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Abstract

This paper studies determinants of interest rates on Decentralized lending pro-
tocols. Using transaction level data, we show these protocols are being used to
make long or short leveraged positions in the cryptocurrency market. We identify
a significant relationship between the interest rate differential and the perpetual
futures premium for the ETH/USDT market. However, the link is economically
weak, indicating that the speculative beliefs in the two markets are only weakly
correlated and that the markets are segmented. Arbitrage across the two markets
is ineffective due to wide no-arbitrage bounds, which are governed by high trading
costs, gas fees, and price impacts.
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1 Introduction

“..They can use the borrowed assets (on DeFi lending protocol Compound) to engineer
leveraged long or short positions...if an investor is bearish on the price of ETH, they can
simply deposit a stablecoin, such as DAI or USDC, as collateral and then borrow ETH
and sell it for more of the stablecoin. If the price of ETH falls, investors use some of
the DAI to purchase (cheaply) ETH to repay the debt.”' Harvey, Ramachandran and
Santoro (2021)

Decentralized lending protocols, like Compound or Aave, have gained a lot of popu-
larity in recent years and offer several different ERC-20 assets for borrowing and lending.
All the tokens in a single market are pooled together so every lender earns the same
variable rate and every borrower pays the same variable rate. In contrast to central-
ized lending markets, variable rates are determined by demand and supply and based on
pre-defined algorithms. While traditional intermediation rely on credit ratings to infer
borrower quality, DeFi protocols require borrowers to post excess collateral as insurance
against default. In this paper, we study equilibrium pricing of interest rates, and pin
down the fundamental sources determining interest rates in DeF'i protocols.

Given that interest rates in DeFi are determined algorithmically, the key to under-
standing the determinants of interest changes are the factors driving lending/borrowing
decisions by market participants. One of the main functions of DeFi lending protocols is
to enable users to take long or short leveraged positions in a cryptocurrency. We define a
long leveraged position when an investor deposits the risky asset, for example ETH, and
borrows a stablecoin to invest in ETH in the secondary market. Short leveraged positions,
in turn, are when investors deposit a stablecoin and borrow the risky asset, which they
can then sell to the secondary market. Hence the net demand for borrowing currencies
by these investors determines interest rates in the lending protocol. Expectations about
future price of the risky asset by speculators are the key drivers of the net demand. These
expectations can be manifested in different forms, for example via speculative positions
in futures market. The main question of this paper is to what extent these speculative
beliefs determine interest rates in the DeFi protocol and what is the degree of market
integration between the markets which are theoretically linked.

We start by building a simple equilibrium model of speculative trading that features a
stable and unstable asset, and two investor types: mean-variance investors with optimistic
and pessimistic beliefs on the unstable asset (e.g., ETH). They determine the spot price
on ETH, and lending and borrowing rates in the protocol. Each investor can either
borrow the unstable or stable asset depending on their speculative beliefs. Optimistic

investors borrow the stable asset to take long leveraged positions in the underlying asset.

1. Excerpt taken from Harvey, Ramachandran, and Santoro (2021)



Conversely, pessimistic investors borrow in the unstable asset to take short leveraged
positions. Interest rates on borrowing and lending are determined through utilization,
which is a measure of the net demand for the asset. In equilibrium, interest rates on the
protocol are determined through the net demand for long or short leveraged positions by
investors. We connect interest rates to the futures market by deriving pricing conditions
assuming the bullish and bearish investor can use long and short futures positions as an
alternative to the lending protocol.

The model features the following testable implications. First, interest rate differences
reflect the relative bearish and bullish beliefs of investors. The equilibrium interest rate
differential is positively correlated to average expected return by two types of traders and
negatively correlated to the risk premium associated with the volatility of the unstable
asset. If long positions dominate short positions, we show that the net demand for bor-
rowing in stablecoins is higher, which predicts higher interest rates. Second, we show that
if the DeFi lending and futures markets are integrated in the sense of speculators holding
the same beliefs about the future value of the risky asset, then interest rate differences
between stablecoins and risky cryptocurrencies reflect futures premia. A positive funding
rate is consistent with bullish investor beliefs and investors taking a long futures position.
When futures trade at a premium due to long positions dominating short positions, we
find this is consistent with utilization and interest rates that are higher for the stable
asset.

We take these predictions to the data. First, we test whether trading in DeFi lending
protocols are integrated with futures markets using a rich dataset of wallet-level transac-
tions. This blockchain-based data records how individual users use the lending protocol
to track their deposits and borrowings of different currencies. Using this data, we classify
wallets based on whether they take long or short positions on ETH respectively. A long
trader is classified as a user that deposits ETH and borrows USDT to take a leveraged
position on ETH, and a short trader is a wallet that deposits USDT and borrows ETH
to short sell ETH. Our algorithm allows us to construct a measure of aggregate net long
positions. Empirically, we observe an increase in futures premia is a robust predictor
of an increase in long positions and a decline in short positions in the lending protocol.
Therefore we show using granular data that lending protocols are being used for leveraged
trading.

Second, we investigate the fundamental determinants of interest rates. Through the
lens of the model, an increase in futures premia is indicative of net bullish beliefs on the
risky cryptoasset. All else equal, net bullish beliefs correspond to optimists taking lever-
aged positions by depositing the unstable asset and borrowing the stable asset. Higher
borrowing of the stable asset increases utilization and causes stable asset interest rates

to increase. We find further support through the funding rate, where a positive rate



indicates excess long futures positions corresponds to an increase in stablecoin interest
rates relative to ETH. Other sources of interest-rate differences include measures of risk
premia, such as the volatility of ETH, and the relative wealth of optimists in the protocol.

Third, while we document evidence of integration between the lending protocol and
futures markets, we show that the link between the two markets are weak. The sensitivity
of the interest rate differential to changes in futures premium is significantly smaller than
under the benchmark case of perfect market integration. The coefficient on the futures
premium is typically in the range of 0.002 to 0.01, which implies that a 1 per cent
change in the futures premium leads to a 0.2 to 1 basis point change in the interest
rate differential. We further explore factors that may break the link between interest
rates and futures premia. A key measure of integration between these two markets is to
construct Covered interest rate parity (CIP) deviations. CIP is a standard no-arbitrage
conditions in currency markets, and allows us to investigate efficiency of the futures and
DeFi Lending protocol markets jointly. We provide lower and upper bounds for CIP
deviations based on arbitrage strategies that can be employed using both a DeFi lending
protocol and futures markets. After accounting transaction costs, such as gas fees to
authenticate transactions on the blockchain, we find CIP deviations are typically within
the arbitrage bounds. In addition to gas fees, an increase in the volatility of ETH/USDT,
and periods of extreme returns in ETH lead to larger CIP deviations. Hence, both weakly
correlated expectations of speculators and limits to arbitrage lead to only a weak market
integration.

Fourth, we test if speculators in both DeFi and futures markets have unbiased expec-
tations about future price of the risky asset. To do so, we estimate a regression of future
ETH returns on the interest rate differential. If aggregate beliefs of bullish and bearish
investors are unbiased, we expect that the rate of appreciation of the unstable asset equals
to interest rate differential. Our results indicate, however, that interest rate differential
are not statistically significant. We find similar result if we use futures premium as a mea-
sure of expectations in the futures market. This speaks in favor of hypotheses that the
speculators in both markets trade based on information unrelated to future price changes.
On the other have, we find that the funding rate of perpetual futures, wealth ratio and
ETH volatility can forecast future ETH returns. This may suggest that investors tend to
trade based on some stale historical information, react to past price changes and changes
in risk premium.

The remainder of the paper is structured as follows. In section 2 we summarize the
contributions of our paper to related literature. In section 3 we summarize the properties
of the DeFi lending protocol Compound and describe the data sources for our empirical
work. In section 4 we introduce the model of equilibrium interest rates. We produce

testable implications on the determinants of interest rates, and the link between interest



rates on the DeFi lending protocol and derivative markets. In section 5 we conduct our

empirical analysis. Section 6 concludes.

2 Related literature

Our paper contributes to an emerging literature on decentralized finance (DeFi) (Harvey,
Ramachandran, and Santoro 2021; Schar 2021). The defining feature of DeF1i is that it
uses programmability, in the form of smart contracts, as an alternative to centralized
intermediaries. While the focus of this paper is on decentralized lending protocols, other
applications include the pegging dynamics and feedback with collateral of stablecoins and
the role of stablecoins in taking leveraged positions (Kozhan and Viswanath-Natraj 2021;
Perez et al. 2020; Gorton et al. 2022), and decentralized exchanges, such as automated
market makers which rely on algorithms and do not require a limit order book to execute
trades (Angeris and Chitra 2020; Capponi and Jia 2021; Capponi, Jia, and Wang 2022;
Aoyagi and Ito 2021; Hasbrouck, Rivera, and Saleh 2022; Lehar and Parlour 2021; Barbon
and Ranaldo 2021; Park 2022; Lehar, Parlour, and Zoican 2022). This research focusing
on the design of AMMs, the role of arbitrage and liquidity provision with competing
platforms of DEX and centralized exchanges.

