

Greenhouse Gases in the XDC Model

Specialist: Dr. Elnaz Roshan (Head of Model Development)

Competence Jour Fixe | XDC Direct Access

Relevant Case Resources in the XDC Academy

[Your Resources](#) | Relevance | Theoretical Background | The XDC Solution | Takeaways

Learning about our XDC Model can be supported by the following resource in our digital XDC Academy:

Videokurse

[Alle Kurse](#)

XDC Grundlagen
Dr. Sebastian Müller, LL.M.
Klimawirkung als Entscheidungskriterium für den Einkauf

Einführung in den XDC Climate Impact Report
Hannah Helmke

XDC vs. SBT - Gemeinsamkeiten und Unterschiede bei der Berechnung der Klimawirkung
Hannah Helmke

Klimawirkung und Pariskonformität - Eine Einführung in das XDC Modell
Hannah Helmke, Gründerin & CEO

[XDC Academy \(right-basedonscience.de\)](#)

The Company

right on target 1.5°C

Right° provides transparency on the climate impact of economic activities - plain & simple in °C. Our software and metrics enable stakeholders from the real economy, finance, and real estate to plot pathways to 1.5°C alignment.

Our pioneering X-Degree Compatibility (XDC) Model creates science-based 'temperature alignment' metrics that correspond directly to the goal of the Paris Agreement. That means, we guide your climate-related decisions with the best, most relevant science and data.

Selected Clients: Real Economy

Selected Clients: Finance

Selected Clients: Real Estate

right° Presence in the Media

Extraordinary Attention for our Systematic Approach

Business Insider

Calculate the Climate Impact of a Business Model

“It's not about making companies look bad, but (...) calculating how strongly the respective business model influences the climate.”

ZDF

Consider Emissions in Relation to Solutions

“The new analysis model looks at CO₂ emissions in relation to possible solutions for the 1.5 degree target.”

brand eins

Measure Climate Impact According to the Paris Agreement

“The Frankfurt-based start-up right° enables companies to measure their climate impact according to the logic of the Paris Agreement: in degrees Celsius.”

FAZ

Transform Climate Issues into a Competitive Advantage

“If approached correctly, Europe's credibility on climate issues could become a competitive advantage for companies.”

Handelsblatt

CO₂ Emissions Shouldn't be the Only Indicator

“The carbon footprint alone (cannot) be a yardstick for assessing sustainability efforts.”

Die Zeit

The Sector Must Be Considered in the Climate Impact

“When evaluating the respective climate efforts, it is taken into account that not all sectors are able to reduce emissions to the same extent.”

Nominierungen & Preise

Extraordinary Attention for our Systematic Approach

Digital Female Leader 2023

Menschen des Jahres 2023

Female Founders Award 2023

Female Finance Award 2023

Hannah Helmke
Right. Based on Science GmbH

Next Economy Award | Change 2020

Portfolio Institutionell | Vordenker Award 2022

Stage Presence

Market Access through Large Stages

SEPT 2023	Handelsblatt Tagung ESG-Reporting und -Steuerung
	Maschinenraum Momentum
	ZEIT WISSEN Kongress
JUL. 2023	Forum Bellevue zur Transformation der Gesellschaft
JUN. 2023	Deutscher Immobilientag (IVD)
	Konferenz ESG & Holzbau
MÄR. 2023	Süddeutsche Zeitung Nachhaltigkeitskongress
	Fachtagung Digitalisierung (VDW)

XDC Solutions

Our Model and Software

Software Solutions by right°

Your Resources | Relevance | Theoretical Background | The XDC Solution | Takeaways

1

XDС Climate Impact Report: Status Quo.

Understand where your customer stands today.
Help them grasp the 1.5°C ambition and
develop a vision.

