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Introduction 
There is no question scientific testing shows that a diet full of natural foods is our 
best defense against pathogens. Contained within these plants are 
phytochemicals. One class of phytochemicals are polyphenols. They are a large 
group of heterogeneous compounds characterized by hydroxylated phenyl 
moieties, and are found mostly in plants, including fruits, vegetables, nuts, seeds, 
and cereals, as well as natural nutraceuticals such as SMPL72 fulvic mineral liquid, 
or beverages such as tea, coffee and wine [1]. 


Polyphenols have become an intense focus of research due to their potential 
benefits to health, particularly in relation to the prevention of cancer [2, 3] and 
cardiovascular diseases [4, 5]. 


Their suggested beneficial effects are anticarcinogenic [6, 7], antiatherogenic [8, 9], 
antiulcer [10], antithrombotic [11, 12], anti-inflammatory [13, 14], antiallergenic [15, 
16], anticoagulant [17], immune modulating [18], antimicrobial [19, 20], vasodilatory 
[21], and analgesic activities [22]. 


To achieve these health benefits, polyphenols require in situ processing by the gut 
microbiota to be transformed into a potentially more bioactive, low-molecular-
weight metabolite [23]. Faria et al. (2014) reviewed that total polyphenol absorption 
in the small intestine is relatively low (5%–10%) in comparison to other macro- or 
micronutrients. The remaining 90%–95% of polyphenols transit to the large 
intestinal lumen and accumulate in the millimolar range. From the lumen, together 
with conjugates excreted from bile, they are exposed to the enzymatic activities of 
the gut microbiota [24]. The microbiota that colonize the distal regions of the colon 
represent the highest concentration of microorganisms found in human body, as 
well as the most diverse [25]. It is known that the human gut has an ecosystem of 
around 1013–1014 bacterial cells, an estimate 10 times that of human somatic 
cells [26]. In addition, the aggregate microbial genome (i.e., microbiome) is 
predicted to contain more than three million genes, or 150 times more than human 
genes [27]. 


The reciprocal relationship between polyphenols and gut microbiota may 
contribute to host health benefits. The need to clarify the molecular mechanisms 
underlying the observed prebiotic enrichment of beneficial bacteria and 
antimicrobial activities against gut pathogenic bacteria is apparent [23, 29-33]. 


Commensals residing in the gut may improve health by protecting against 
gastrointestinal disorders and pathogens, processing nutrients, reducing serum 
cholesterol, strengthening intestinal epithelial tight cell junctions, producing 
antibodies, increasing mucus secretion and modulating intestinal immune 
response through cytokine stimulus [34, 35]. 


Furthermore, the gut microbiota bio-transforms polyphenols into metabolites that 
may have greater biological activity than their precursor structures [23]. In short, 
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the gut microbiota is essential for the maintenance of intestinal homeostasis and 
overall optimal human health [28]. 


Gut Health, Inflammation and Immunity  
Gut microbiota (GM) plays several crucial roles in host physiology and influences 
several relevant functions. In more than one respect, it can be said that “ you feed 
your microbiota and it feeds you”[36]. 


GM diversity is affected by diet. Our GM influences metabolic and immune 
functions of the host’s physiology. Consequently, an imbalance of GM, or 
dysbiosis, may be the cause or at least may lead to the progression of various 
pathologies such as infectious diseases, gastrointestinal cancers, inflammatory 
bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate 
target for nutritional interventions to improve health. 


For this reason, phytochemicals, such as polyphenols (e.g. fulvic acids) that can 
influence GM have recently been studied as adjuvants for the treatment of obesity, 
inflammatory diseases and overall immune health. 


Phytochemicals include prebiotics and probiotics, as well as several chemical 
compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. 
The largest group of these comprises polyphenols, which can be subclassified into 
four main groups: 


1. flavonoids (including eight subgroups) 


2. phenolic acids (such as curcumin) 


3. stilbenoids (such as resveratrol) 


4. lignans  

Once nutrients and nutraceuticals (e.g. polyphenols) have been incorporated into 
the body, the gut environment is essential in maintaining homeostasis; in this 
sense, like GM, the surface of the intestinal mucous membrane plays a 
fundamental role in the preservation of homeostasis. Consequently, the correct 
functioning of its permeability is of great importance [36]. 