The literature on lending protocols has focused on understanding market efficiency,
such as uncovered interest rate parity, the behavior of liquidations during risk-off events
and the dynamics of the COMP governance token (Gudgeon et al. 2020; Perez et al. 2020;
Saengchote 2021; Chiu et al. 2022; Lehar and Parlour 2022; Castro-Iragorri, Ramirez, and
Velez 2021; Qin et al. 2021; Xu and Vadgama 2022; Mueller 2022; Chaudhary and Pinna
2022; Warmuz, Chaudhary, and Pinna 2022; Rivera, Saleh, and Vandeweyer 2023). One
aspect studied is systemic risk of DeFi protocols. For example, Chiu et al. (2022) focus on
the adverse selection channel of DeFi lending and how it can create feedback loops between
the risky collateral price and lending in the protocol, and Lehar and Parlour (2022)
study systemic risk due to liquidations and how it generates feedback to cryptoasset
prices. Rivera, Saleh, and Vandeweyer (2023) theoretically derive equilibria of lending
protocols and compare the welfare and pricing efficiency relative to traditional financial
markets which rely on off-chain information. Our contribution within this literature is
to model the fundamental sources of pricing the cross-section of interest rates of both
risky cryptocurrencies and stablecoins. Investors use the protocol to take long or short
leveraged positions. If long positions dominate, we show that investors typically deposit
the risky currency as collateral and borrow stablecoins. Higher utilization of stablecoins
in turn leads to higher interest rates. We further connect our predictions for interest rates
to futures premia, providing support for our hypothesis that DeFi lending protocols are

primarily used for leverage trading.



A final strand of literature deals with covered interest rate parity violations, yield
farming and carry returns using the futures market (Franz and Valentin 2020; Cong, He,
and Tang 2022; Schmeling, Schrimpf, and Todorov 2022; Augustin, Chen-Zhang, and
Shin 2022; LI et al. 2023), and price discovery in crypto derivatives markets (Baur and
Dimpfl 2019; Hoang and Baur 2020; Alexander, Choi, Massie, et al. 2020) and price dis-
covery and liquidity properties in perpetual futures (Shiller 1993; De Blasis and Webb,
n.d.; Soska et al. 2021; Alexander, Choi, Park, et al. 2020; He et al. 2022). We make two
contributions to this literature. First, we derive a testable relation between the funding
rate on perpetual futures and the interest-rate differences between stablecoins and risky
cryptocurrencies on DeFi lending protocols. In particular, when futures trading at a
premium, and investor long positions dominating short positions. For example, Franz
and Valentin (2020) note significant departures from CIP based on lending rates across
exchanges, and He et al. (2022) show that perpetual futures also violate no-arbitrage con-
ditions. We construct an alternative measure of CIP deviations at an intra-day frequency
using perpetual futures contracts. Our contribution is that in addition to crypto carry
documented in Schmeling, Schrimpf, and Todorov (2022), we account for interest rate
differences across currencies. We find that CIP deviations are typically within arbitrage
bounds after taking into account ETH gas fees. They are also higher during periods of
extreme ETH returns and periods of high volatility.

3 Definitions and Data

3.1 Collateralized Lending

Collateralized lending markets like Compound allow users to borrow and lend in multiple
currencies by tapping into liquidity pools of multiple assets. Users supply a collateral
asset, and can borrow a fraction as tokens in another asset that is based on the collateral
factor of a given asset.

The first panel of Figure 1 illustrates the process of supplying ETH to Compound
(this gets you cETH token). Every currency supplied to the protocol is converted to a
Compound token. For example, ETH collateral is converted to cETH, WBTC collateral
is converted to cWBTC. Exchange rates between ETH and cETH can vary over time and
cETH can accrue interest (i.e. cETH appreciates over time). The user first dictates that
they want to use ETH as collateral. This returns the borrowing limits/collateral factors
the user can borrow any token depending on the borrowing limits. For example, the user
can borrow Dai and will have some remaining cETH in account in account as Compound
works on over-collateralization. The protocol is flexible in that it allows the user to invest
in multiple assets. The second panel shows an investor that borrows multiple currencies,

such as USDC and DAI. Each market has separate interest rate curves on borrowing and



lending that is based on the relative utilization (ratio of borrowing to lending) of that
asset. The supply and borrow interest rates are compounded every block (approximately
15 seconds on Ethereum producing approximately continuous compounding).

Finally, users can supply multiple assets as collateral. In the third panel of Figure
1, the user deposits both ETH and wrapped Bitcoin (WBTC). The borrower receives
collateral factors for ETH and WBTC. The borrower can deposit multiple collateral
assets and have a consolidated borrowing limit from the Compound Comptroller that is

based on the collateral factors and health of their account.?

3.2 Governance

Governance token COMP used to vote on interest rate rules and other system parameters
(collateral and reserve factors). To create a proposal a user requires at least 100,000
COMP tokens. A user with 100 COMP can initiate a proposal but require community
to support through delegating tokens. All proposals are first discussed publicly in an
official governance forum, are written in smart contracts. Users can also be incentivized
to borrow and lend through COMP token rewards. *

One key feature of governance is to vote on interest rate rules. Parameters like the
base-rate and slope of the interest rate model are chosen by voters as part of the gover-
nance protocol. The interest rate model for borrowing rates is given by the piece-wise
equation (1). ag is the base rate, and is the rate corresponding to zero utilization. The
slope parameter by > 0 measures the sensitivity of interest rates to utilization. The uti-
lization rate u is used as an input parameter to a formula that determines the interest
rates. Interest rates are determined by the utilization percentage in the market. Utiliza-
tion is calculated as total borrow/total supply. All else equal, a positive slope parameter
implies higher utilization leads to higher interest rates. An additional feature of the in-
terest rate model is the kink, in which the slope parameter changes for utilization above
a threshold rate @, typically 80 per cent. The kink makes interest rates more sensitive to

a higher utilization rate, by > by. *

aog + bou,u < u
ip=¢ 0 (1)
aop + bott + by (u — w),u > a

Deposit rates i¢p is a function of utilization and borrowing rates. 6 captures the

2. See section 3.3 for more details.

3. For example, the Yield farming craze in April 2020 was due to the reward of 10 million COMP.

4. This corresponds to the literature on modeling excess reserve balances with a logistic function in
Veyrune, Della Valle, and Guo (2018). The authors find that in money markets the interest rate schedule
becomes steeper when excess reserves are smaller. Excess reserves are the inverse of the utilization rate,
and is consistent with the behavior of the kink in the Compound interest rate model.



fraction of interest income that is in a reserve buffer managed by the interest rate protocol:
ip=wuir(l—0) (2)

Interest spread for the protocol is a function of # which is a reserve factor.
ir —ip =1i5(1 —u(l—40)) (3)

Based on utilization 0 < u < 1, we have a lower and upper bound for the interest rate

spread:

Oip <i; —ip <ip (4)

3.3 Collateral factors and liquidations

Decentralized protocols allow individual account borrowing to be tracked in real-time
through smart contracts. In equation (5), the health of an account is measured based
on the relative borrowing in each currency and the individual supply of each collateral
type. To determine an accounts health one needs to analyze the supplied assets, collateral
factor, and borrowed assets. The collateral factor indicates the percentage you can borrow
against the collateral supplied and is a number between 1 and 0. We define D; as the

supply of asset j, L, is the borrowing of asset j and I'; is collateral factor (eg. 0.8 for
ETH).

N
C IDs
Account health = #
L

=1

, (5)
j

An account health < 1 triggers liquidation. Decentralized participants, such as Liq-
uidators, are responsible for liquidating the collateral and repaying the borrowed funds.
The incentive is to receive the collateral in another asset with a discount, typically around
5%. Liquidators can repay up to 50% of the assets borrowed, and the process will continue

until the health of individual’s account is > 1.

3.4 Data and Summary Statistics
3.4.1 Lending Protocol: Compound

Figures 2 and 3 plots the cross-section of borrowing and lending in the lending protocol.
An interesting observation is that stablecoins (USDT, USDC, DAI) typically have high
interest rates, and unstable cryptocurrencies (ETH, WBTC, ZRX) typically have low

interest rates. However, since the bear market in 2022, we see a reversal with a relative



decline in stablecoin rates. To explain this pattern, We hypothesize that differences
between high and low interest rate currencies reflect differences in long and short positions
on the underlying risky asset. In addition, the most liquid currencies in both deposits and
the most utilized currencies are stablecoins, lead by USDC and DAI. In contrast, while
ETH is at times the most supplied currency, it is the fourth most borrowed currency.
Therefore the utilization, which is the fraction of supplied assets that are borrowed, is
much lower for risky currencies. In Figure 4, we plot the interest rate model for currencies
on the Compound platform. This plots borrowing rates as a function of the utilization
percentage in the market. Interest rate rules for more risky assets have a higher base-rate

and slope parameters.

3.4.2 Transaction-level data

We have utilized a data set, provided by cryptocurrency data firm Kaiko, that records
every transaction made on Compound. The data set includes all amounts deposited and
borrowed by each wallet, including a breakdown of currencies and the timestamp of each
transaction. For each wallet transaction, “deposit” and “withdrawal” refer to actions of
depositing and withdrawing collateral from the lending protocol. Conversely, the actions
“borrow” and “repay” are for borrowing and redeeming a currency. The sample starts on
January 1st, 2021, and ends on April 22, 2023. This data set allows us to test whether
investors are using the protocol to take leveraged positions. We can classify wallets as
taking long or short leveraged positions in the market. We illustrate our algorithm for

classifying these wallets in Section 5.1.

3.4.3 Perpetual Futures

A key feature of traditional futures contracts is the expiration date. When a contract
expires, a process known as settlement begins. Typically, traditional futures contracts
settle on a monthly or quarterly basis. At settlement, the contract price converges with
the spot price, and all open positions expire. Perpetual contracts are widely offered by
crypto-derivative exchanges, and it is designed similar to a traditional futures contract.
Unlike conventional futures, traders can hold positions without an expiry date and do
not need to keep track of various delivery months. For instance, a trader can keep a short
position to perpetuity unless she gets liquidated. To calculate the futures premium, we
use an index price calculated by Binance. °

Since perpetual futures contracts never settle, exchanges need a mechanism to ensure

that futures prices and index price converge on a regular basis. This mechanism is

5. Binance uses a volume weighted average of prices at the following exchanges: uses a price Index
of major Spot Market Exchanges, such Huobi, Okex, Bittrex, HitBTC, Gate.io, Bitmax, Poloniex, FTX
and MXC. For more details on the construction of the price index see https://www.binance.com/en/s
upport/faq/price-index-547bad8141474ab3bddc5d7898{97928.


https://www.binance.com/en/support/faq/price-index-547ba48141474ab3bddc5d7898f97928
https://www.binance.com/en/support/faq/price-index-547ba48141474ab3bddc5d7898f97928

also known as a funding Rate. Funding rates are periodic payments either to traders
that are long or short based on the difference between perpetual contract markets and
spot prices. Therefore, depending on open positions, traders will either pay or receive
funding. Binance Futures does this every eight hours. Funding rates are designed to
encourage traders to take positions that keep perpetual contract prices line in with spot
markets. Perpetual futures contracts have unique properties: while subject to margining
requirements like standard futures, they have a funding rate which investors of long
positions pay short positions, and are charged at regular intervals during the trading day.

