

SMPL72™: Benefit areas supported by published studies

January 28, 2019 Compiled by Dr. M.K. Williams, PhD Under guidance from Hyman McNamara Phelps P.C

Tabel of Contents

Tabel of Contents	2
SMPL72™: Benefit areas supported by published studies	3
Product details, features and selling points	4
Origin and Classification	4
Features:	4
Questions and for additional information contact:	5
References	5

SMPL72™: Benefit Areas Supported by Published Studies

BENEFIT AREA	DESCRIPTION
Optimizes Nutrient Absorption:	Shuttles more sugars and carbohydrates to the muscle, rather than into fat storage. Carbohydrates and glucose absorption are downregulated (receptor sites reduced) in the stomach/intestine and upregulated in the muscle tissue, allowing for more nutrients available for use. Adiponectin (regulates glucose levels as well as fatty acid breakdown) is increased [1-6]
Powerful Antioxidant Capacity:	Prevents tissue damage by its ROS scavenging capacity 'reactive oxygen species' and mimics SOD 'super oxide dismutase' properties [7-12].
Binds Toxic Heavy Metals:	Chelates metals for elimination via bowels/urine, reducing toxic load on the cells [13-19]
Enhanced Mitochondrial Biogenesis and Stamina:	Mitochondria multiply producing more ATP which enhances more efficient cell respiratory function [11, 20-24].
Sugar Spikes Lowered:	Maintains Blood Glucose Levels by regulating glucose absorption, sugar spikes are lowered, regulates the liver decreasing the breakdown of glycogen to glucose and prevents insulin resistance [25-29].
Restricts Fat Accumulation: Regulates Cholesterol:	By down regulating the glucose receptor sites in the stomach, more glucose is shuttled into the muscle for energy use [28, 30-35].
Regulates Cholesterol:	Inhibits pancreatic cholesterol esterase resulting in cholesterol lowering activity. Reduces the solubility of cholesterol aggregates that form plaque [1, 29, 36-39].
Anti-Inflammatory:	Prevents the production of inflammatory molecules such as cytokines; also offsets allergic-induced inflammation [40-46].
Immune System Regulator:	Regulates the immune response from becoming over-active [28, 44, 45, 47].
Electrolyte Hydration:	Important for cell integrity – providing the cells with enough water, ions, and minerals; helps prevent dehydration and electrolyte depletion [48-52].
Cardiovascular Support & Maintains Blood Pressure:	At the molecular level, the effects of cardiovascular protection are mediated through interaction with nitric oxide metabolism and inhibition of angiotensin. Polyphenols improve blood vessel endothelial function, increasing vasodilation (lowering blood pressure- anti-hypertension) protecting against developing chronic cardiovascular conditions [39, 53-56].
Improves Oxygen Transport: Better Gut Biome:	Antioxidants protect the mitochondria and bodily tissues from oxidative injury by free radical production enhancing mitochondrial biogenesis and optimizing respiratory function [20, 23, 39, 57].
Better Gut Biome:	Polyphenols are demonstrated to increase the growth of beneficial bacteria in the intestinal microbiome. Oxidative stress disrupts the intestinal epithelial barrier and increases permeability. Persistent oxidative stress can damage and alter the microbe balance, promoting disease. Antioxidants, such as those found in MLG-50, have been shown effective in restoring balance, attenuating intestinal damages and maintaining GI tract health [42, 58-62].
Regulates Energy Homeostasis:	Polyphenols regulate glucose uptake in muscle and ATP production in the mitochondria, maintaining optimal nutrient transport and energy levels throughout the body [2, 23, 34, 55, 57, 63, 64].
Neurogenerative Health:	Polyphenols play an important role in the protection of neuron loss by preventing inflammation and mitochondrial oxidative damage. Polyphenols have also been shown to have beneficial effects on age-related cognitive and motor deficits, memory loss, mitochondrial oxidative stress, restoration of mitochondrial membrane potential, mitochondrial function and ATP synthesis [11, 22, 65-69].

