records participants’ state information in a

centralized manner, e.g., a bank acts as an intermediary. Bilateral transactions with no intermediation

by a credible third party incur asymmetric information and settlement risk.

In contrast, on the blockchain platform, a ledger is not held by a particular entity, but is distributed

across all participants in the network, called record keepers or blockchain miners. The distributed

ledger system requires information about blockchain users to be a consensus among all record keep-

ers. This highlights its first difference from traditional transactions, in which only a centralized au-

thority keeps track of information. Due to its distributed nature, the blockchain is robust to a single

point of failure and does not incur costs of building credibility.

A transaction with a distributed record-keeping system by blockchain goes as follows. Suppose

that Alice wants to buy a cup of coffee at Bob’s cafe by paying Bitcoin. Information about this trans-

action must be validated by blockchain miners. More precisely, the transaction is added to a block by

a miner. A sequence of blocks are encrypted and become a blockchain. In the Bitcoin blockchain, for

example, each miner in the network maintains a temporary list of unconfirmed transactions, called

a mempool. Transactions in the mempool are yet to be recorded on the blockchain, and information
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on the mempool is public to the network. A miner picks one of the transactions in the pool and tries

to validate it by executing costly computation following a certain algorithm. The fastest miner who

solves the problem adds transaction information to a block (i.e., she mines a block). The reward for

mining a block is a fee: when Alice initiates a transaction, she attaches a fee to her transaction, and

the validating miner obtains the attached fee.18

In general, it is extremely difficult for one miner in the network to overturn the consensus. In

the case of Bitcoin or Ethereum, for example, they leverage their computing power to solve a time-

consuming cryptographic problem. This process is called proof of work (PoW), and the miner who

performs it fastest is entitled to add a new block a chain.19 Of course there can be multiple chains of

blocks, because each miner can choose to which blockchain she adds a newly mined block. Following

Nakamoto (2008), however, the longest chain is regarded as a valid chain. Therefore, if a malicious

agent attempts to add fraudulent information to the transaction history (e.g., a double-spending

problem), she must outpace all miners in the network and secretly generate a longer chain than other

chains, which requires prohibitively high computing power. That is, information on the blockchain

is (almost) free from tampering.

Moreover, Ethereum allows users to add complex scripts to the blockchain which describe the

conditions under which transaction is verified and recorded. It implies that a transaction takes place

only if the conditions in the code are fulfilled, and it is done automatically without any centralized

third-party agencies. This type of automated contracts are called a smart contract following Szabo

(1997).

B Contingent venue choice by liquidity traders

In this appendix, we check the robustness of our results by relaxing the assumption regarding liquid-

ity traders’ venue choice. We allow liquidity traders to choose their trading venue contingent on the

realized sign of a private-value shock. Due to the convexity of the CPMM pricing, we focus on the

18A miner also obtains a block reward, which is a constant amount of Bitcoin (or other cryptocurrency in other

blockchains), when she mines a block. Although the block reward incentivizes miners to leverage their computing power,

the amount of reward periodically shrinks and converges to zero in the future.
19There are several ways to reach a consensus, and different blockchains (including ETH 2.0) adopt different processes.

For example, Saleh (2018) analyzes the viability of the proof of stake (PoS).
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equilibrium in which the fractions of buying and selling liquidity traders on the DEX are asymmetric

and given by abuy 2 (0, 1) and asell 2 (0, 1), respectively.

By applying the same logic as the previous sections, informed traders’ indifference conditions are

given by

1 + a(bbuy, abuy) = p(bbuy), (17)

1 � b(bsell , asell) = p(�bsell), (18)

where p is given by equation (10), and the ask and the bid prices are given by (1) and (2) with

asymmetric a. As a result, the equilibrium measure of informed buyers and sellers can be expressed

by reusing the previous equations.

Corollary 1. Given a ⌘ (abuy, asell), the equilibrium measures of informed buyers and sellers on the DEX,

(b⇤
buy, b⇤

sell), solve the indifference conditions in (17) and (18). There exist a unique set of solutions and they

are stable. b⇤
i is increasing in X, s, and ai for i 2 {buy, sell}.

Thus, the reaction of informed traders in the partial equilibrium stays the same as the previous

case with symmetric a in Proposition 1.