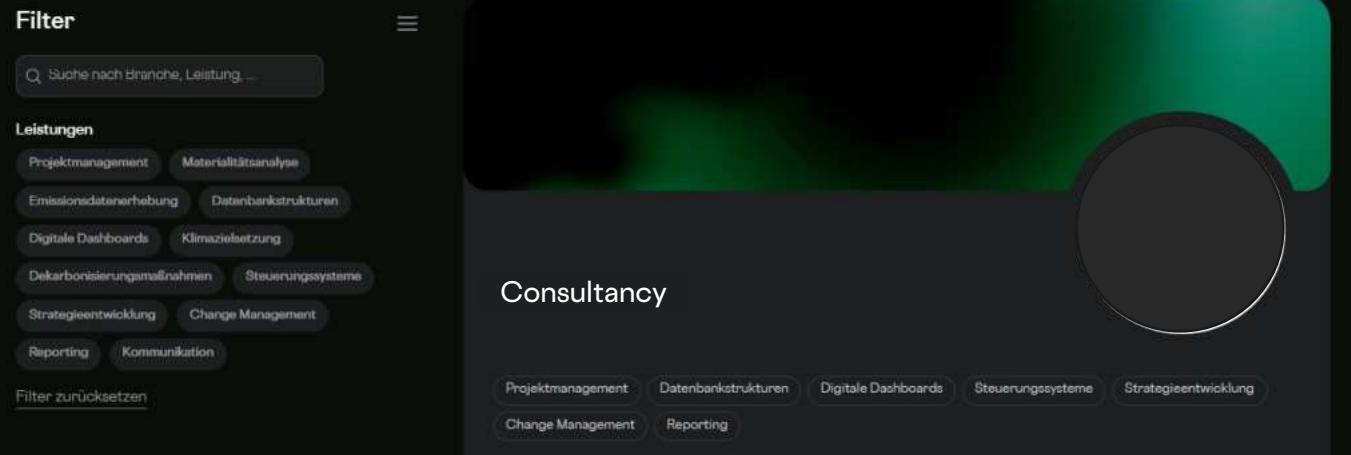
2

XDС Scenario Explorer: Scenario Analysis.

Apply your know-how of the XDC scenario
analysis to develop a Paris-compliant strategy
for your client.

3

XDС Public API: Integration.



Develop a verifiable controlling model
for your client's transition pathway by
making complexity manageable.

The XDC Member Platform enables a completely **new** collaboration model between right° as an innovative climate tech company and **established consulting experts** to offer strong solutions.

Transitionspioniere in den besten Händen.

Nutzen Sie unsere einfachen Such- und Filterfunktionen, um den richtigen Berater für Ihre Transition zu finden.

The screenshot shows a user interface for a member portal. At the top, there is a search bar labeled 'Filter' with the placeholder 'Suche nach Branche, Leistung, ...'. Below the search bar is a grid of service categories, each with a small icon and a label: 'Leistungen' (Projektmanagement, Materialitätsanalyse, Emissionsdatenerhebung, Datenbankstrukturen, Digitale Dashboards, Klimazielsetzung, Dekarbonisierungsmaßnahmen, Steuerungssysteme, Strategieentwicklung, Change Management, Reporting, Kommunikation), 'Consultancy' (Projektmanagement, Datenbankstrukturen, Digitale Dashboards, Steuerungssysteme, Strategieentwicklung, Change Management, Reporting), and 'Reporting' (Projektmanagement, Datenbankstrukturen, Digitale Dashboards, Steuerungssysteme, Strategieentwicklung, Change Management, Reporting). A large, dark green circular graphic is overlaid on the right side of the interface.

XDC Direct Access Member Portal (right-basedonscience.de)

The XDC Academy is a **Toolbox** for XDC **users** to acquire knowledge and skills about the right° XDC model and learn to tackle climate-related challenges directly.

Ressourcen

Glossar

Finden Sie Definitionen zu wiederkehrenden Begrifflichkeiten, rund um right°, die XDC und unsere Produkte.

right° Brand Hub

Finden Sie Ressourcen bezüglich unserer Corporate Identity, wie Logos und markenspezifische Farbwerte sowie ein Tool zur Erstellung der XDC-Abbildungen

Videokurse

Dr. Sebastian Müller, LL.M.

Klimawirkung als Entscheidungskriterium für den Einkauf

Durch die Quantifizierung der Klimaziele und die Berechnung des Szenario-XDC lässt sich die Klimawirkung von Herstellern vergleichen und so ein echtes Entscheidungskriterium für den Einkauf schaffen.

Hannah Helmke

Einführung in den XDC Climate Impact Report

Der XDC Climate Impact Report ist das Einstiegsprodukt von right° und zeigt die Klimawirkung des Unternehmens im Status Quo sowie unter unternehmensspezifischen Szenarien.

Hannah Helmke

XDC vs. SBT - Gemeinsamkeiten und Unterschiede bei der Berechnung der Klimawirkung

In diesem Video geht es um die Gemeinsamkeiten und Unterschiede bei der Berechnung der Klimawirkung mit dem XDC Modell und den Methoden der Science Based Targets Initiative.

[Alle Kurse](#)

Understanding the Relevance GHGs in the XDC Model

Relevance of Competency: Understanding GHGs & Climate Change

Your Resources | **Relevance** | Theoretical Background | The XDC Solution | Takeaways

Aspiration

Fulfill desire in **understanding**
the fundamental scientific
background of the XDC Model

Relevance

Gain confidence in measuring and
steering climate impacts and
strategic actions using the XDC
Model.

