

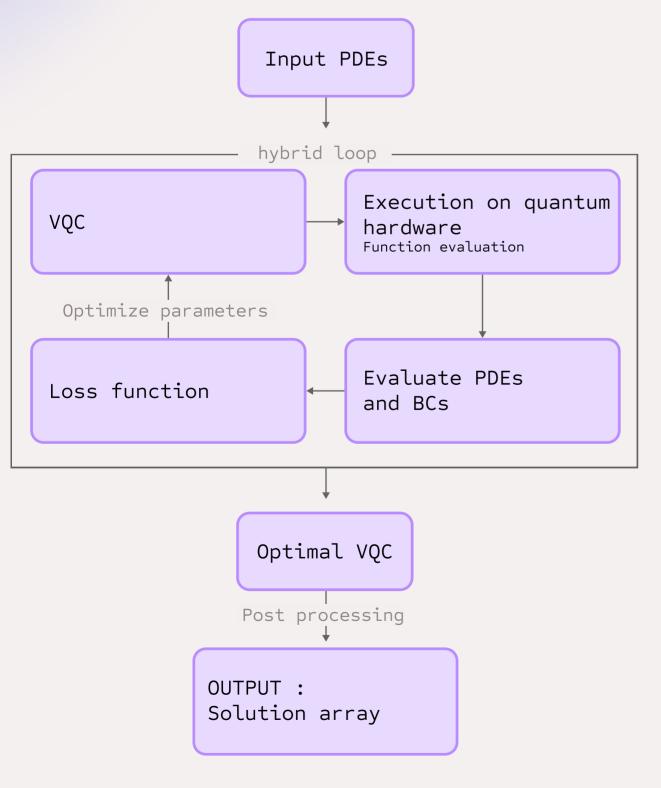
The Qiskit Function: QUICK-PDE - The Quantum Multiphysics Partial Differential Equation (PDE) Solver

Utility

The Qiskit function allows developers, simulation engineers, and researchers to easily solve Partial Differential Equations (PDEs) modeling multiphysics phenomena on IBM Quantum computers.

2 Objective

Paving the way for practical applications in industrial simulation. This is a first step toward multiphysics simulations relevant to industry.


3 Flexibility

Allows the user to adjust a wide range of parameters, including those related to quantum computation (number of qubits, circuit depth, initialization strategy) and those related to physical simulation (initial flow, material parameters).

Technology & Advantages

H-DES is a hybrid (classical/quantum) **Variational Quantum Algorithm (VQA)**. It translates the PDE solving problem into an optimization problem.

The function finds the solutions to the PDEs through a **spectral decomposition** that leverages the expressiveness of quantum computing. The solutions are encoded as linear combinations of orthogonal functions.

Precision

Thanks to a clever encoding of the solution and an optimized quantum measurement strategy, the algorithm can achieve high precision with a limited number of qubits.

Scalability

The algorithm has scalability properties that allow it to provide satisfactory solutions even as the complexity of the differential equations increases: order of derivatives, dimension (number of variables), number of equations, coupling, nonlinearity, discontinuities, turbulence, and more.

Versatility

The H-DES algorithm is designed as a universal partial differential equation solver, capable of being applied to various sectors and physical phenomena. It can handle systems of linear, nonlinear, ordinary, partial, integro-differential, stochastic, and other types of differential equations.

Useful links :

- → the function : https://quantum.cloud.ibm.com/docs/fr/guides/colibritd-pde

 → the catalogue : https://guantum.cloud.ibm.com/functions
- → the catalogue : https://quantum.cloud.ibm.com/functions
 → the whitepapper : https://docsend.com/v/z/rzy/colibritd
- → the whitepapper : https://docsend.com/v/z4rzv/colibritd-whitepaper-results