Several pathologies, as well as susceptibility to metabolic diseases, have been 
linked to alterations in the permeability of the intestinal barrier. Humans possess 
two interacting genomes: their own complete set of DNA and that of the 
microbiome genome (e.g. the entire genome of each of the multitude of microbes 
that colonize our small and large intestine) the majority of which resides in the gut, 
in the layer of mucin glycoproteins (mucus) produced by the cells called goblet 
cells [37]. 
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The microbiome provides products such as vitamins and nutrients to human cells, 
thereby establishing a beneficial ecosystem for host physiology and preventing the 
proliferation of pathogens [38]. Thus, a symbiotic relationship is established 
between both genomes, through the expression of pattern recognition receptors 
(PRRs) that sense the presence of intestinal microbiota, through the microbe-
associated molecular patterns (MAMPs). 


This communication between the two genomes results in the accuracy of the 
mucosal barrier function, by regulating the production of its components: mucus, 
antimicrobial peptides, IgA and IL-22, facilitating homeostasis, and immune health 
[38-40]. Therefore, GM and the human host influence each other by exchanging 
their metabolic active molecules [41], working together, as a hologenome, to 
maintain mutual health [42]. 


Polyphenols and Cytokine Modulation  
Cytokines are important mediator proteins, essential in networking communication 
for the immune system. Cytokines can be produced by lymphocytes 
(lymphokines), or monocytes (monokines) with pro-inflammatory and anti-
inflammatory effects. Cytokines with chemotactic activities are termed 
chemokines. The equilibrium between pro-inflammatory cytokines (IL-1b, IL-2, 
TNFa, Il-6, IL-8, IFN-g . . . ) and anti-inflammatory cytokines (IL-10, IL-4, TGFb) are 
thought to be an important parameter in immune response homeostasis and 
inflammation underlining many disease states [43]. 


In vivo and in vitro studies demonstrate that polyphenols affect macrophages by 
inhibiting multiple key regulators of inflammatory response such as the inhibition of 
TNFa, IL-1b, and IL-6 [44]. Flavonoids, as well, have an important anti-
inflammatory effect by influencing cytokines’ secretion. Several flavonoids are 
found to inhibit the expression of various pro-inflammatory cytokines and 
chemokines like TNFa, IL-1b, IL-6, IL-8, and MCP-1 (monocyte chemoattractant 
protein-1) in multiple cell types such as LPS-activated mouse primary 
macrophages, activated human mast cell line, activated human astrocytes, human 
synovial cells, and human peripheral blood mononuclear cells [45-50]. Modulation 
of inflammatory cytokines is one of many common mechanisms by which 
polyphenols in general exert their immunomodulatory effects. 


Polyphenols, Inflammation, and Modulation of the NFkB Signaling Pathway 
NF-kB or nuclear factor kappa-light-chain-enhancer of activated B cells is a 
complex protein that plays a key role in deoxyribonucleic acid (DNA) transcription, 
cytokine production and cell survival. It controls immune, inflammation, stress, 
proliferation and apoptotic responses of a cell to multiple stimuli [51]. 


The expression of a large number of genes involved in inflammation is controlled 
by NF-kB and the inhibition of NF- kB can be of a great benefit in controlling 
inflammatory conditions [52]. Several polyphenols modulate NF-kB activation and 
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reduce inflammation[53, 54]. For example, genistein or quercetin repress LPS-
induced activation of NF-kB in monocytes and reduces the inflammation by 
inhibiting NF-kB activation upon adenosine monophosphate activated protein 
kinase stimulation in LPS-stimulated macrophages [55, 56]. Flavonoids can 
modulate NF-kB activation cascade at early phases by affecting IKK activation and 
regulation of oxidant levels or at late phases by affecting binding of NF-kB to DNA 
in T-cells [57]. Hydroxytyrosol, and resveratrol inhibit NF-kB activation, and the 
expression of VCAM-1 in LPS-stimulated human umbilical vein endothelial cells 
[58]. 