Now, consider the venue choice for liquidity traders. When a liquidity trader buys (resp. sells)

the asset on the CEX, her trading cost (resp. reward) is the ask (resp. bid) price. In contrast, she pays

or obtains the following symmetric price on the DEX:

pnoise(abuy, asell) = E(zbuy,zsell)

⇥
p(abuyzbuy � asellzsell)

⇤
,

where E(zbuy,zsell) is the expectation regarding zi ⇠ U[0, z]. As an example, the CPMM generates the

following explicit formula:

pnoise(abuy, asell) = E(zbuy,zsell)


X

X � (abuyzbuy � asellzsell)

�

=
X

z2abuyasell
log

(X + asellz)X+asell z(X � abuyz)X�abuyz

XX(X � zDa)X�zDa
. (19)

When a is symmetric, the net expected amount of liquidity trading is zero, as zbuy and �zsell are sym-

metrically distributed, and buy and sell orders are netted out. In contrast, the asymmetric behavior
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of buy and sell liquidity traders prevents the orders from completely offsetting each other.

When deciding on the trading venue, a liquidity trader with delay cost g compares the trading

cost on the DEX (the LHS) and the CEX (the RHS):

gs ?

8
>><

>>:

1 + a(bbuy, abuy)� pnoise(abuy, asell) if a ”buy” liquidity shock hits,

pnoise(abuy, asell)� (1 � b(bsell , asell)) if a ”sell” liquidity shock hits.

Since g uniformly distributes over [0, 1], we obtain the following:

Corollary 2. Given (bbuy, bsell), the equilibrium measures of liquidity buyers and sellers on the DEX are

given by the solution of the following equations.

abuy =
1 + a(bbuy, abuy)� pnoise(abuy, asell)

s
,

asell =
pnoise(abuy, asell)� (1 � b(bsell , asell))

s
.

For i 2 {buy, sell}, ai is decreasing in bi and increasing in aj for j , i.

The above result shows that the reaction of ai in the partial equilibrium is the same as the pre-

vious analyses. The additional result brought by the asymmetric a is the strategic complementarity

between liquidity buyers and sellers. Namely, liquidity buyers are more willing to trade on the DEX

when more liquidity sellers participate in the DEX, and vice versa. This is because a larger trading

volume on the opposite side of the market offsets the buy liquidity orders, leading to a smaller shift

in the liquidity pools and a weaker price impact. Therefore, liquidity begets liquidity on the DEX, as

in the traditional limit order markets (e.g., Pagano, 1989).

Finally, the expected profits for a market maker on the DEX is given by

pD
M(X) =

wh

2

h⇣
p(b⇤

buy)� (1 + s)
⌘

b⇤
buy + ((1 � s)� p(�b⇤

sell)) b⇤
sell

i
(20)

+ w(1 � h)E[pnoise(abuy, asell)(abuyzbuy � asellzsell)] (21)

Once again, it is easy to check that pD
M,IT < 0 and pD

M,LT > 0, meaning that a market maker loses from

informed trading and gains from liquidity trading. A larger mass of informed trading on the DEX,

as well as a higher volatility of the asset, reduces DEX market makers’ profits by worsening adverse
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Figure 9: Reaction of informed and liquidity traders

Note: This figures are illustrated by using z = 2.0 and h = 0.3. They are robust to other parameter values, as long as it
holds that z < C

1+C .

selection.

Numerical result. In what follows, we take the CPMM as an example to see the robustness. Figure

9 plots the reaction of informed traders (the left panel) and liquidity traders (the right panel) on

the DEX to an increase in the volatility of the asset. The asymmetric reaction of informed buyers

and sellers on the left panel shows that the result in the previous analyses is robust to a change in

the assumption on liquidity traders’ venue choice. The right panel, however, shows that allowing a

contingent venue choice adds a new implication regarding liquidity traders’ behavior on the DEX.

Numerical result 4: When the asset becomes more volatile, liquidity buyers tend to cluster on the CEX, while

liquidity sellers tend to cluster on the DEX. The net effect is negative, i.e., outflow of liquidity traders

from the DEX dominates inflow to the DEX.

The net behavior of liquidity traders abuy + asell is different from that of informed traders. Intuitively,

a liquidity trader on the DEX is not directly affected by the convexity of the CPMM algorithm per se, as

she is uncertain about the aggregate trading volume (given by [19]). Thus, the asymmetric reaction of

liquidity traders is driven by the asymmetric reaction of informed traders, that is, bbuy and bsell . Since

the expected mass of informed traders increases on the DEX, the bid-ask spread on the CEX shrinks

which, in turn, induces liquidity traders to participate more on the CEX in expectation. Therefore,
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Figure 10: Reaction of market liquidity

Note: This figures are illustrated by using z = 2.0 and h = 0.3. They are robust to other parameter values, as long as it
holds that z < C

1+C .

abuy + asell declines with s.