Product Details, Features and Selling Points

Origin and Classification

SMPL72[™] provides micronutrients to the body. Fulvic acid is a class of polyphenols which include flavonoids that provide enormous health benefits. All constituents in SMPL72[™] is also found in fruits, vegetables, herbs, nuts and seeds. It does not treat nor prevent disease. It is a strong component of a healthy lifestyle that includes smart eating, exercise, supplementation and community. Fulvic acids, flavonoids, trace minerals and so forth are ubiquitous in our food supply to varying degrees. The trace minerals found in SMPL72[™] have been depleted from our soils, thus lowering the levels in our food supply. These microminerals have substantial cumulative health benefits.

The addition of a small amount of SMPL72^{™™} to nutraceutical, nootropic, and sports enhancement products, will increase the potential effectiveness of that product. It is considered a new dietary ingredient but is exempt from notification and is safe for human consumption when used as directed. A typical dose is 100 mg per day.

SMPL International's deposit is a stratum of marine nutrients and terrestrial plant matter that formed over 34 million years ago, protected from weathering by a layer of iron ore. Our unique extraction method begins with a two-year curing process followed by a proprietary reverse osmosis water extraction method resulting in a 100% soluble, highly concentrated liquid.

Our deposit consists of Nature's most complex substance containing the remnants of prehistoric life. These include:

Minerals, trace minerals, trace elements, vitamins, amino acids, organic acids, fulvic and humic acid, phytochemicals, natural sterols, hormones, fatty acids, polyphenols, and ketones, including flavonoids, flavones, flavins, catechins, tannins, quinones, isoflavones, and tocopherols, which possess the benefits listed above.

Features:

- Concentrated Product
- Liquid low pH
- Highest Fulvic Acid Content
- 100% soluble
- Sodium/Potassium electrolyte balanced
- 70+ trace minerals

- 70+ electrolytes
- 18 antioxidants
- · Pleasant flavor and aroma profile
- Dietary Supplement cGMP certificate by UL

Questions and for Additional Information Contact:

Maarten Bennis, Founder/CEO

maarten@smpl.international

Lidwien Jansen Co-founder/CCO

lidwien@smpl.international

+31 23 5259494

References

Hanhineva, K., et al., Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci, 2010. 11(4): p. 1365-402 https://www.ncbi.nlm.nih.gov/pubmed/20480025.

Kim, Y., J.B. Keogh, and P.M. Clifton, Polyphenols and Glycemic Control. Nutrients, 2016. 8(1)https://www.ncbi.nlm.nih.gov/pubmed/26742071.

Purintrapiban, J., M. Suttajit, and N.E. Forsberg, Differential activation of glucose transport in cultured muscle cells by polyphenolic compounds from Canna indica L. Root. Biol Pharm Bull, 2006. 29(10): p. 1995-8 https://www.ncbi.nlm.nih.gov/pubmed/17015939.

Ueda-Wakagi, M., et al., 3-O-Acyl-epicatechins Increase Glucose Uptake Activity and GLUT4 Translocation through Activation of PI3K Signaling in Skeletal Muscle Cells. Int J Mol Sci, 2015. 16(7): p. 16288-99 https://www.ncbi.nlm.nih.gov/pubmed/26193264.

Ademiluyi, A.O. and G. Oboh, Phenolic-rich extracts from selected tropical underutilized legumes inhibit alpha-amylase, alpha-glucosidase, and angiotensin I

converting enzyme in vitro. J Basic Clin Physiol Pharmacol, 2012. 23(1): p. 17-25 https://www.ncbi.nlm.nih.gov/pubmed/22865445.

Welsch, C.A., P.A. Lachance, and B.P. Wasserman, Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr, 1989. 119(11): p. 1698-704 https://www.ncbi.nlm.nih.gov/pubmed/2600675.

Selvaraj, S., et al., Flavonoid-metal ion complexes: a novel class of therapeutic agents. Med Res Rev, 2014. 34(4): p. 677-702 https://www.ncbi.nlm.nih.gov/pubmed/24037904.

Perron, N.R. and J.L. Brumaghim, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys, 2009. 53(2): p. 75-100 https://www.ncbi.nlm.nih.gov/pubmed/19184542.