Table 1 presents summary statistics, and Figure 5 plots the ETH/USDT spot and
futures price, the futures premium, funding rate and interest rate difference between
USDT and ETH. Futures premia and the funding rate are typically positive, which is
consistent with a net bullish market in ETH/USDT futures. Periods in which the funding
rate are negative correspond to a decline in the futures premium, negative ETH returns
and a compression of the interest rate spread between USDT and ETH.

As DeFi lending protocols offers the opportunity to take long and short positions on
risky cryptocurrencies, we examine if there are systematic relationships between interest
rates and futures premia measured using perpetual futures contracts.® As illustrated in
Figure 6, we observe a positive correlation between the interest rate differential between
USDT and ETH rates and the futures premium and funding rate. This direct outcome of
speculative trading connects equilibrium interest rates to futures. Taken as a whole, our
results suggest a correlation between the interest rate differential, futures premia, and
the funding rate. We provide a model to link interest rates to futures premia in section

4 and analyze the determinants of interest rates in section 5.

4 Model

The model features two investor types, and two assets. Mean-variance investors have
bearish and bullish beliefs (we denote them by indices “P“ and “O” respectively) on the
future state of the unstable asset (we denote this asset by E). Investors can trade in the
spot market trading stable (we denote this asset by U) for unstable coin, use the lending
protocol to take long and short positions on the unstable asset, or trade in the futures
market. An investor with bullish beliefs on the unstable asset takes a long position. They
can further leverage their positions by depositing the unstable asset and borrow the stable
asset. Conversely, a bearish investor will short sell the risky asset by depositing the stable
asset as collateral and borrow the unstable asset.

The relative borrowing and lending determines interest rates through an algorithm

set by the governance of the protocol. The algorithm requires interest rates on borrowing

6. Lending protocols have no term structure; interest rates are compounded at an intra-day frequency.
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and lending to be based on utilization of the asset, which measures the fraction the asset
is borrowed on the protocol. All else equal, higher utilization implies higher rates, and
we impose a simple linear relation that is used by the DeFi lending protocol Compound.
Based on the algorithm for setting rates, we derive a relation between interest rates and
the bearish and bullish beliefs of investors regarding the future state of the unstable asset.
Finally, we connect interest rates to the futures market by deriving pricing conditions
assuming the bullish and bearish investor can use long and short futures positions as an
alternative to the lending protocol. The model generates testable implications on the

fundamental determinants of interest rates and parity conditions.

4.1 Spot market trading

There are two assets: stable asset U and unstable asset E. A stable asset U is a stablecoin
with price 1 USD (e.g. DAL, USDC). The price of the unstable asset E in the spot market
is po and its future price p; is a random variable. The volatility of its returns is ¢ and
everybody in the market agrees on this parameter. Optimists believe that the expected
future price of the unstable asset is p; = p' while pessimists believe it is p; = p~ with
pt >> p~. The corresponding exp The unstable coin is in positive supply &.

We denote the total initial wealth of optimists by Wy and the total initial wealth of
pessimists by Wp. Both wealth are in the stable coin units. Both types of investor are
mean-variance maximizers and have the same relative risk aversion coefficient ~.

In order to ensure the relevance of DeFi lending protocol, we assume that p* is
substantially high so that optimists find it optimal to leverage their positions and p~
is low enough for pessimists to short sell the unstable coin. Let Ao be a leveraged
fraction of optimists’ wealth. That is, they invest their entire wealth into asset E, post
it as collateral into DeFi protocol, borrow ApW of U and invest this borrowed amount

further in . Optimists’ next period wealth is
WO = WO [7" + Ao(’l" - 1) + Zg - Aolg} . (6)

Pessimists post their stable coins into the protocol, borrow AW of the unstable coin

and sell it in the spot market. Their wealth is
Wp=Wp [L+Ap(1—71)+i% — Apif]. (7)

Both types of investors maximize their corresponding mean-variance utility functions
subject to the evolution of wealth and constraints on the share of borrowing to be bounded

between 0 and A, which is defined by the maximum level of leverage an investor can take:
- 1 - _
UA) = B [Wi(ay)| = 5avar [W5(8))], 04, <A j=0,P (8)
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4.2 DeFi lending and borrowing

Define the utilization of asset E as the ratio borrowed amount of token F to total wealth

deposited into the protocol:

ApWhp
= 9
up o (9)

Similarly, the utilization of asset U is defined as the ratio borrowed amount of token

U to total wealth deposited into the protocol:

~ AoWo

— 10
uy W (10)

Interest rates are a function of utilization. Borrowing and lending rates on assets
E and B are i¥ and i¥ respectively. They are a function of utilization and the slope
parameter b set up by the governance body of DeFi lending protocol. Deposit rates on
assets £ and U are if5 and i%Y). They are also functions of utilization and borrowing
rates, and an additional term # which captures the fraction of interest income that is in

a reserve buffer managed by the interest rate protocol.

 bpApWp

. b Ao W,
1% = byuy = %PO, (12)
b AZW2(1 — 0
i = ugif(1 - ) = R0 (13)
O
by AZW2(1 —
Y =uyil(1—0) =2 OM‘;%( 9). (14)
P

4.2.1 Governance Block

The protocol requires some fraction of interest income to be kept as reserves. Reserves
can be used to meet depositor withdrawals and as a buffer. We capture the fraction
of income used as reserves through a reserve factor #. The protocol maximizes the net

interest (V1) income in each coin allocated to the reserve buffer:
Vo= NIg+ Ny, (15)

where

N

Nlp = =Woif, + WpApif = Woifur = =
O

12



bub AL WS

NIy = ~Wpify + Woloif = Wpilluyf = ==
P

(17)

We can express the governance problem as maximizing net interest income. The param-
eters are the slope of the interest rate schedule bgp and by. For simplicity, we hold the

reserve factor 0 fixed. The corresponding first order conditions are:

0V, _ OARWR | 20ApWROA,

=0 18
and
AZW2  20A 2 0A
abU Wp Wp 8bU
which yield
Ap
bp = S0Az (20)
obg
and
Ao
by = 5930 (21)
oby

4.3 Spot market equilibrium

Proposition 1: Optimal demands of pessimists and optimists and optimal slope coeffi-

cients setup by the governance body are as follows:

_pt/po—1—~0*Wo

Ao = 22
© 2~vo2Wo ’ (22)
1—p /po

Ap = ——""—— 23

P 2v02Wp ' (23)
2

by = 170, (24)
2

by = 17 (25)

See Appendix for proof.

The spot market clearing condition

Wo(l+ Ao) — ApWp =¢ (26)
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implies the price for asset E:

_ P
L4902 [ = 52]°

Po (27)

where p = ”Jr%.
Given the equilibrium utilization ratios for both types of investor, the interest rates

for assets F and U are:

p_l1—p~ 1-—p /p

E_ = 28
, put —1—~0?Wo  pt/py— 1 —vo*Wp

i = i = 1 . (29)

The interest rate differential between borrowing rates on assets F and U is given as

follows:

1 /p— W,

4.4 Futures market

We assume that in addition to the spot and DeFi lending/borrowing market there is
futures market. Investors of type O and P can take long and short positions in the
futures market (we assume that the pool of investors is different for spot and futures
market, i.e., they are segmented). In addition to optimists and pessimists, there are
arbitrageurs who monitor for arbitrage deviation (similar to covered interest parity) and
attempt to exploit them.

We model a perpetual futures contract with no expiry. Holders of the long position
have to pay the short position a funding rate ¢ in each period to equate long and short
positions. Let fy denotes the current future rate of the risky asset E. We assume that
in order to trade futures one does not need to put in any collateral and the amount of
leverage and shorting in futures market is bounded by the risk aversion coefficients of the
traders. We denote the optimists’ expected value of futures contract by f™ = Ey[f;] and
the pessimists’ expected value by f~ = Ey|[fi].

Suppose that optimists decide to buy np number of futures contracts. Their expected

utility
+ 1 2 2
Uo=no (f*—fo—9)— DRAKCEE (31)
Maximizing this utility function yields
tT—fo—0
np =199 (32)



Expected utility of pessimists

1
Up=np (fo— f~+0) —évn?ﬂQ, (33)

which implies the optimal demand

:fo—f_+5‘

np D)
Yo

(34)
In the case of no arbitrage activity (e.g., no incentive to exploit a wedge between futures
market and the lending protocol rates), the market clearing condition in the futures

market is
no =np (35)

implies
f=/fo+s, (36)

where f = f++f

There are two aspects of the perpetual futures market that is relevant to the lending
protocol. First, it provides us an alternative way of measuring investors’ expectation
of the future value of the risky asset E. Secondly, it open up for arbitrage activity
between the futures market and the lending-borrowing rates, similar to the well-known
CIP arbitrage (see He et al. (2022)).

Let us denote by p = ﬁ++i’_ the average of the expected values of the risky asset
between optimists and pessimists trading in the futures market. If the two markets
(DeFi protocol and the perpetual futures) are integrated and the beliefs of the groups of
traders are identical, then p = p. If one could measure p using the data from the futures
market, the integration hypothesis could be tested empirically. In reality, p and f can
be different as they reflect the value of asset E at different horizons. The mechanism
that keeps those two variables aligned is the funding rate which increases as the wedge
between f; and p; increases and decrease otherwise. (see He et al. (2022)).