Given the venue choice by traders, Figure 10 shows the reactions of market liquidity. The left

panel shows the comparative static of DEX liquidity, measured by X⇤, while the right panel illustrates

the bid-ask spread (S) and the normalized bid-ask spread (S/s). Since the net behavior of liquidity

traders stays the same as the previous sections, so does the impact of the asset volatility on market

liquidity.

Finally, the reaction of trading volumes is similar to the case of symmetric a. When transactions

are more likely to be driven by the common-value shock (resp. the private-value shock), the share

of the DEX declines (resp. increases), as shown by Figure 11. The same logic applies as the previous

sections, as the expected measure of liquidity traders (abuy + asell) still declines even if we consider a

state-contingent venue choice of liquidity traders. Thus, we can check that the ambiguous behavior

of trading volumes provided in the previous section is robust.

C Proofs

We assume that CFMM function f satisfies the following regularity conditions. All conditions lead

to the pricing function in Lemma 1 which provides intuition for the regularity conditions.
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Figure 11: Reaction of trading volumes

Note: This figures are illustrated by using z = 2.0 and h = 0.3. They are robust to other parameter values, as long as it
holds that z < C

1+C .

Condition 1. The CFMM function f : R2
++ ! R++ with initial liquidity pool (C, X) satisfies the following:

(i) f is continuously differentiable, ∂2 f
∂c∂x exists, and fc(c, x) and fx(c, x) are positive for all c, x > 0;

(ii) If (c, x) is on function f , there exist h : R++ ! R++ such that c = h(x; C, X) and h is decreasing in x;

(iii) fc(C, X) = fx(C, X) holds for at the initial point (C, X);

(iv) {(c, x)| f (c, x) > k} is a strictly convex set for all k > 0;

(v) fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) is decreasing in X if and only if d > 0, convex in d, and differentiable with respect to d

and X. Moreover, ∂ fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) /∂X is decreasing in d ;

(vi) a(d, X) ⌘ | fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) � 1| is log-submodular in (X, d).

C.1 Proof of Proposition 1

By Condition 1-(iv), fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) is increasing in d and thus p is increasing in d. By Condition

1-(v), it can be shown that p is decreasing in X if and only if d > 0. Since fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) is differen-

tiable, p is differentiable with respect to X and it is obvious that p is also differentiable with respect

to d.

Next, observe that

pd(d, X) =
1
d

✓
fx(h(X � d; C, X), X � d)
fc(h(X � d; C, X), X � d)

� p(d, X)

◆
.
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Since fx(h(X�d;C,X),X�d)
fc(h(X�d;C,X),X�d) is increasing and convex in d, fx(h(X�d;C,X),X�d)

fc(h(X�d;C,X),X�d) � p(d, X) > fx(h(X+d;C,X),X+d)
fc(h(X+d;C,X),X+d) �

p(�d, X) holds. Hence, pd(b, X) > pd(�b, X) holds for all b, X > 0. Next, we have

pd,X(d, X) =
1
d

✓
∂

fx(h(X � d; C, X), X � d)
fc(h(X � d; C, X), X � d)

/∂X � pX(d, X)

◆
.

Since pX(d, X) = 1
d

R d
0 ∂ fx(h(X�d̃),X�d̃)

fc(h(X�d̃),X�d̃)
/∂Xdd̃, Condition 1-(v) implies that ∂ fx(h(X�d;C,X),X�d)

fc(h(X�d;C,X),X�d) /∂X <

pX(d, X) holds if and only if d > 0. Hence, ∂2 p
∂d∂X < 0.

Suppose that d0 > d and X0 > X. By Condition 1-(vi), a(d,X)
a(d,X0) < a(d0,X)

a(d0,X0) holds. First, consider the

case where d0 > d > 0. Since

R d
0

fx(h(X�d̃),X�d̃)
fc(h(X�d̃),X�d̃)

� 1dd̃
R d

0
fx(h(X0�d̃),X0�d̃)
fc(h(X0�d̃),X0�d̃)

� 1dd̃
<

R d0

d
fx(h(X�d̃),X�d̃)
fc(h(X�d̃),X�d̃)

� 1dd̃
R d0

d
fx(h(X0�d̃),X0�d̃)
fc(h(X0�d̃),X0�d̃)

� 1dd̃

holds, A(d,X)
A(d,X0) <

A(d0,X)
A(d0,X0) must hold. Similar arguments hold for cases where d0 > 0 > dand 0 > d0 > d.