Hollman, P.C. and M.B. Katan, Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother, 1997. 51(8): p. 305-10 https://www.ncbi.nlm.nih.gov/pubmed/9436520.

Kancheva, V.D. and O.T. Kasaikina, Bio-antioxidants - a chemical base of their antioxidant activity and beneficial effect on human health. Curr Med Chem, 2013. 20(37): p. 4784-805 https://www.ncbi.nlm.nih.gov/pubmed/24274817.

Obrenovich, M.E., et al., The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res, 2010. 13(6): p. 631-43 https://www.ncbi.nlm.nih.gov/pubmed/20818981.

Badhani, B., N. Sharma, and R. Kakkar, Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 2015. 5(35): p. 27540-27557 https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra01911g#! divAbstract.

Cornard, J.P. and C. Lapouge, Absorption spectra of caffeic acid, caffeate and their 1:1 complex with Al(III): density functional theory and time-dependent density functional theory investigations. J Phys Chem A, 2006. 110(22): p. 7159-66 https://www.ncbi.nlm.nih.gov/pubmed/16737266.

Boilet, L., J.P. Cornard, and C. Lapouge, Determination of the chelating site preferentially involved in the complex of lead(II) with caffeic acid: a spectroscopic

and structural study. J Phys Chem A, 2005. 109(9): p. 1952-60 https://www.ncbi.nlm.nih.gov/pubmed/16833529.

4

Brzoska, M.M., S. Borowska, and M. Tomczyk, Antioxidants as a Potential Preventive and Therapeutic Strategy for Cadmium. Curr Drug Targets, 2016. 17(12): p. 1350-84 https://www.ncbi.nlm.nih.gov/pubmed/25944010.

Borowska, S., M.M. Brzoska, and M. Tomczyk, Complexation of Bioelements and Toxic Metals by Polyphenolic Compounds - Implications for Health. Curr Drug Targets, 2018https://www.ncbi.nlm.nih.gov/pubmed/29611487.

Lotfi-Ghahramanloo, M. and H. Baghshani, Ameliorative Effects of Caffeic Acid on Lead Accumulation and Oxidative Stress in Lead-Exposed Mice. Zahedan Journal of Research in Medical Sciences, 2016. In Press(In Press)http://zjrms.com/en/articles/6674.html.

Pari, L. and A. Mohamed Jalaludeen, Protective role of sinapic acid against arsenic: induced toxicity in rats. Chem Biol Interact, 2011. 194(1): p. 40-7 https://www.ncbi.nlm.nih.gov/pubmed/21864513.

Unsal, V., Natural Phytotherapeutic Antioxidants in the Treatment of Mercury Intoxication-A Review. Adv Pharm Bull, 2018. 8(3): p. 365-376 https://www.ncbi.nlm.nih.gov/pubmed/30276132.

Teixeira, J., et al., Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease. Curr Med Chem, 2017https://www.ncbi.nlm.nih.gov/pubmed/28554320.

Raha, S. and B.H. Robinson, Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci, 2000. 25(10): p. 502-8 https://www.ncbi.nlm.nih.gov/pubmed/11050436.

Schaffer, S., et al., Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria. Mol Neurobiol, 2012. 46(1): p. 161-78 https://www.ncbi.nlm.nih.gov/pubmed/22706880.

Sandoval-Acuna, C., J. Ferreira, and H. Speisky, Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys, 2014. 559: p. 75-90 https://www.ncbi.nlm.nih.gov/pubmed/24875147.

Konopka, A.R., et al., Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci, 2014. 69(4): p. 371-8 https://www.ncbi.nlm.nih.gov/pubmed/23873965.

Waltner-Law, M.E., et al., Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem, 2002. 277(38): p. 34933-40 https://www.ncbi.nlm.nih.gov/pubmed/12118006.

Collins, Q.F., et al., Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem, 2007. 282(41): p. 30143-9 https://www.ncbi.nlm.nih.gov/pubmed/17724029.

Wolfram, S., et al., Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr, 2006. 136(10): p. 2512-8 https://www.ncbi.nlm.nih.gov/pubmed/16988119.