In summary, polyphenols can modulate NF-kB activation cascade at different 
steps such as by affecting IKK activation and regulating of the oxidant levels or by 
affecting binding of NF-kB to DNA leading to an important anti- inflammatory 
effect responsible for their potential value in treating chronic inflammatory 
conditions (Figure 1). 


Polyphenols, Oxidative Stress, and Inflammation  
Higher production of reactive oxygen species (ROS) is associated with oxidative 
stress and protein oxidation [59]. Subsequently inflammatory molecules and 
different inflammatory signals (i.e., peroxiredoxin2) are triggered by protein 
oxidations [60]. Furthermore, overproduction of ROS can prompt tissue injury that 
initiates the inflammatory process [61-65]. 


Therefore, the classical antioxidant actions of polyphenols undoubtedly contribute 
to their anti-inflammatory roles by interrupting the ROS-inflammation cycle (Figure 
2). Polyphenols are known for their antioxidant activities; they scavenge a wide-
ranging selection of ROS. Polyphenols can scavenge radicals and chelate metal 
ions, for example quercetin chelates iron ion [66]. They also inhibit multiple 
enzymes responsible of ROS generation [67]. In fact, free metal ions, as well as 
highly reactive hydroxyl radical release, is increased by the formation of ROS. 


To the opposite, polyphenols are able to chelate metal ions like Fe2+, Cu2+, and 
free radicals which lead to a reduction of highly oxidizing free radicals in the body 
[68]. Transition metal ions, like Fe+2, Cu2+, Co2+, Ti3+, or Cr5+, results in OH• 
formation from H2O2 [69, 70]. Curcumin is able to chelate transition metal (Cu2+ 
and Fe2+) ions. Alike, EGCG and quercetin chelate Fe2+ (iron ion) [66]. 
Polyphenols like apocynin, resveratrol, and curcumin can inhibit NOX (NADPH 
oxidase) causing a reduction in the generation of O2• during infections 
consecutively in endothelial cells in THP1-monocytes [71-73]. 


Additionally, polyphenols can attenuate the mitochondrial ATP synthesis by 
blocking the mitochondrial respiratory chain and ATPase. As a result, ROS 
production is diminished. Curcumin [74], EGCG [75], phenolic acids [76], capsaicin 
[77], quercetins [78], anthocyanins [78], and resveratrol analogs [79] inhibit 
xanthine oxidase. Thus, they reduce ROS production. 
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Polyphenols affect the activity of cyclooxygenase, lipoxygenase, and NOS (nitric 
oxide synthase) as per found in macrophages [80]. These enzymes are known to 
metabolize arachidonic acid and their inhibition moderates the production of key 
mediators of inflammation (prostaglandins, leukotrienes, and NO . . . ) [80]. 


Polyphenols exert the anti-inflammatory action by different mechanisms: radical 
scavenging, metal chelating, NOX inhibition, tempering the mitochondrial 
respiratory chain, inhibition of certain enzymes involved in ROS production, like 
xanthine oxidase and upregulation of endogenous antioxidant enzymes.


Conclusion 
In conclusion, the vast number of published studies proved the immunomodulatory 
role of polyphenols in vivo and in vitro. Different underlying regulatory mechanisms 
are now well elucidated. These data highlighted here help demonstrate the 
promising role of polyphenols in prevention and therapy of diseases with 
underlining inflammatory conditions, including cancer, neurodegenerative 
diseases, obesity, type II diabetes, and cardiovascular diseases. It is generally 
believed that polyphenol activity is principally located in the gut where their 
immune-protective and anti- inflammatory activities are initiated and subsequently 
ensuring systemic anti-inflammatory effects. Since different polyphenols can have 
multiple intracellular targets, additional data is needed to determine the 
consequences of the interaction or the synergistic effects between multiple 
polyphenolic compounds or polyphenols and commonly used medications. 
Moreover, further in vivo and meta-analysis studies in humans are necessary to 
fully reveal the mechanisms of action of polyphenols in several physiological 
conditions in order to produce important insights into their prophylactic and 
therapeutic uses. 
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