Assumption 1: §; = (f; — p).

Given Assumption 1 we can rewrite expectations of the optimists and pessimists in

the futures market as
fT=EC°[f]=E°p,+6]=p"+0

and
fT=E"[f]=E"[p+6=p +0.

As a result, the average of the expectations of optimists and pessimists is equal to the
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forward rate.
P = fo.

Another force that can affect futures rate f; is arbitrage activity. If the futures rate is
far away from the spot price and/or funding rates i¥ and iV are not appropriately aligned
with the spot and futures prices, arbitrageurs can profitably exploit this gap. Arbitrageurs
do this by adopting strategies similar to those they use to exploit the covered interest
rate parity relation in the traditional fixed-maturity futures markets. Below we describe
the arbitrage strategies and then discuss no-arbitrage bounds that prevents prices from
convergence due to price impacts and transaction costs.

While traditional arbitrage strategies assume no initial endowment by arbitrageurs,
we deviate from this assumption and consider an arbitrageur who starts with an initial
wealth in asset U. This is because when participating in the lending and borrowing
activities of the DeFi protocol, collateral is required, which is not the case in typical
margin trading in the FX market.

Strategy 1: Arbitrageur goes long one futures contract at rate fy. She covers this
position by shorting one coin of E. To execute the short position the arbitrageur puts pg
worth of coins U as collateral into the DeFi protocol and borrows 1 unit of asset E. She
then sells borrowed E coins in the spot market at price py and deposits pg units of asset
U into the protocol to earn interest. At time ¢, she closes the futures contract at price f;
and pays funding rate d, buys one unit of E at price p; in the spot market and closes the
borrowing transaction in the DeFi protocol. She pays interest pyi¥ for borrowing E and
receives poi%) for depositing U. The strategy is profitable if the total cash flow at time ¢

is positive:
fo=Jfo—=0 —=pi+po(1+ip —if) = —fo+po(l+ip—if)>0.

Strategy 2: Arbitrageur goes short one futures contract at rate fy. She covers this
by buying one unit of E asset at price py and deposits it into the DeFi protocol. At time
t, she closes the futures contract at price f; and receives funding rate ¢ and sells one unit
of E at price p; in the spot market. She receives interest pyi% for depositing E and pays
opportunity costs pgi¥, for not depositing his initial capital U. The strategy is profitable

if the total cash flow at time ¢ is positive:
—fi+ fo+ 8+ p—polip — 1 —1ip) = fo+polip —1—1ip) > 0.

The following table summarizes the cash flow in period 0 and t:
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time Strategy 1 Strategy 2

0 futures 0 0
spot Po —Po
cash —Po Do
t futures fi—fo—9 —fi+fot+o
spot Dt Dt
cash —poif + po(1 + 1Y) poi% — po(1 +14Y)

total ft—f0—5—pt+po(1+i%—if) fo—ft+5+pt+p0(ig—1—i%)

So, absence of any transaction costs, the arbitrageurs will have incentives to exploit

the deviations as long as the no-arbitrage relation

U< o TP e (37)
Po
is violated.

However, even if the CIP relation (37) is violated, the arbitrageur faces transaction
costs in the form of gar fee (fees required to pay in the Ethereum blockchain in order to
execute lending/borrowing transaction) and price impacts in the protocol.”

In order to derive no-arbitrage bounds, let as consider a case when an arbitrageur

observes a deviation from the CIP relation with a paper profit:

pry =i —F — Jo = Po > 0.
Po
Suppose she decides to execute Strategy 1 by going long n 4 futures contracts and cover
them accordingly. This in turn, will change the interest rates in the protocol since the
utilization ratios will change as a result of his transaction. In particular, the new rates

that are established in the market after the impact of arbitrageur’s trade are:

be (ApWp + napo)

. b
P2 (ny) = bpiip = T :ﬁ+ﬁ%§ﬁ>ﬁ, (38)
. by ALWE(1— 6 VW2 ,

i (na) = apid (1 — 0) = 2=2 ol=0) _ P U (39)

(Wp +napo)? (Wp +napo)?

So, arbitrageur’s position would increase the interest rate deferential and widen the no-
arbitrage bound.

Moreover, the arbitrager will have to pay double gas fee (for borrowing F and de-

7. Given we focus mainly on determination of the interest rates in the DeFi platform, we ignore trading
cost as well as price impacts in the futures and spot markets assuming that they are much more liquid
relative to the DeFi protocol. Moreover, gas fees are not applicable for the futures and spot market as
they these transactions can be executed in she centralized exchanges.
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positing U). So, the profit after accounting for price impact and gas fee is

pri(na) = na (Eg(m) B - L Op_opo) —2C. (40)
There two factors effecting the arbitrageur’s profit. First, gas fee is the fixed costs, so its
effect is substantial for strategies with small trading volume but diminishes if the volume
of the transaction becomes large. On the order hand, if the volume of the transaction
increases, it also increases the price impact. So, arbitrageur has to solve for an optimal
trading size to trade-off these two effects, i.e. solve for ny such that pr; > 0.

Analogous condition for profit in Strategy 1 is
pNTQ(TLA) >0,

where

prana) = na (f‘)p‘f“ i %(W) e (41)

bp (ApWp)Y (1—6) 4
5 <.
(Wo + napo)

P5na) = byity(1 - 0) = (42)

4.5 Testable implications

The main question we seek to answer in this paper is what are the determinants of
the interest rates in the DeFi protocol. Our model implies that there are several forces
that can shape these interest rate: arbitrage and beliefs of speculators. If arbitrage is
unlimited (transaction costs, price impacts and no constraints on arbitrage capital), then
the CIP relation should hold irrespective of speculators’ beliefs and the relation between
the interest rate differential and the futures rate should be equal to 1. Indeed, Equations
(40) and (41) imply that

~ ~ - 20
W (na) — B (na) = 220 1 2C (43)
Po na
.U ~E fO — Do C
- = - 44
[35) 2D(nA) . A ( )

So, our first testable hypothesis is:
H1g: The interest rate differential in the DeFi protocol is entirely determined by the
arbitrage forces. Hence, in the regression of the futures basis on the interest rate differ-

ential, the slope coefficient in front of the futures rate is equal to 1.

If arbitrage is limited, then the interest rates are determined by actions (demand and

supply) of the DeFi traders. If the DeFi protocol is populated by risky asset speculators
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(as described in the model), then the interest rate differential is driven purely by beliefs
of the speculators p.

In the case of perfect market integration (the pool of investors trading in the futures
market and in the DeFi protocol are the same or, at least, their beliefs are identical),
measuring the futures rate fy allows us to proxy unobserved expected future price of the
risky asset p:

p=p=fo
Substituting relation (36) into the expression for interest differential gives us the first

measurable relation in equation (45):

U B

(45)

1 Jo—po _’YUQWO
2 Po 4 .

In this case, the equilibrium interest rate differential is positively correlated to the
futures premium. A positive futures premium and funding rate is consistent with bullish
investor beliefs and investors taking a long futures position. In the DeFi lending protocol,
more investors take a long position in the risky asset E by posting it as collateral and
borrowing stable asset U, and there is less short selling of asset E. Therefore there
is higher utilization of borrowing asset U, and lower utilization of borrowing asset F.
Interest-rate setting on the protocol synchronize rates with utilization, leading to higher
interest rates (on average) on stable currencies. This leads to the following hypothesis:

H2y: If arbitrage is limited and the beliefs of speculators in the lending protocol is
equal to the beliefs of speculators in the futures market. The interest rate differential is
related to the futures premium and the coefficient in front of the futures premium is one
half.

Alternatively, the demand and supply in the lending protocol can be driven entirely
or partially by pure noise and/or passive yield harvesting without any relation to the
expected future risky asset return. In this case, we expect p to be at most non-perfectly

correlated with fy:
ﬁ:ﬁ—i_n:afo—i_n? COU[ann]:()? 0<a<l

In this case, the slope coefficient in front of the futures premium will decrease as a de-
creases and in the extreme scenario where o = 0, the interest rate differential is unrelated
to the futures premium. This leads to an alternative hypothesis H3y:

H3g: The interest rate differential is determined by pure noise and is unrelated to
the beliefs of speculators in the futures market (market segmentation). The interest rate
differential is unrelated to the futures premium and the coefficient in front of the futures

PrEmMIUm S Zero.
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Our final hypothesis is related to ability DeFi traders to predict future returns on the
risky asset. If the interest rates are determined by the speculators expectations who hold
on average unbiased beliefs about future value of the risky asset, then the interest rate
differential should have a forecasting power for future risky return. In particular, let us
consider a return of the risky asset r over the future (0,¢) interval. If the speculators
have on average unbiased expectations (E[p;] = p, where p; denotes future price of the
unstable asset and the expectation is taken with respect to an objective measure (from
the point of view of a rational econometrician who could forecast the prices in an unbiased

fashion), then Equation (30) implies that

Elr] = =2(iY —if) +yo*Wo /2. (46)

Similarly, if fp is an unbiased expectation of future price py, then

B = 2P0 (47)
Po

H4qy: Speculators hold on average unbiased beliefs about future returns of the risky
asset. Hence, in the regression of the future spot returns on interest rates, the slope
coefficient is equal to 2.

While we focus on the relationship between futures premium and interest rates, we
note other factors that can potentially affect the interest rate differential are: ratio of total
wealth locked in U and E assets (measures the fluctuation of the risk premium associated
with the risky asset), volatility of the interest rates (associated with the interest roll-over
risk; it is not modelled in the theory section; it can affect both arbitrageurs activity as well
as propensity to speculate by the speculators), ratio of wealth in the DeFi from passive
investors (related to the noise trading or yield harvesting), volatility of the risky asset
returns (associated with the risk premium of risky asset as well as possible liquidation
risk and margin calls; not modelled explicitly in the theory section). We will use some of

these variables as controls in our empirical specification.