The XDC Solution

The XDC Model **integrates a**
scientifically-validated,
open-source, multi-gas climate
model with full transparency.

Relevance of Competency: Understanding GHGs & Climate Change

Your Resources | **Relevance** | Theoretical Background | The XDC Solution | Takeaways

Aspiration

Fulfill desire in **understanding the fundamental scientific background** of the XDC Model

Relevance

Gain **confidence in measuring and steering climate impacts and actions** using the XDC Model.

The XDC Solution

The XDC Model **integrates a scientifically-validated, open-source, multi-gas climate model** with full transparency.

Relevance of Competency: Understanding GHGs & Climate Change

Your Resources | **Relevance** | Theoretical Background | The XDC Solution | Takeaways

Aspiration

Fulfill desire in **understanding the fundamental scientific background** of the XDC Model

Relevance

Gain **confidence in measuring and steering climate impacts and strategic actions** using the XDC Model.

The XDC Solution

The XDC Model **integrates a scientifically-validated, open-source, multi-gas climate model** with full transparency.

Understanding the Theoretical Background

Climate Change and the XDC Model

Theoretical Background: Introducing Climate Change

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

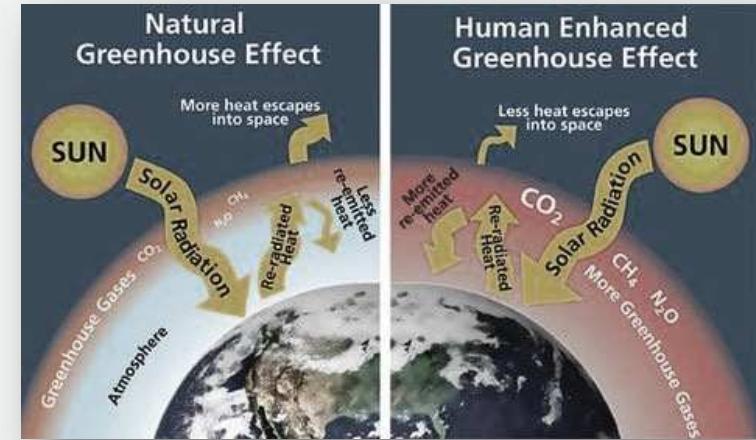
What is weather?

Weather is the state of the atmosphere at a particular place during a short period of time.

What is climate?

Climate is defined as an area's long-term weather patterns.

What is climate change?


Climate change means altered patterns.

Theoretical Background: Introducing Climate Change

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

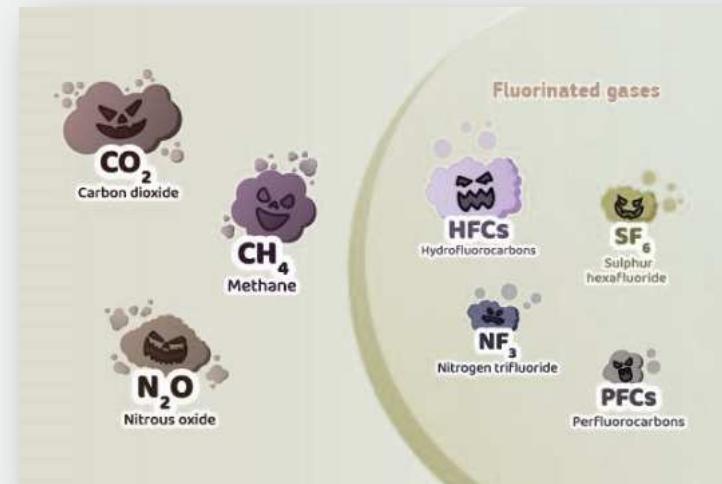
Components of Climate Change

- › **Infrared radiation** is heat energy, which is **emitted from all objects** that have a temperature **above** - 273.16 °C.
- › **GHGs increase the amount of heat** in the atmosphere.
- › This **cumulative increase in the amount of heat** in the atmosphere **raises the average air temperature**, which is known as global warming.