Choi, M.S., et al., Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev, 2008. 24(1): p. 74-81 https://www.ncbi.nlm.nih.gov/pubmed/17932873.

Jung, U.J., et al., Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol, 2006. 38(7): p. 1134- 45 https://www.ncbi.nlm.nih.gov/pubmed/16427799.

5

Rivera, L., et al., Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008. 16(9): p. 2081-7 https://www.ncbi.nlm.nih.gov/pubmed/18551111.

Winder, W.W. and D.G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol, 1999. 277(1): p. E1-10 https://www.ncbi.nlm.nih.gov/pubmed/10409121.

Terra, X., et al., Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem, 2009. 20(3): p. 210-8 https://www.ncbi.nlm.nih.gov/pubmed/18602813.

Guo, H., et al., Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem, 2012. 23(4): p. 349-60 https://www.ncbi.nlm.nih.gov/pubmed/21543211.

Kanamoto, Y., et al., A black soybean seed coat extract prevents obesity and glucose intolerance by up-regulating uncoupling proteins and down-regulating inflammatory cytokines in high-fat diet-fed mice. J Agric Food Chem, 2011. 59(16): p. 8985-93 https://www.ncbi.nlm.nih.gov/pubmed/21751816.

DeFuria, J., et al., Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr, 2009. 139(8): p. 1510-6 https://www.ncbi.nlm.nih.gov/pubmed/19515743.

Kim, Y., J.B. Keogh, and P.M. Clifton, Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients, 2017. 9(11)https://www.ncbi.nlm.nih.gov/pubmed/29165404.

Balliett, M. and J.R. Burke, Changes in anthropometric measurements, body composition, blood pressure, lipid profile, and testosterone in patients participating in a low-energy dietary intervention. J Chiropr Med, 2013. 12(1): p. 3-14 https://www.ncbi.nlm.nih.gov/pubmed/23997718.

Cai, H. and D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 2000. 87(10): p. 840-4 https://www.ncbi.nlm.nih.gov/pubmed/11073878.

Willcox, B.J., J.D. Curb, and B.L. Rodriguez, Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am J Cardiol, 2008. 101(10A): p. 75D-86D https://www.ncbi.nlm.nih.gov/pubmed/18474278.

Chirumbolo, S., Dietary assumption of plant polyphenols and prevention of allergy. Curr Pharm Des, 2014. 20(6): p. 811-39 https://www.ncbi.nlm.nih.gov/pubmed/23701556.

Saviranta, N.M.M., et al., Plant flavonol quercetin and isoflavone biochanin A differentially induce protection against oxidative stress and inflammation in ARPE-19 cells. Food Research International, 2011. 44(1): p. 109-113 https://www.sciencedirect.com/science/article/pii/S096399691000431X.

Zhu, H. and Y.R. Li, Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood), 2012. 237(5): p. 474-80 https://www.ncbi.nlm.nih.gov/pubmed/22442342.

Choi, S.W. and S. Friso, Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr, 2010. 1(1): p. 8-16 https://www.ncbi.nlm.nih.gov/pubmed/22043447.

6

Keane, K.N., et al., Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and beta-Cell Dysfunction. Oxid Med Cell Longev, 2015. 2015: p. 181643 https://www.ncbi.nlm.nih.gov/pubmed/26257839.

Magrone, T. and E. Jirillo, Influence of polyphenols on allergic immune reactions: mechanisms of action. Proc Nutr Soc, 2012. 71(2): p. 316-21 https://www.ncbi.nlm.nih.gov/pubmed/22369886.

Singh, A., S. Holvoet, and A. Mercenier, Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy, 2011. 41(10): p. 1346-59 https://www.ncbi.nlm.nih.gov/pubmed/21623967.

Cuervo, A., et al., Association of polyphenols from oranges and apples with specific intestinal microorganisms in systemic lupus erythematosus patients. Nutrients, 2015. 7(2): p. 1301-17 https://www.ncbi.nlm.nih.gov/pubmed/25690419.