5 Empirical Evidence

5.1 Integration between lending protocols and futures markets:
transaction level data

In this section we test whether trading in DeFi lending protocols are integrated with

futures markets using a rich dataset of wallet-level transactions. We classify wallets

based on whether they take long or short positions on ETH respectively. A long trader is
classified as a user that deposits ETH and borrows USDT to take a leveraged position on
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ETH, and a short trader is a wallet that deposits USDT and borrows ETH to short sell
ETH. Our algorithm allows us to construct a measure of aggregate net long positions.
Figure 7 plots the aggregate long and short positions using transaction data at the
wallet level. For most of the sample, long positions dominate short positions, suggesting
that traders are primarily using the protocol to conduct long leveraged positions. This is
generally consistent with futures typically trading at a premium during 2021. However,
starting in 2022, we observe more short positions, and this is in line with a bearish market
for ETH in the latter half of 2022. We empirically test the fundamentals of long and short

positions in the lending protocol in Equation (48):

LS, = Bo + Bift — st + B20s + B30 spor, + Uy (48)

Here, the outcome variable is the difference between long and short positions in the
ending protocol. The explanatory variable are the futures premium f; — s;, the funding
rate 0y, the volatility of both USDT and ETH interest rates and volatility of the spot
exchange rate.

The results are summarized in Table 2. All explanatory variables are measured in
per cent, and the outcome variable is defined in USD Billion. Consistent with our model
prediction, the forward premium is a robust predictor of net long positions in the lend-
ing protocol. In column (3), a specification which controls for the funding rate and
ETH/USDT spot volatility, we find a 1% increase in the forward premium leads to a 2.9
USD Billion increase in net long positions in the protocol. For reference, the standard
deviation of the futures premium in our sample is approximately 10 basis points. We test
whether long and short positions react symmetrically to a change in the futures premium
in columns (4) to (9). We find that the integration between lending protocols and fu-
tures markets is asymmetric: long positions are more sensitive to futures premia. A 1%
increase in the futures premia leads to 2.8 USD billion increase in long positions, however
leads to only a decrease in 0.07 USD Billion in short positions. In addition to our analysis
of ETH-USDT long and short positions, we show that leveraged trading can be done for
other currency pairs on the lending protocol. In addition to ETH-USDT, futures markets
are integrated with ETH-USDC and ETH-DAI long and short positions on Compound.
For regression results using these pairs we refer readers to Appendix B. Empirically, we
observe an increase in futures premia is a robust predictor of an increase in long positions

and a decline in short positions in the lending protocol for these currencies as well.

5.1.1 Dynamic effects

One empirical concern with the long-short position results is that feedback effects from

these variables to the long-short position should be considered. We investigate dynamic
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effects using a vector autoregression (VAR) framework. The autoregressive equations for
the long-short position, the funding rate, and the difference in returns between the two
assets are illustrated in equations (49), (50), and (51). We allow for feedback effects

between the three variables, with a baseline specification of L = 1 lags. ©

L L L
fi— st =0 + Z Yk (fror — St—k) + Z B j0t—1 + Z 01, LS: + €14 (49)
k=1 k=1 k=1

L L L
0 = g+ Z Yo (fe—k — St—k) + Z B k0i—k + Z 02, LSy + €24 (50)
k=1 k=1 k=1
L L L
LS = a3 + Z Yar (fe—k — St—k) + Z B 10—k + Z O3 1, LS + €3+ (51)
k=1 k=1 k=1

Figure 8 presents the effects of a unit shock to the forward premium, the funding
rate, and the difference in returns between the two assets. We find that a 1% shock to
the forward premium leads to a peak response of 3 USD Billion in long-short positions
in the protocol after approximately 2 days. In contrast, we find no significant effects of
the funding rate on long-short positions. Similar responses are observed for ETH-USDC
and ETH-DAI positions in Appendix B. In sum, we find robust evidence that lending
protocols and futures markets are integrated. We now quantify the extent of integration

through testing the pricing of interest rates and futures premia.

5.2 Determinants of interest rate differential

The model tests the channels through which futures premia and exchange rate risk trans-
late to differences in interest rates. Through our model’s first prediction in (45), an
increase in futures premia is indicative of net bullish beliefs on the risky cryptoasset. We

empirically test the fundamental of interest-rate differences in Equation (52):

igSDT - iETH = Bo + Bifi — st + Bo20y + B30iprH + Baoivsprit
Wern

65 W + 560—spott + Ug. (52)
USDT

Here, the outcome variable is the interest-rate difference between USDT and ETH.
The explanatory variable are the futures premium f; —s;, the funding rate d;, the volatility
of both USDT and ETH interest rates and volatility of the spot exchange rate.

8. As the forward premia and funding rates are jointly determined, we do not impose a specific ordering
of the structural VAR. In our specification, shocks to each variable can only affect other variables with
a delay.
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The results are summarized in Table 3. All explanatory variables are measured in per
cent, and the outcome variable is defined in basis points for readability of the results.
Consistent with our model prediction, the forward premium and funding rate is positively
related to the interest rate differential. In particular, positive futures premia and funding
rates are indicative of net optimistic beliefs in ETH. This results in an increase in investor
positions that borrow stablecoins to take long leveraged positions in the unstable asset,
and in turn higher interest rates on the stablecoin.

An additional implication of the model prediction in equation (45) is that the interest
rate differential has a risk premium that is based on the wealth of optimists and the
volatility of the risky asset. To capture this risk premium, we measure the wealth of
Ethereum deposited relative to the wealth of USDT on the Compound platform. The
relative wealth of optimistic speculators and spot rate volatility in turn measures a risk
premium. Both variables lower borrowing by optimists and therefore we predict a de-
cline in stablecoin interest rates. Consistent with our model, our regression results show
that the wealth ratio and spot rate volatility are negatively related to the interest rate

differential.

5.2.1 Dynamic effects

One empirical concern with the results in Table 3 is that interest rates and futures premia
are jointly determined, and we are not taking into account feedback effects from interest
rates to forward premia. In addition to the contemporaneous effects of the funding rate
and the futures premia on the interest rates, we test for dynamic effects using a vector
autoregression (VAR) framework. The autoregressive equations for the futures premium,
the funding rate and interest rate differential are illustrated in equations (53), (54) and
(55). We allow for feedback effects between the three variables. Our baseline specification

contains L = 8 lags. *

L L L
fo—=se=01+ > vk (frok = siok) + > Bradior + 3 O (1557 —if"™) + ey (53)
k=1 K1 k=1

L L L
o =00+ Y Yok (fiok = sek) + > Pakb+ Y 0o (75T =i ™) + ey (54)
k=1 | K1

9. As futures premia and interest rates are jointly determined, we are agnostic about the ordering of
our structural VAR. In our specification, shocks to each variable can only affect other variables with a
delay.

23



L L L
.USDT _ :ETH .USDT _ :ETH
53 —1 7 = a3+ E Yok (frok — St—i) + E B3,1x0t—k + E O3k (ZL — 1 ) + €3,

(55)

We test the effects of a unit shock to the forward premium, the funding rate and the
interest rate difference between USDT and ETH in Figure 9. In line with the results
presented in Table 3, we find a 1 per cent shock to the forward premium leads to peak
response of the interest rate difference of 0.008 percentage points. A 1 per cent increase
in the funding rate leads to short-term increase in the interest rate difference by 0.01
percentage points. In contrast, a 1 percentage point shock to the interest rates lead to
a 2 per cent change in the futures premium, and a 0.5 percentage point increase in the

funding rate that is weakly significant at the 5 per cent level of significance.

5.3 Covered Interest Rate Parity Deviations

Using the nomenclature of the model, We empirically test whether CIP holds. We define
it using benchmark borrowing rates in equation (56). '° The first component is expressed
(in logs) is the forward premium. The second term is the interest-rate difference between
USDT and ETH.

cip = ft;po — (¥ — B (56)
0

We plot CIP deviations, including each component, in Figure 10. The average size of
absolute CIP deviations are approximately 7 basis points per funding period of 8 hours.
This translates to approximately a 76 per cent per annum measure. In addition, we show
the funding rate and futures premium correlate with each other. When futures trade at
a premium, this is consistent with net long positions in the futures market, leading long
position holders to pay the short position §. The large CIP deviations we compute are
in line with the large futures premium calculated in the literature (Franz and Valentin
2020; Cong, He, and Tang 2022; Schmeling, Schrimpf, and Todorov 2022). For example,
Schmeling, Schrimpf, and Todorov (2022) document a futures premium that is in excess

of 60 per cent per annum.

5.3.1 Determinants of CIP deviations

As a starting point in understanding limits to arbitrage, we can construct arbitrage

bounds based on strategies outlined in section 4. These strategies capture bounds on the

10. If the CIP deviation is defined using deposit rates, cip, = {20 — (i% —iE). Our analysis on CIP

Po
violations are quantitatively similar when using deposit rates to construct the CIP deviation.
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forward premium: if the futures and funding rate are too high, it is profitable to borrow
stablecoins in the protocol, buying ETH in the spot market and entering a short futures
position to make a profit. Conversely, if the futures and funding rate are too low, it is
profitable to deposit a stablecoin on the lending protocol, borrow ETH and enter a long
futures position to make a profit. From equation (37), we can establish the following

bounds for the sum of the forward premium and the funding rate.