Thus, we obtain the result that A(d, X) = |p(d, X)� 1| is submodular in (d, X).

C.2 Proof of Proposition 2

Equation (14) is

a =
S(bbuy, bsell , a)/s

2
=

1
2


(1 � bbuy)h

(1 � bbuy)h + z(1 � a)(1 � h)
+

(1 � bsell)h
(1 � bsell)h + z(1 � a)(1 � h)

�
. (22)

It holds that S(bbuy, bsell , 1) = 2s. Thus, the above equation has a = 1 as a solution. Also, from the

indifference conditions for informed traders, 0 < bi < 1 for all a 2 [0, 1]. Now, observe that (22) is

equivalent to:

1 � a =
z(1 � a)(1 � h)

2


1

(1 � bbuy)h + z(1 � a)(1 � h)
+

1
(1 � bsell)h + z(1 � a)(1 � h)

�
.

When a , 1,

1 =
z(1 � h)

2


1

(1 � bbuy)h + z(1 � a)(1 � h)
+

1
(1 � bsell)h + z(1 � a)(1 � h)

�
(23)

holds. Let the right hand side of this equation be g(a). Then, g(0) < 1. Moreover,
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g0(a) =
z(1 � h)

2


z(1 � h)

((1 � bbuy)h + z(1 � a)(1 � h))2 +
z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2

�
> 0

holds. Hence, an interior solution a⇤ exists if and only if g(1) > 1, which is equivalent to z > z⇤. This

also shows that a⇤ is unique if it exists. Stability of a⇤follows from the fact that S is convex in a. The

negative impact of bi on a in the partial equilibrium is straightforward.

C.3 Proof of Proposition 3

Equation (23) implies:

0 =
∂bbuy

∂X h + ∂a
∂X z(1 � h)

((1 � bbuy)h + z(1 � a)(1 � h))2 +
∂bsell

∂X h + ∂a
∂X z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2

holds. By the conditions derived in Proposition 1, observe that:

�(1 + s)h
∂b⇤

buy

∂X
� z(1 � h)

∂a

∂X
= (pX(b⇤

buy, X) + pb(b⇤
buy, X)

∂b⇤
buy

∂X
)((1 � b⇤

buy)h + z(1 � a)(1 � h))

�p(b⇤
buy, X)

 
h

∂b⇤
buy

∂X
+ z(1 � h)

∂a

∂X

!

and this is equivalent to:

((1 + s � p(b⇤
buy, X))h + pb(b⇤

buy, X)((1 � b⇤
buy)h + z(1 � a)(1 � h)))

∂b⇤
buy

∂X

+ pX(b⇤
buy, X)((1 � b⇤

buy)h + z(1 � a)(1 � h))

= (p(b⇤
buy, X)� 1)z(1 � h)

∂a

∂X

Similarly, observe that:

�(1 � s)h
∂b⇤

sell
∂X

� z(1 � h)
∂a

∂X
= (pX(�b⇤

sell , X)� pb(�b⇤
sell , X)

∂b⇤
sell

∂X
)((1 � b⇤

sell)h + z(1 � a)(1 � h))

�p(�b⇤
sell , X)

✓
h

∂b⇤
sell

∂X
+ z(1 � h)

∂a

∂X

◆
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and this is equivalent to:

((p(�b⇤
sell , X)� (1 � s))h + pb(�b⇤

sell , X)((1 � b⇤
sell)h + z(1 � a)(1 � h)))

∂b⇤
sell

∂X

� pX(�b⇤
sell , X)((1 � b⇤

sell)h + z(1 � a)(1 � h))

= (1 � p(�b⇤
sell , X))z(1 � h)

∂a

∂X

Combining these results, we obtain ∂a
∂X < 0 since pX is negative (positive) when its first argument is

positive (negative). Furthermore, at lease one of ∂b⇤
i

∂C2
is positive.

We may further rewrite the above equations as:

A
∂b⇤

buy

∂X
= z(1 � h)

∂a

∂X
�

(1 � b⇤
buy)h + z(1 � a)(1 � h)

p(b⇤
buy, X)� 1

pX(b⇤
buy, X)

B
∂b⇤

sell
∂X

= z(1 � h)
∂a

∂X
+

(1 � b⇤
sell)h + z(1 � a)(1 � h)

1 � p(�b⇤
sell , X)

pX(�b⇤
sell , X)

for some positive A, B. Lemma 1 Condition (vi) implies:

pX(b⇤
buy, X)

p(b⇤
buy, X)� 1

<
�pX(�b⇤

sell , X)

1 � p(b⇤
sell , X)

< 0

Hence, we obtain:

A
∂b⇤

buy

∂X
> B

∂b⇤
sell

∂X

Since at lease one of ∂b⇤
i

∂C2
is positive,

∂b⇤
buy

∂X is positive. If ∂b⇤
sell

∂X � 0, we are done. Suppose ∂b⇤
sell

∂X < 0.