Burg, M.B. and J.D. Ferraris, Intracellular organic osmolytes: function and regulation. J Biol Chem, 2008. 283(12): p. 7309-13 https://www.ncbi.nlm.nih.gov/

pubmed/18256030.

Arakawa, T. and S.N. Timasheff, The stabilization of proteins by osmolytes. Biophys J, 1985. 47(3): p. 411-4 https://www.ncbi.nlm.nih.gov/pubmed/3978211.

Roumelioti, M.E., et al., Fluid balance concepts in medicine: Principles and practice. World J Nephrol, 2018. 7(1): p. 1-28 https://www.ncbi.nlm.nih.gov/pubmed/29359117.

Roumelioti, M.E., et al., Principles of quantitative water and electrolyte replacement of losses from osmotic diuresis. Int Urol Nephrol, 2018https://www.ncbi.nlm.nih.gov/pubmed/29511980.

Danziger, J. and M.L. Zeidel, Osmotic homeostasis. Clin J Am Soc Nephrol, 2015. 10(5): p. 852-62 https://www.ncbi.nlm.nih.gov/pubmed/25078421.

Andriantsitohaina, R., et al., Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br J Nutr, 2012. 108(9): p. 1532-49 https://www.ncbi.nlm.nih.gov/pubmed/22935143.

Schini-Kerth, V.B., et al., Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF. Pflugers Arch, 2010. 459(6): p. 853-62 https://www.ncbi.nlm.nih.gov/pubmed/20224869.

Victor, V.M. and M. Rocha, Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des, 2007. 13(8): p. 845-63 https://www.ncbi.nlm.nih.gov/pubmed/17430185.

Testai, L., Flavonoids and mitochondrial pharmacology: A new paradigm for cardioprotection. Life Sci, 2015. 135: p. 68-76 https://www.ncbi.nlm.nih.gov/pubmed/26006042.

Nicolson, G.L., Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. Integr Med (Encinitas), 2014. 13(4): p. 35-43 https://www.ncbi.nlm.nih.gov/pubmed/26770107.

Bhattacharyya, A., et al., Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev, 2014. 94(2): p. 329-54 https://

www.ncbi.nlm.nih.gov/pubmed/24692350.

Buffie, C.G. and E.G. Pamer, Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol, 2013. 13(11): p. 790-801 https://www.ncbi.nlm.nih.gov/pubmed/24096337.

7

Moura, F.A., et al., Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol, 2015. 6: p. 617-39 https://www.ncbi.nlm.nih.gov/pubmed/26520808.

Ozdal, T., et al., The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients, 2016. 8(2): p. 78 https://www.ncbi.nlm.nih.gov/pubmed/26861391.

Valdes, L., et al., The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct, 2015. 6(8): p. 2424-39 https://www.ncbi.nlm.nih.gov/pubmed/26068710.

Shimizu, M., Modulation of intestinal functions by food substances. Nahrung, 1999. 43(3): p. 154-8 https://www.ncbi.nlm.nih.gov/pubmed/10399347.

Peng, C., et al., Biology of ageing and role of dietary antioxidants. Biomed Res Int, 2014. 2014: p. 831841 https://www.ncbi.nlm.nih.gov/pubmed/24804252.

Darvesh, A.S., et al., Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother, 2010. 10(5): p. 729-45 https://www.ncbi.nlm.nih.gov/pubmed/20420493.

Blesa, J., et al., Oxidative stress and Parkinson's disease. Front Neuroanat, 2015. 9: p. 91 https://www.ncbi.nlm.nih.gov/pubmed/26217195.

Huhn, S., et al., Components of a Mediterranean diet and their impact on cognitive functions in aging. Front Aging Neurosci, 2015. 7: p. 132 https://www.ncbi.nlm.nih.gov/pubmed/26217224.

Liu, Z., et al., Role of ROS and Nutritional Antioxidants in Human Diseases. Front Physiol, 2018. 9: p. 477 https://www.ncbi.nlm.nih.gov/pubmed/29867535.

Zhao, B., Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem Res, 2009. 34(4): p. 630-8 https://www.ncbi.nlm.nih.gov/pubmed/19125328.