= <ip—ip (57)

The lower and upper bounds for the CIP deviation expressed using borrowing rates

are then given by:

i — Y < cip, <Y —ib (58)

Table 4 reports summary statistics of the CIP lower and upper bound, and percentage
of violations of the arbitrage bounds. Over the sample, we find a total of 97 per cent
violations of the arbitrage bound when we neglect transaction costs and other limits
to arbitrage. In practice, we can control for transaction costs such as gas fees on the
Ethereum blockchain. Gas is a measure of the amount of ether (ETH) a user pays
to perform a given activity, or batch of activities, on the Ethereum network. These
transaction costs are analogous to commissions on exchanges, however these costs are paid
to the miners who authenticate the transactions on the Ethereum blockchain. Therefore
arbitrageurs that deposit or borrow stablecoins and ETH on the protocol are required

' We can express the CIP bounds with transaction costs as

cipLp — gasfee < cip; < cipyp + gasfee, where ciprp = 1% — %, and cipyp = i, — i5.

to pay these gas fees.

Figure 11 plots CIP deviations and the lower and upper bounds (inclusive of ETH gas
fees). Visually, the majority of CIP deviations lie within the arbitrage bounds with gas
fees. The lower panel of Table 4 reports summary statistics of CIP arbitrage bound
violations in excess of transaction costs. We now find only 5.7 per cent of violations are
outside the bounds after taking into account gas fees. These exploitable opportunities
are asymmetric, with 4.8 per cent of violations of the lower bound, and 1.0 per cent of
violations of the upper bound.

Therefore gas fees are a key factor to explain persistent deviations of CIP in the
data. We note additional factors that can limit arbitrage capital. There is no term

structure in DeFi lending, so investors have to conduct an arbitrage trade based on

11. As we do not have transaction level gas fees, we use a daily index of ETH gas prices from coinmetrics
network statistics as a proxy.
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expectations of interest rate movements. Futures premia and funding rates determined
on the futures exchange have a high degree of leverage, leading to increased risk of
liquidations. Governance risk of DeFi protocols and counterparty risk on a centralized
exchange can also lead to unexploited arbitrage opportunities. We empirically test the

fundamental of CIP deviations in Equation (59):

|Cipt| = B() + 519a$f66t + 621-[RETH/USDT > 28td]—|—
531-[RETH/USDT < 2std] + BioerH/USDT + Ut (59)

The outcome variable is the absolute CIP violation. The gas fee is the median
transaction fee paid to miners on Ethereum blockchain and calculated by coinmetrics.
L[Reruwspr > 2std] and 1.[Rprauspr < 2std] are indicator variables for ETH/USDT
returns that are greater or less than 2 standard deviations. By capturing periods of
extreme returns, we indirectly control for periods of liquidations and when positions be-
come over-leveraged and less investors can participate in arbitrage trades. oprp/uspr is
a rolling standard deviation of ETH/USDT. Periods of high volatility, all else equal, act
as a limit to arbitrage. Finally, we control for interest rate volatility of USDT and ETH.
As there is no term structure, expectations about future interest rates matter for the
profitability of arbitrage trades. All variables are measured in per cent. The results are
summarized in Table 5. In line with our results, gas fees are correlated positively with
the magnitude of CIP deviations, and deviations are higher in both periods of extreme
positive and negative returns. Turning to measures of volatility, we find an increase in
the volatility of ETH/USDT increases deviations from parity, suggesting risky collateral

is a limit to arbitrage.

5.4 Return predictability

In accordance with the testable implication of our model in equation (46), we can empir-
ically test return predictability through the following two specifications in Equation (60)
and (61):

Tern = Bo + Bife — s¢ + uy. (60)

WETH
Wuspr

Tepn = Bo + 511'%5” — iETH + B20spor.t + B3 + Uy (61)

The outcome variable 7., is the change in the future spot rate using hourly data,
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where we use a horizon of 8 hours corresponding to the interval over which funding rates
are calculated. The results are summarized in Table 6. In accordance with model hypoth-
esis H4, coefficient 3; should approximate 1 and corresponds to the case when futures
premia are a significant predictor of future spot rates. The funding rate is significant in
predicting future spot rate changes, however with a coefficient less than 1 it suggests that
the investor beliefs are not fully rational. This supports the failure of market efficiency
in line with results in Gudgeon et al. (2020). We find the interest rate differential is
statistically insignificant in column (2). In a specification in column (4) that includes
controls for the other factors that affect risk premia such as the relative wealth of opti-
mists and spot rate volatility, we find interest rates and futures premia have no significant
correlation with future returns. In summary, our results show that futures markets and
DeFi lending protocols do not have unbiased beliefs regarding the future spot rate, and

these markets are segmented as investors typically have different beliefs.

6 Conclusion

In this paper, we examine the fundamental determinants of interest rates on DeFi pro-
tocols. Through a model framework and empirical evidence, we show that interest rates
reflect investor beliefs on speculative assets. Our novel contribution is connecting interest
rate determination to the futures market.

The model features a stable and unstable asset. Lending protocols allow investors to
take long and short positions on the unstable asset. Long positions are by depositing
the unstable asset and borrowing a fraction as stable assets. Short positions are the
reverse: investors deposit stable collateral and borrow the unstable asset. Investors can
alternatively take long and short futures positions: this leads to a link between futures
premia and relative interest rates across currencies.

The model features three testable implications. First, interest rate differences reflect
the relative bearish and bullish beliefs of investors. If long positions dominate short
positions, utilization of the stable asset (measured as the fraction of stable asset that is
borrowed) is higher than utilization of the unstable asset. Algorithmically, this results
in a higher interest rate on the stable asset. Second, we show that interest rates reflect
futures premia. When futures trade at a premium due to long positions dominating short
positions, we find this is consistent with utilization and interest rates that are higher for
the stable asset.

We take these predictions to the data. First, we analyze a rich dataset of wallet-level
transactions, and show that DeFi lending protocols are integrated with futures markets,
allowing for leveraged trading. Our algorithm’s ability to classify wallets as long or short

traders and construct an aggregate net long position measure has enabled us to observe
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a correlation between an increase in futures premia and an increase in long positions and
a decline in short positions in the lending protocol.

Second, we investigate the fundamental determinants of interest rates. Through the
lens of the model, an increase in futures premia is indicative of net bullish beliefs on the
risky cryptoasset. Third, we conduct market efficiency tests of uncovered interest rate
parity. Our results indicate that futures premia and the funding rate on perpetual futures
contracts are significant in predicting future spot rate changes.

Third, we construct lower and upper bounds for CIP deviations based on arbitrage
strategies that can be employed using both a DeF'i lending protocol and futures markets.
After accounting for transaction costs, such as gas fees to authenticate transactions on
the blockchain, we find CIP deviations are typically within the arbitrage bounds. In
addition to gas fees, an increase in the volatility of ETH/USDT, and periods of extreme
returns in ETH lead to larger CIP deviations.

Fourth, we investigate the potential market segmentation between traders on futures
protocols and lending protocols by conducting market efficiency tests. The findings sug-
gest that there is indeed a difference in beliefs between these two groups of traders, which
leads to a breakdown of the link between interest rates and futures premia. Futures pre-
mia are shown to be more predictive of spot returns than interest rates, indicating that
traders on futures protocols have different beliefs about the future spot rate compared to
traders on lending protocols.

Taken together, our findings suggest that there is a significant level of market ineffi-
ciency between DeFi protocols and perpetual futures, which could lead to misallocation of
capital. If the interest rates offered by DeFi protocols are much lower than those achiev-
able through perpetual futures, this implies that a large amount of capital is locked in the
protocol and could be utilized more efficiently. This inefficiency could be attributed to
irrational behavior among DeFi market participants, or it may be evidence of additional
benefits associated with using DeFi markets over centralized futures trading.

To address this inefficiency, DeFi protocols could be redesigned to reduce transaction
costs, and the level of segmentation could be decreased as the market matures, thereby
increasing liquidity and reducing the price impact of arbitrage trading. Exploring the
optimal design of lending protocols and their potential use in mainstream finance is an

important area for future research.
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Figures

Figure 1: Compound: Multiple Borrowing and Lending Assets

Panel A: Single Collateral and Borrowing Currency
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Note: Figure Panel A illustrates the process of supplying ETH to Compound (this gets you ¢cETH

token). Every currency supplied to the protocol is converted to a Compound token. For example, ETH
collateral is converted to cETH, WBTC collateral is converted to cWBTC. Exchange rates between ETH
and cETH can vary over time, and cETH can accrue interest. Panel B shows an investor that borrows
multiple currencies, such as USDC and DAI, and supply multiple collateral types like ETH and wrapped
Bitcoin (WBTC).
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Figure 2: Borrowing and Lending Rates
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Note: Figure presents borrowing and lending rates on multiple assets (annualized), calculated as a

historical rolling average over the last 30 days. Source: Compound API.
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Figure 3: Borrowing and Lending
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Note: Figure presents aggregate borrowing and supply (deposits) in multiple currencies, calculated as a

historical rolling average over the last 30 days. Source: Compound API.

34



Figure 4: Utilization Rate and Interest Rate Rules
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Note: Figure top panel presents utilization rates (in percentage points) on multiple assets, calculated as
a historical rolling average over the last 30 days. Bottom panel plots interest rate models on multiple

assets, in which borrowing rates are determined as a function of the utilization rate, Source: Compound
APL
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Figure 5: Spot price, interest rate differential and funding rates
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futures funding rate (Panel C) and the futures premium (Panel D). All variables are measured in per cent (hourly).