Then,

0 =
∂bbuy

∂X h + ∂a
∂X z(1 � h)

((1 � bbuy)h + z(1 � a)(1 � h))2 +
∂bsell

∂X h + ∂a
∂X z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2

<
∂bbuy

∂X h + ∂a
∂X z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2 +
∂bsell

∂X h + ∂a
∂X z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2

holds. Hence,
∂b⇤

buy
∂X +

∂b⇤
sell

∂X > 0 since ∂a
∂X < 0.
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C.4 Proof of Proposition 4

Since p(b⇤
buy) < (1 + s) and p(b⇤

sell) > (1 � s), pD
IT < 0 holds. First, let us prove that ∂a⇤

∂s < 0 in

an equilibrium in which X is exogenously given but other variables are determined endogenously.

Similar to the proof of Proposition 3, we get:

0 =
∂bbuy

∂s h + ∂a
∂s z(1 � h)

((1 � bbuy)h + z(1 � a)(1 � h))2 +
∂bsell

∂s h + ∂a
∂s z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2 .

Next, consider the indifference condition of the informed traders. This implies:

(1 � b⇤
buy)h � (1 + s)h

∂b⇤
buy

∂s
� z(1 � h)

∂a

∂s
= pb(b⇤

buy, C2)
∂b⇤

buy

∂s
((1 � b⇤

buy)h + z(1 � a)(1 � h))

�p(b⇤
buy, C2)

 
h

∂b⇤
buy

∂s
+ z(1 � h)

∂a

∂s

!

Similarly,

�(1 � b⇤
sell)h � (1 � s)h

∂b⇤
sell

∂s
� z(1 � h)

∂a

∂s
= �pb(�b⇤

sell , C2)
∂b⇤

sell
∂s

((1 � b⇤
sell)h + z(1 � a)(1 � h))

�p(�b⇤
sell , C2)

✓
h

∂b⇤
sell

∂s
+ z(1 � h)

∂a

∂s

◆

These conditions imply:

A
∂b⇤

buy

∂s
=

1
s
((1 � b⇤

buy)h + z(1 � a)(1 � h)) + z(1 � h)
∂a

∂s

B
∂b⇤

sell
∂s

=
1
s
((1 � b⇤

sell)h + z(1 � a)(1 � h)) + z(1 � h)
∂a

∂s

for some A, B > 0. If ∂a
∂s � 0, then ∂bsell

∂s , ∂bbuy
∂s > 0. This leads to a contradiction. Hence, ∂a

∂s < 0.

Moreover, Equation (23) implies:

0 =
∂bbuy

∂s h + ∂a
∂s z(1 � h)

((1 � bbuy)h + z(1 � a)(1 � h))2 +
∂bsell

∂s h + ∂a
∂s z(1 � h)

((1 � bsell)h + z(1 � a)(1 � h))2 .

Observe that:

2
w

pD
IT = �

sz(1 � a)(1 � h)bbuy

(1 � bbuy)h + z(1 � a)(1 � h)
� sz(1 � a)(1 � h)bsell

(1 � bsell)h + z(1 � a)(1 � h)
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and thus

d( 2
w pD

IT)

ds
=

pD
IT
s

� s

∂bbuy
∂s (h + z(1 � a)(1 � h))� ∂a

∂s z(1 � h)bbuy

((1 � bbuy)h + z(1 � a)(1 � h))2 � s

∂bbuy
∂s (h + z(1 � a)(1 � h))� ∂a

∂s z(1 � h)bsell

((1 � bsell)h + z(1 � a)(1 � h))2

=
pD

IT
s

+ s
∂a
∂s (z(1 � h)bbuy +

z(1�h)
h (h + z(1 � a)(1 � h)))

((1 � bbuy)h + z(1 � a)(1 � h))2 + s
∂a
∂s (z(1 � h)bsell +

z(1�h)
h (h + z(1 � a)(1 � h)))

((1 � bsell)h + z(1 � a)(1 � h))2

< 0.