Theoretical Background: Contributors to Climate Change

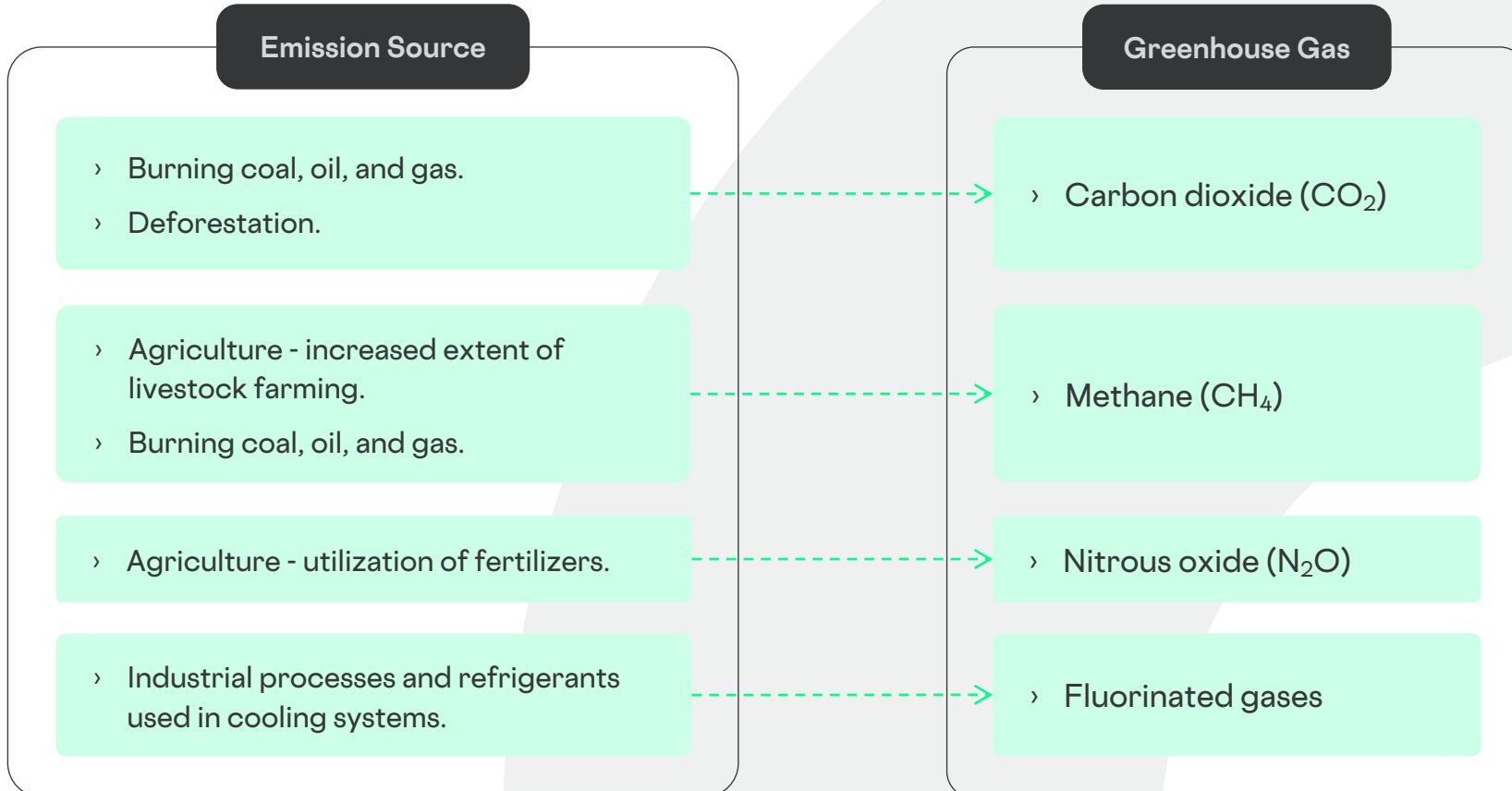
Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

GHG


Gases that absorb infrared radiations include, but are not limited to the following compounds:

- › Carbon dioxide (CO₂)
- › Methane (CH₄)
- › Nitrous oxide (N₂O)
- › Fluorinated gases

Non-GHG


Gases that can't absorb infrared radiations include but are not limited to the following compound:

- › Sulfur dioxide (SO₂)

Theoretical Background: Contributors to Climate Change

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

Impact of GHGs on Climate Change

Implications for Abatement Strategies

The Impact of GHGs on Global Climate

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

The Impact of GHGs on Global Climate: Persistance

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

1 Persistance

The persistance of a GHG in the Earth's atmosphere, which is measured in number of years.

Long-lived
GHGs

Short-lived
GHGs

	Lifetime (yr)	Impacts
Carbon dioxide (CO ₂)	300 - 1000 (NASA)	<ul style="list-style-type: none">› Long-term warming› Ocean acidification
Nitrous oxide (N ₂ O)	109	<ul style="list-style-type: none">› Long-term warming› Ozone depletion
Methane (CH ₄)	11.8	<ul style="list-style-type: none">› Near-term warming
Hydrofluorocarbons (HFCs)*	< 15	<ul style="list-style-type: none">› Near-term warming

Source: IPCC AR6 WGI (2021) Table 7.SMS.7

*Most HFCs have a shorter lifetime, however, long-lived HFCs also exist.