Figure 6: Interest rate difference between USDT and ETH plotted against futures pre-
mium (Panel A) and funding rate (Panel B)
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Note: This figure plots a scatter plot of interest rate differences between USDT and ETH, and the futures
premium (panel A) and funding rate (panel B) on ETH-USDT perpetual futures contracts. Price data
for futures and funding rate obtained from Tardis api, and DeFi lending protocol interest rates from
Compound.
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Figure 7: Aggregate long and short positions for ETH-USDT
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Note: Figure plots the aggregate long and short positions using transaction data at the wallet level. Long
positions (measured along the positive y-axis) aggregate USDT borrowed by investors that deposit ETH
as collateral on the Compound protocol. Short positions (measured along the negative y-axis) aggregate
ETH borrowed by wallets that deposit USDT as collateral on the protocol. Sample is daily from 1st

January 2021 to 22nd April 2023.
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Figure 8: VAR impulse responses: feedback effects of forward premia, long-short positions
and the funding rate

Impulse responses
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the
funding rate and the aggregate long-short positions. longshort is measured as the difference between
long (deposit ETH and borrow USDT) and short (deposit USDT and borrow ETH) position using
wallet-level data, in billions USD. The forward premium is the difference between futures and spot prices
of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8
hours on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is
used for the analysis. Dotted lines denote a standard error band equivalent for statistical significance at
the 5% level. Sample is daily from 1st January 2021 to 22nd April 2023.

39



Figure 9: VAR impulse responses: feedback effects of forward premia, interest rates and
the funding rate

Impulse responses
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the
funding rate and the interest rate difference. The ird measures the difference between the USDT interest
rate and ETH interest rate (annualized). The forward premium is the difference between futures and
spot prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position
every 8 hours on a perpetual futures contract. 8 lags are included in the baseline specification and
hourly data is used for the analysis. Dotted lines denote a standard error band equivalent for statistical

significance at the 5% level
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Figure 10: CIP deviations using perpetual futures
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Note: Figure decomposes CIP deviations for the ETH/USDT pair into 3 components: (i) interest rate
differential between USDT and ETH, (ii) the funding rate on perpetual futures ETH/USDT and (iii)
the futures premium on perpetual futures ETH/USDT. Calculations are based on hourly data, and all
variables are measured in per cent (hourly).
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Figure 11: CIP deviations using perpetual futures, arbitrage bounds with ETH gas fee
transaction costs included
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Note: Figure plots CIP deviations for the ETH/USDT pair calculated using perpetual futures. Transac-
tion costs are computed using ETH gas fees, and are used to construct lower and upper bounds for CIP

arbitrage. Calculations are based on hourly data, and all variables are measured in basis points (hourly).
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Tables

Table 1: Summary statistics: interest rates and futures data

count mean std min 25% 50% 5% max
iYSbT 15996.0 5.757 3.968  0.459 3.499 4.123 6.670  40.725
iETH 15996.0 3.944 3.486  0.034 1.914 2.669 4.546  30.983
iy SPT 15996.0 2.832 0.397  2.206 2.615 2.762 2.972 8.957
iBTH 15996.0 0.129 0.103  0.027 0.072 0.105 0.171 2.284

iSPT _GETH - 15996.0 2.925 4.061  -6.655 0.645 1.326 3.939 38.161
iYSPT —GETH - 15996.0 3.816 3.493  -1.440 1.772 2.561 4.430 30.897

S¢ 15912.0 2331.589 1086.287 374.063 1530.305 2185.513 3150.925 4847.063
fi 15996.0 2333.849 1086.697 373.770 1533.492 2190.435 3153.455 4852.080
fr— st 15912.0 0.020 0.117  -8.664 -0.047 -0.006 0.076 1.559
0 15912.0 0.023 0.045  -0.487 0.006 0.010 0.024 0.375

Note: This table presents summary statistics of key variables in empirical analysis. i9°PT and i57# measure the interest rates on depositing USDT and ETH.
igSDT and iFTH measure the interest rates on borrowing USDT and ETH. s; and f; are spot and perpetual futures ETH/USDT prices. d; is the funding rate
on perpetual futures contracts. Interest rates are annualized in percentage points. The funding rate is in percentage points per 8 hour interval. Sample is hourly

data from November 1st, 2020 to October 23rd, 2022.
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Table 2: Determinants of ETH-USDT long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short
forward premium = 1.3348%%*%  1.8288**  2.8881***  1.2856™*F* 1.7693**  2.8163**  -0.0492** -0.0595%* -0.0718**

(0.4901) (0.7787) (1.1167) (0.4864) (0.7738) (1.1140) (0.0233) (0.0295) (0.0335)

funding rate -1.3265 -1.2674 -1.2987 -1.2348 0.0278 0.0326
(0.9877) (1.3082) (0.9850) (1.3062) (0.0248) (0.0293)
OETH/USDT -3.5548* -3.2152 0.3396**
(1.9906) (1.9834) (0.1338)
Intercept 0.5449***  0.5689***  (0.8966*** 0.5563*** 0.5798%F* (.8786*** 0.0114*** 0.0109*** -0.0180**
(0.0572) (0.0632) (0.1890) (0.0570) (0.0630) (0.1888) (0.0029) (0.0028) (0.0087)
R-squared 0.0195 0.0228 0.0566 0.0182 0.0214 0.0527 0.0148 0.0156 0.0653
No. observations 265 265 235 265 265 235 265 265 235

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate USDT
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit USDT as
collateral on the protocol. long — short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. cpry JUSDT 18
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.
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Table 3: Determinants of Interest Rate Differential: ¢

USDT _ ;ETH
L

i

(2)

(3)

(4)

(5)

(6)

iU iE jUSDT _ jETH USDT _ETH USDT _;ETH USDT _;ETH USDT _ ;ETH
forward premium 0.0100%** 0.0054%*** 0.0056*** 0.0005 0.0020** 0.0020**
(0.0011) (0.0013) (0.0013) (0.0010) (0.0010) (0.0010)
funding rate 0.0145%*** 0.0136%** 0.0053** 0.0079%** 0.00817#**
(0.0028) (0.0027) (0.0023) (0.0024) (0.0023)
Cigrn -0.0022%#* -0.0027#* -0.0025%#* -0.0025%#*
(0.0006) (0.0006) (0.0006) (0.0006)
Tivspr 0.001 7% 0.001 7% 0.001 7%
(0.0001) (0.0001) (0.0001)
wealth ratio -0.0005%#* -0.0005%#*
(0.0001) (0.0001)
OETH/USDT 0.0001
(0.0001)
Intercept 0.0000%** 0.0000*** 0.0000*** 0.00007%** 0.00007%** 0.00007%**
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
R-squared 0.0569 0.0754 0.0780 0.4396 0.4536 0.4552
No. observations 2162 2162 2160 2160 2160 2159

Note: Table presents regressions of the fundamentals of the interest rate difference. ird measures the difference between the USDT interest rate and ETH interest
rate (annualized) in basis points. The forward premium is the difference between futures and spot prices of ETH/USDT, and funding rate is a rate paid by long
position holders to the short position every 8 hours on a perpetual futures contract. oprm/uspT:Cigry and 0, gy, is a 24 hour rolling standard deviation of
ETH/USDT exchange rate, ETH and USDT interest rates. The sample period is from 12th November 2021 to 23rd October 2022. All explanatory variables are
measured in per cent. Sample is from November 1st, 2020 to October 23rd, 2022, and is based on 8 hour intervals at UTC 0:00, 8:00 and 16:00 which correspond
to when the funding rate is paid by long futures holders to short futures holders on perpetual futures contracts. White heteroscedasticity robust standard errors
are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.
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Table 4: CIP summary statistics

count  mean std min 25% 50% 75% max
|cip| 15912.0 7.049  9.390 0.001 3.102 5.532 8.731 866.496
ctp 15912.0 1.688 11.620 -866.496 -4.821 -0.843 7.247 155.742
No gas fees
cip (Lower Bound) 15996.0 -0.166 0.074 -0.944  -0.168 -0.143 -0.132 -0.039
cip (Upper Bound) 15996.0 0.348  0.319 -0.131 0.162 0.234  0.405 2.822

cip Violation (Lower Bound) 15996.0 0.523  0.500 0.000 0.000 1.000 1.000 1.000
cip Violation (Upper Bound) 15996.0 0.453  0.498 0.000 0.000 0.000 1.000 1.000

cip Violation 15996.0 0.976 0.153 0.000 1.000 1.000 1.000 1.000
Gas fees

ctp (Lower Bound) 15996.0 -28.808 19.049 -122.146 -42.240 -24.144 -12.775 -2.944
cip (Upper Bound) 15996.0 28.991 19.125 2.872 12900 24.268 42.397 122.197

cip Violation (Lower Bound) 15996.0 0.048 0.213 0.000 0.000  0.000 0.000 1.000
cip Violation (Upper Bound) 15996.0  0.010  0.098 0.000  0.000  0.000  0.000 1.000
cip Violation 15996.0  0.057  0.233 0.000  0.000  0.000  0.000 1.000

Note: This table presents summary statistics of CIP deviations. The upper panel presents summary statistics when no gas fees are accounted for. Lower and
upper bounds for CIP deviations without gas fees are based on equation (37), and violations measure the fraction of CIP deviations that exceed the lower
and upper bounds. The lower panel presents summary statistics after accounting for gas fee, which is the median transaction fee paid to miners on Ethereum
blockchain and calculated by coinmetrics. Sample is hourly data from November 1st, 2020 to October 23rd, 2022.