C.5 Proof of Proposition 5

Since Q is symmetric, we may rewrite the profit function as:

pD
LT = w

Z z

0
(p(aDz)� p(�aDz))aDzdQ(Dz).

This is positive because p is increasing in d. Let us consider the comparative statics with respect to a.

Observe that

(p(aDz)� p(�aDz))aDz =
Z aDz

0

fX(h(X � d), X � d)
fC(h(X � d), X � d)

� fX(h(X + d), X + d)
fC(h(X + d), X + d)

dd

Since fX(h(X�d),X�d)
fC(h(X�d),X�d) is increasing in d, this object is increasing in a. Hence, pD

LT is increasing in a,and

thus decreasing in s. Furthermore, since fX(h(X�d),X�d)
fC(h(X�d),X�d) is increasing in X if and only if d > 0, this

object is decreasing in X. Combined with the fact that w is decreasing in X, pD
LT is decreasing in X.

C.6 Proof of Proposition 6

First, since
⇣

p(b⇤
buy)� (1 + s)

⌘
b⇤

buy +
�
(1 � s)� p(�b⇤

sell)
�

b⇤
sell , E[p(aDz)aDz] and w are decreas-

ing in X, pD
Mis also decreasing in X for pD

M � 0 given b⇤
i and a⇤. Next, for pD

M = 0 to hold, we need
h
2

h⇣
p(b⇤

buy)� (1 + s)
⌘

b⇤
buy +

�
(1 � s)� p(�b⇤

sell)
�

b⇤
sell

i
+ (1 � h)E[p(aDz)aDz] = 0. Since LHS is

decreasing in X , positive for sufficiently small X, and negative for sufficiently large X, there is a

unique and stable solution X⇤.

As we have shown in Proposition 5, pD
LT is increasing in a. Hence, X⇤ is increasing in a. Now,

observe that
2

wh

∂pD
IT

∂b⇤
buy

=
fx(h(X � b⇤

buy), X � b⇤
buy)

fc(h(X � b⇤
buy), X � b⇤

buy)
� (1 + s).
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When X > 1 + 1+
p

1+s
s , ∂pD

IT
∂b⇤

buy
< 0 holds. Hence, X⇤ is decreasing in b⇤

buy as long as there is active

liquidity supply. We can also show that X⇤ is decreasing in b⇤
sell following a similar discussion.

D Sequential execution of orders at DEX

In the model, we assume that all market orders arriving at the DEX are simultaneously executed all

at once. In this Appendix, we show that executing all at once (AAO) is the same as the sequential

order execution.

Equivalence of post-trade liquidity pools Suppose that there are n informed traders, and each of

them has measure w = 1
n and places d unit of market buy order to the DEX (in the model, we assume

d = 1). Note that the aggregate trading is of size d. The initial state of the liquidity pool is denoted

as (C0, X0) with k ⌘ C0X0. Note that the following discussion can be easily extended to the case with

liquidity traders.

The first transaction is executed at price

p1 =
C0

X0 � dw

and the liquidity pool becomes

C1 = C0 + p1dw = C0
X0

X0 � dw
,

X1 = X0 � dw.

By iterating, we obtain the following transition equations for the liquidity pools: for general i =

1, 2, · · · , n,

Ci = Ci�1
Xi�1

Xi�1 � dw
,

Xi = Xi�1 � dw.
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The above equations imply that, after all (n) transactions are completed, the liquidity pools have

Xn = X0 � ndw = X0 � d,

Cn = C0
X0

X0 � ndw
= C0

X0

X0 � d
.

Thus, the post-trade state of the pools with sequential execution is the same as that of AAO execution.

The above result also implies that the profits for the market makers on the DEX stay the same even if

we consider sequential execution of orders.

Equivalence of the execution price Next, consider the expected trading cost (i.e., the execution

price) for an informed trader. We consider a continuum of traders with measure b (by setting n ! •

with d = 1 and w = b/n in the above example) and assume that traders’ orders are independently

executed following a Poisson process. Suppose that y 2 [0, b) orders have been executed before an

informed trader gets to execute her order. From the above discussion, her order faces the following

liquidity pools.

Cy = C0
X0

X0 � y
, Xy = X0 � y.

Since her order is infinitesimal, it is executed at price

p(y) =
Cy

Xy
=

C0X0

(X0 � y)2 .

Due to the independent Poisson process, y ⇠ U[0, b]. Thus, the expected execution price is given by

p =
1
b

Z b

0
p(y)dy =

C0

X0 � b
,

which is identical to the execution price of each order in the case with AAO trade execution.
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