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BENEFIT AREA

DESCRIPTION

Optimizes Nutrient
Absorption:

Powerful Antioxidant
Capacity:

Binds Toxic Heavy Metals:

Enhanced Mitochondrial
Biogenesis and Stamina:

Sugar Spikes Lowered:

Restricts Fat Accumulation:

Regulates Cholesterol:

Regulates Cholesterol:

Anti-Inflammatory:

Immune System Regulator:

Electrolyte Hydration:

Cardiovascular Support &
Maintains Blood Pressure:

Improves Oxygen
Transport: Better Gut
Biome:

Better Gut Biome:

Regulates Energy
Homeostasis:

Neurogenerative Health:
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Shuttles more sugars and carbohydrates to the muscle, rather than into fat storage.
Carbohydrates and glucose absorption are downregulated (receptor sites reduced) in
the stomach/intestine and upregulated in the muscle tissue, allowing for more nutrients
available for use. Adiponectin (regulates glucose levels as well as fatty acid breakdown)
is increased [1-6]

Prevents tissue damage by its ROS scavenging capacity ‘reactive oxygen species’ and
mimics SOD ‘super oxide dismutase’ properties [7-12].

Chelates metals for elimination via bowels/urine, reducing toxic load on the cells [13-19]

Mitochondria multiply producing more ATP which enhances more efficient cell
respiratory function [11, 20-24].

Maintains Blood Glucose Levels by regulating glucose absorption, sugar spikes are
lowered, regulates the liver decreasing the breakdown of glycogen to glucose and
prevents insulin resistance [25-29].

By down regulating the glucose receptor sites in the stomach, more glucose is shuttled
into the muscle for energy use [28, 30-35].

Inhibits pancreatic cholesterol esterase resulting in cholesterol lowering activity.
Reduces the solubility of cholesterol aggregates that form plaque [1, 29, 36-39].

Prevents the production of inflammatory molecules such as cytokines; also offsets
allergic-induced inflammation [40-46].

Regulates the immune response from becoming over-active [28, 44, 45, 47].

Important for cell integrity — providing the cells with enough water, ions, and minerals;
helps prevent dehydration and electrolyte depletion [48-52].

At the molecular level, the effects of cardiovascular protection

are mediated through interaction with nitric oxide metabolism and inhibition of
angiotensin. Polyphenols improve blood vessel endothelial function, increasing
vasodilation (lowering blood pressure- anti-hypertension) protecting against developing
chronic cardiovascular conditions [39, 53-56].

Antioxidants protect the mitochondria and bodily tissues from oxidative injury by free
radical production enhancing mitochondrial biogenesis and optimizing respiratory
function [20, 23, 39, 57].

Polyphenols are demonstrated to increase the growth of beneficial bacteria in the
intestinal microbiome. Oxidative stress disrupts the intestinal epithelial barrier and
increases permeability. Persistent oxidative stress can damage and alter the microbe
balance, promoting disease. Antioxidants, such as those found in MLG-50, have been
shown effective in restoring balance, attenuating intestinal damages and maintaining Gl
tract health [42, 58-62].

Polyphenols regulate glucose uptake in muscle and ATP production in the
mitochondria, maintaining optimal nutrient transport and energy levels throughout the
body [2, 23, 34, 55, 57, 63, 64].

Polyphenols play an important role in the protection of neuron loss by preventing
inflammation and mitochondrial oxidative damage. Polyphenols have also been shown
to have beneficial effects on age-related cognitive and motor deficits, memory loss,
mitochondrial oxidative stress, restoration of mitochondrial membrane potential,
mitochondrial function and ATP synthesis [11, 22, 65-69].



Origin and Classification

SMPL72™ provides micronutrients to the body. Fulvic acid is a class of
polyphenols which include flavonoids that provide enormous health benefits. All
constituents in SMPL72™ is also found in fruits, vegetables, herbs, nuts and
seeds. It does not treat nor prevent disease. It is a strong component of a healthy
lifestyle that includes smart eating, exercise, supplementation and community.
Fulvic acids, flavonoids, trace minerals and so forth are ubiquitous in our food
supply to varying degrees. The trace minerals found in SMPL72™ have been
depleted from our soils, thus lowering the levels in our food supply. These micro-
minerals have substantial cumulative health benefits.

The addition of a small amount of SMPL72™T™ to nutraceutical, nootropic, and
sports enhancement products, will increase the potential effectiveness of that
product. It is considered a new dietary ingredient but is exempt from notification
and is safe for human consumption when used as directed. A typical dose is 100
mg per day.

SMPL International’s deposit is a stratum of marine nutrients and terrestrial plant
matter that formed over 34 million years ago, protected from weathering by a layer
of iron ore. Our unique extraction method begins with a two-year curing process
followed by a proprietary reverse osmosis water extraction method resulting in a
100% soluble, highly concentrated liquid.

Our deposit consists of Nature’s most complex substance containing the remnants
of prehistoric life. These include:

Minerals, trace minerals, trace elements, vitamins, amino acids, organic acids,
fulvic and humic acid, phytochemicals, natural sterols, hormones, fatty acids,
polyphenols, and ketones, including flavonoids, flavones, flavins, catechins,
tannins, quinones, isoflavones, and tocopherols, which possess the benefits listed
above.

Features:

» Concentrated Product

 Liquid - low pH

» Highest Fulvic Acid Content

* 100% soluble

» Sodium/Potassium electrolyte balanced

e 70+ trace minerals
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70+ electrolytes

18 antioxidants

Pleasant flavor and aroma profile

Dietary Supplement cGMP certificate by UL

Maarten Bennis, Founder/CEO
maarten@smpl.international
Lidwien Jansen Co-founder/CCO
lidwien@smpl.international

+31 23 5259494
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