

Coffee & digestive health:

What the science says

Coffee aids digestion

TRUE: Drinking coffee in moderation (3-5 cups per day¹) helps to stimulate the digestive process².

Coffee stimulates the secretion of the digestive hormone gastrin and hydrochloric acid present in gastric juice, both of which are involved in the breakdown of food in the stomach². Coffee also stimulates the secretion of cholecystokinin (CCK), a hormone that increases the production of bile, a fluid that helps to break down fats in the digestive tract².

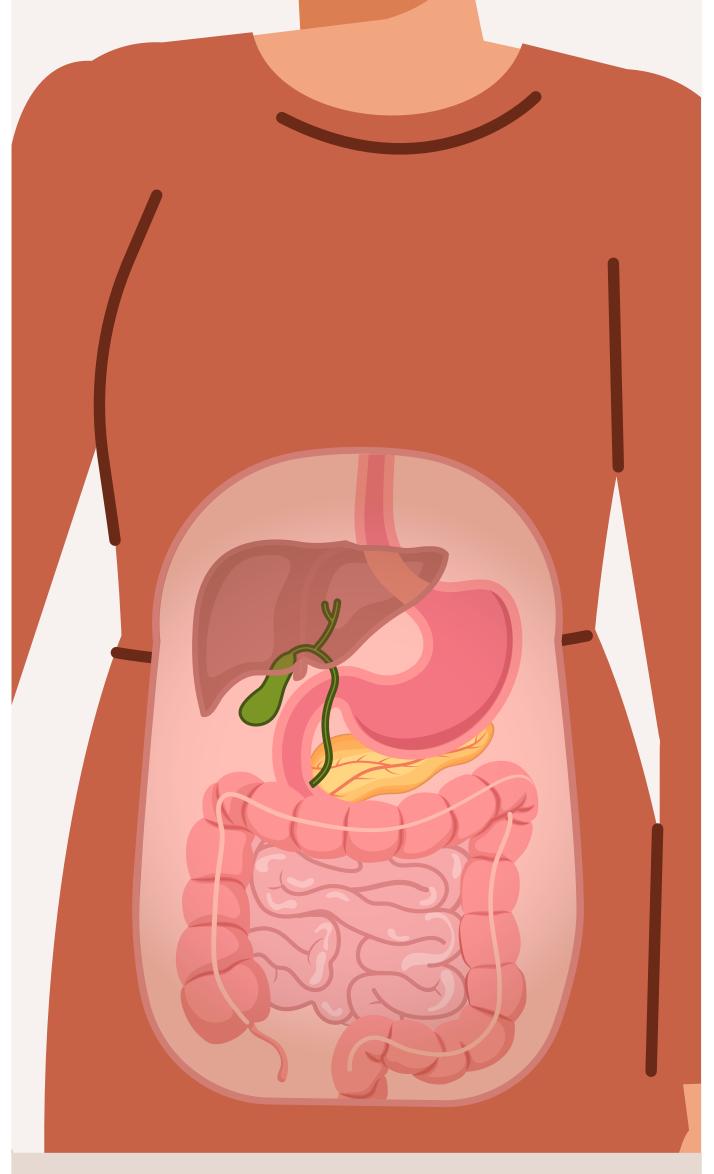
Coffee reduces the risk of constipation

TRUE: Coffee may stimulate motility in the colon to a greater extent than both decaffeinated coffee and water²⁻⁴

Most food and drink stimulate movement in the large intestine, as part of the digestive process^{2,3}. Regular coffee may stimulate motility in the colon as much as cereals, 23% more than decaffeinated coffee or 60% more than a glass of water⁴, and it may be linked to a reduced risk of chronic constipation²⁻⁴.

Coffee triggers heartburn

FALSE: Research has found no significant association between coffee consumption and the risk of heartburn or chronic acid reflux (GORD)⁶⁻⁸


Coffee consumption has been suggested as a possible cause in some cases, however there is no evidence that it affects the symptoms of gastroesophageal reflux disease (GORD)⁶⁻⁸. One study proposed that large meal volume and high calorie content may be more important factors⁷.

Furthermore, science suggests no significant relationship between coffee consumption and the four major upper gastrointestinal disorders (gastric ulcer, duodenal ulcer, reflux esophagitis, and non-erosive reflux disease)⁵.

Coffee is good for gut bacteria

Whilst this is a growing area of research, coffee consumption is generally reported to increase gut microbiota diversity⁹⁻¹¹.

The polyphenols present in coffee can induce positive changes in the composition of the gut microbiota, mainly at the population level of Bifidobacteria, considered to be 'good bacteria'^{3,9-11}. A healthy microflora can help to protect against infections, support the immune system, and contribute to healthy digestion. The role of food and drink consumption on gut microflora is a complex and growing area of research, which will continue to benefit from further studies^{3,9}.

For more information on coffee and digestive health, as well as the latest emerging research in this area, **please visit the ISIC website.**

References

- 1. European Food Safety Authority (EFSA) (2015) Scientific opinion on the safety of caffeine. EFSA Journal, 13(5), 4102.
- 2. Nehlig A. (2022) Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients, 14(2):399.
- 3. Saygili S. et al. (2024) Effects of Coffee on Gut Microbiota and Bowel Functions in Health and Diseases: A Literature Review. Nutrients, 16(18):3155.
- 4. Rao S.S. et al. (1998) Is coffee a colonic stimulant? Eur J Gastroenterl Hepatol10(2):113-8.
- 5. Shimamoto T. et al. (2013) No association of coffee consumption with gastric ulcer, duodenal ulcer, reflux esophagitis, and non-erosive reflux disease: across-sectional study of 8,013 healthy subjects in Japan. PLoS One, 8(6):e65996.
- 6. Kim J. et al. (2014) Association between coffee intake and gastroesophageal reflux disease: a meta-analysis. Dis Esophagus, 27(4):311-7.
- 7. Fox M. et al. (2023) Dietary factors involved in GERD management. Best Pract Res Clin Gastroenterol, 62-63:101826.
- 8. Cheng Y. et al. (2020) Systematic assessment of environmental factors for gastroesophageal reflux disease: An umbrella review of systematic reviews and meta-analyses. Dig Liver Dis, 53(5):566-573.
- 9. Manghi P. et al. (2024) Coffee consumption is associated with intestinal Lawsonibacterasaccharolyticus abundance and prevalence across multiple cohorts. Nat Microbiol, 9:3120–3134.
- 10. Gniechwitz D. et al. (2007) Dietary fiber from coffee beverage: degradation by human fecal microbiota. J Agric Food Chem, 55:6989-96.
- 11. Moco S. et al. (2012) Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res, 11:4781-4790.