Table 5: Determinants of ETH/USDT CIP Deviations

(1) (2) (3) (4)

|CIP| |CIP| |CIP| |CIP|
gas fee 0.0568***  0.0569*** 0.0569***  0.0588***
(0.0061) (0.0061) (0.0061) (0.0062)
L[Rerm/vspr > 2std] 0.0002**  0.0003**  0.0002%**
(0.0001) (0.0002) (0.0001)
L[Reruvspr < 2std) 0.0002 0.0001**
(0.0001) (0.0000)
OETH/USDT 0.0056%**
(0.0013)
Intercept 0.0005** 0.0005*** 0.0003**  0.0002***
(0.0000) (0.0000) (0.0001) (0.0000)
R-squared 0.0470 0.0506 0.0508 0.0659
No. observations 2156 2156 2156 2095

Note: Table presents regressions of the fundamentals of absolute CIP violations. |CIP)| is the absolute
CIP violation and is the sum of three components: the futures premium, the funding rate, and the
(negative of) interest rate difference between USDT and ETH. Explanatory variables include the gas
fee, which is the median transaction fee paid to miners on Ethereum blockchain and calculated by
coinmetrics. 1.[Rprp/uspr > 2std] and 1.[Rprp/uspr < 2std] are indicator variables for ETH/USDT
returns that are greater or less than 2 standard deviations. oprr/uspr is a rolling standard deviation
of ETH/USDT. The sample period is from 12th November 2021 to 23rd October 2022. All variables
are measured in per cent. Sample is from November 1st, 2020 to October 23rd, 2022, and is based on 8
hour intervals at UTC 0:00, 8:00 and 16:00 which correspond to when the funding rate is paid by long
futures holders to short futures holders on perpetual futures contracts. White heteroscedasticity robust
standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.
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Table 6: Determinants of future spot changes in ETH-USDT

(1) (2) (3) (4)

Tt+h T't+h T't+h T't+h
forward premium 0.4320 -1.8995
(0.7668) (1.4347)
funding rate 3.8359%* 4.6495
(1.9803) (3.0709)
(SPT G BTH 17.2471 6.7997
(19.6166) (20.9461)
OETH/USDT 0.1903
(0.2041)
wealth ratio 0.1243*
(0.0677)
Intercept 0.0005  -0.0003  0.0001 -0.0031*
(0.0007) (0.0008) (0.0008)  (0.0019)
R-squared 0.0001 0.0029  0.0004 0.0065
No. observations 2160 2160 2160 2157

Note: Table presents regressions of the fundamentals of UIP violations. 7,1, is the per cent change in
the 8 hour ahead spot rate. The forward premium is the difference between futures and spot prices of
ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours
on a perpetual futures contract. ogrg/rspr is a rolling standard deviation of ETH/USDT. Sample is
from November 1st, 2020 to October 23rd, 2022, and is based on 8 hour intervals at UTC 0:00, 8:00
and 16:00 which correspond to when the funding rate is paid by long futures holders to short futures
holders on perpetual futures contracts. All variables are measured in per cent. White heteroscedasticity
robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the
5 percent level, and * at the 10 percent level.
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Online Appendix to

“DeFi Lending Protocols and the Carry Trade”
(Not for publication)

A  Model Derivations

Proof of Proposition 1.
Both types of investor solve the following constrained optimization problem:

Optimists’ Lagrangian function is given as follows:

L(do) = B[] - %war (0] + Mo+ Xe(A — 20) (62)

Expected wealth of optimists is

E [WO} = Wo(ut + Aot — 1) +iE — Api¥) (63)
be(l—0)ALWE  byAEZW,
=Wo [ p"+Ao(pt —1 PP _==0 64
o (B0 -1+ LS - (o
Variance of future wealth of optimists:
Var {WO} = WE(1 + Ao)?o. (65)
The first-order condition of the optimization problem (62) is
oL 2bpWoA

= Wo (T = 1) = 220 W26 (14 Ap) + A — e (66)

8AO WP

In region 0 < Ap < A and A\; = Ay = 0 we can derive an expression for the optimal

leverage ratio of investor O:

2b A
0= 1Wo ("~ 1) = ZEE22 ]~ wEe(1 + o), (67)
P
Wp [t —1—~v0*Wo
Ao = . 68
© Wo ( ’)/O'QWP—FZbU ( )

Pessimists’ Lagrangian function is given as follows:
. 1 - ~
L(Ap) = E [WP} -5 WVar [WP} F AR+ (A — Ap) (69)
Expected wealth of pessimists is:

E [va] = Wp(1+ Ap(1 — ) + 3% — Apil) (70)



. bp(1—0)AZWE  bpALWE
=Wp |1+ Ap(1— - . 71
(14 an -+ PO oL ()
Variance of future wealth of pessimists:
Var [Wp] = WpA%Lo?. (72)
The first-order condition of the optimization problem (62) is
oL . 20gWpA

In region 0 < Ap < A and A\; = Ay = 0 we can derive an expression for the optimal

leverage ratio of investor P:

2bpWpA
0 -y - B

Wo 1— no
Ap = . 75
P W, (702% + 2bE> (75)

} — yW2c*Ap, (74)

Partial derivatives of the optimal demand functions with respect to slope parameters

bg and by are:

Ao —2A0

8bU N ’}/UZWP + 2bU (76)
and

0Ap —2Ap (77)

Oy 02Wo + 2b

Substituting in the formula for the slope parameter (20) and (21), optimal bg and by

is given as:
2
W,
by = 152, (78)
2
1%
by = L2 2F (79)
2
This, in turn, determines the optimal demands functions as:
pt/po —1—70*Wo
Ao = 80
© 2vo2Wo ’ (80)
1 —p~/po
Ap=—F"—. 81
P 2vo?Wp (81)

Q.E.D.



B Long-short positions: Robustness using ETH-USDC
and ETH-DAI

Figure A1l: Aggregate long and short positions for ETH-USDC and ETH-DAI

Long and Short Positions
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Note: Figure plots the aggregate long and short positions using transaction data at the wallet level. Long
positions (measured along the positive y-axis) aggregate USDT borrowed by investors that deposit ETH
as collateral on the Compound protocol. Short positions (measured along the negative y-axis) aggregate

ETH borrowed by wallets that deposit USDT as collateral on the protocol. Sample is daily from 1st
January 2021 to 22nd April 2023.



Table Al: Determinants of ETH-USDC long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short
forward premium 4.8968***  5.0852%H*F  6.6052***  3.2282%F*  3.8439%** 5 1451FKF  _1.6686%HF  -1.2412%*F  _1.4601***

(0.7597) (1.1031) (1.2451) (0.6612) (1.0010) (1.1651) (0.2752) (0.3228) (0.3796)

funding rate -0.5446 0.1337 -1.7804 -1.4272 -1.2357**%  -1.5608**
(1.6833) (1.9351) (1.4303) (1.6987) (0.6072) (0.7417)
OETH/USDT 8.3211°** 7.8379* -0.4833
(4.1622) (4.0544) (0.8123)
Intercept 0.6152%FF  0.6246***  (0.2352 0.8575%**  (0.8880***  (0.5262***  (.2423%FF  (0.2634***  (0.2910***
(0.0558) (0.0656) (0.2100) (0.0483) (0.0568) (0.2026) (0.0252) (0.0279) (0.0497)
R-squared 0.0740 0.0741 0.1154 0.0429 0.0447 0.0823 0.0495 0.0534 0.0564
No. observations 643 643 613 643 643 613 643 643 613

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate USDC
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit USDC as
collateral on the protocol. long — short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. cpry JUSDT 18
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.



Table A2: Determinants of ETH-DAI long and short positions using wallet-transaction level data

(1) (2) (3) (4) (5) (6) (7) (8) (9)

long-short long-short long-short long long long short short short
forward premium 1.6782*%**  1.5949%** 1.8601***  1.0450*** 1.0500**  1.2612** -0.6332*** -0.5449*** _(.5089%***

(0.3679) (0.5456) (0.6230) (0.3313) (0.5100) (0.5926)  (0.1038) (0.1165) (0.1282)

funding rate 0.2374 1.0707 -0.0142  0.7330 02517 -0.3378*
(0.9727)  (1.1434) (0.9132)  (1.0999) (0.1586)  (0.1812)
OETHUSDT 5.1843%%* 4.1295%* ~1.0547*
(1.9897) (1.9405) (0.3416)
Intercept 0.3750%%*  0.3709%**  0.0987 0.4575%FF 0. 4577TFFF  0.2416%F  0.0825%FF  0.0868%FF  ().1429%F*
(0.0322)  (0.0357)  (0.1132)  (0.0292)  (0.0326)  (0.1090) (0.0111)  (0.0118)  (0.0255)

R-squared 0.0329 0.0330 0.0625 0.0155  0.0155  0.0378  0.0435 0.0445 0.0515

No. observations 580 580 556 580 580 556 580 580 556

Note: Table presents regressions of the fundamentals of aggregate long and short positions using wallet transaction-level data. Long positions aggregate DAI
borrowed by investors that deposit ETH as collateral on the Compound protocol. Short positions aggregate ETH borrowed by wallets that deposit DAI as
collateral on the protocol. long — short measures the difference between long and short positions. The forward premium is the difference between futures and spot
prices of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours on a perpetual futures contract. cpry JUSDT 18
a 30 day rolling standard deviation of ETH/USDT exchange rate. The sample is daily from 1st January 2021 to 22nd April 2023. All explanatory variables are
measured in per cent. White heteroscedasticity robust standard errors are used in estimation. *** denotes significance at the 1 percent level, ** at the 5 percent
level, and * at the 10 percent level.



Figure A2: VAR impulse responses: feedback effects of forward premia, ETH-USDC
long-short positions and the funding rate

Impulse responses
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the
funding rate and the aggregate long-short positions. longshort is measured as the difference between
long (deposit ETH and borrow USDC) and short (deposit USDC and borrow ETH) position using
wallet-level data, in billions USD. The forward premium is the difference between futures and spot prices
of ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8
hours on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is

used for the analysis. Dotted lines denote a standard error band equivalent for statistical significance at

the 5% level



Figure A3: VAR impulse responses: feedback effects of forward premia, ETH-DAI long-
short positions and the funding rate
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Note: Figure plots the impulse responses of a VAR with three variables: the forward premium, the
funding rate and the aggregate long-short positions. longshort is measured as the difference between
long (deposit ETH and borrow DAI) and short (deposit DAI and borrow ETH) position using wallet-
level data, in billions USD. The forward premium is the difference between futures and spot prices of
ETH/USDT, and funding rate is a rate paid by long position holders to the short position every 8 hours
on a perpetual futures contract. 1 lag is included in the baseline specification and daily data is used for

the analysis. Dotted lines denote a standard error band equivalent for statistical significance at the 5%

level