The Impact of GHGs on Global Climate: Absorption

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

2

Absorption

The ability of a GHG to absorb available infrared radiation as emitted from the Earth's surface.

- › Global warming potential (GWP) is a measure of **how much energy the emissions of 1t of a gas will absorb over e.g. 100 years**, relative to the emissions of 1t of CO₂.
- › Gases with a **higher GWP absorb more energy**, per ton emitted.
- › **Non-CO₂ gases** might have a lower lifetime than CO₂, but they **are more potent in warming** the Earth.

Global Warming Potential (GWP) 100

Carbon dioxide (CO ₂)	1
Nitrous oxide (N ₂ O)	273
Methane (CH ₄)	27,9
Hydrofluorocarbons (HFCs)	up to 14600*

$$CO_{2e} = GWP100 \times GHG$$

IPCC AR6 WGI (2021)

*HFCs can reach this potential but might also remain at lower levels.

Understanding the Role: CO₂ vs. Non-CO₂

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

Contribution to Global Warming

Why are we talking about CO₂?

- › CO₂ is the most important climate forcer.
- › CO₂ has contributed 0,8 °C to historical warming thus far. (*IPCC AR6 Working Group I Report*)

Which role do non-CO₂ gases play?

- › Non-CO₂ gases have also contributed to historical warming .
- › Non-CO₂ forcing agents influence the carbon cycle as they impact temperature, which affects the efficiency of carbon sinks.

Understanding the Role: CO₂ vs. Non-CO₂

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

Contribution to Global Warming

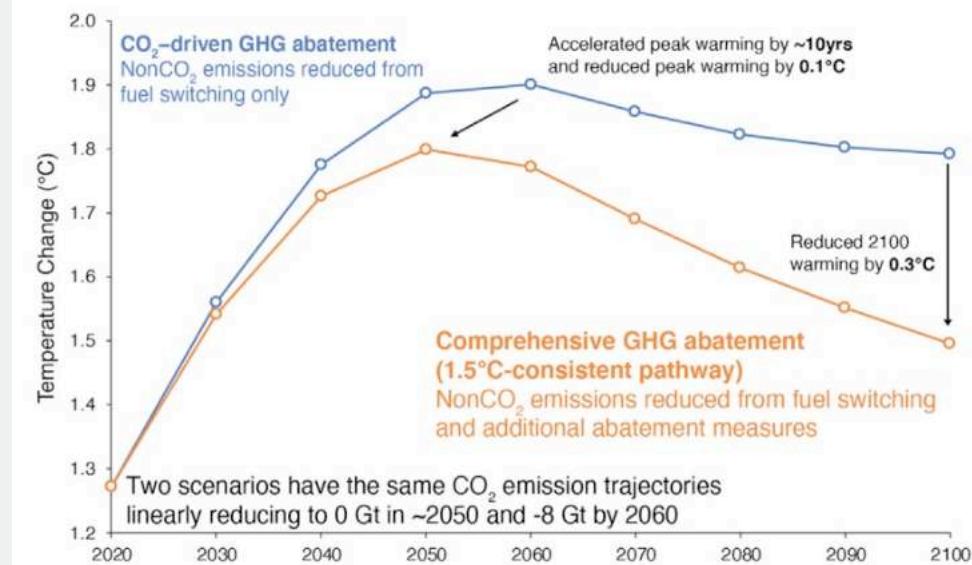
Why are we talking about

- › CO₂ is the most important climate forcer.
- › CO₂ has contributed 0,8 °C to historical warming thus far.

Which role do non-CO₂ gases

- › Non-CO₂ gases have also contributed to historical warming.
- › Non-CO₂ forcing agents influence the carbon cycle as they affect the efficiency of carbon sinks.

**Reduction
Potential**


Strong efforts to reduce non-CO₂ emissions will complement efforts to reduce CO₂ emissions in limiting global warming.

Abatement Strategies: CO₂-only vs Comprehensive GHGs

Your Resources | Relevance | **Theoretical Background** | The XDC Solution | Takeaways

Comprehensive Abatement Strategies

- › Potential for a **reduction i.e. earlier onset of peak warming**.
- › Could enable a **reduction in end-of-century warming**.
- › Used across different sectors, they might **facilitate the achievement of the Paris-aligned 1,5 °C target** with lower temperature overshoot.

Ou, Y. et. al.(2022) <https://doi.org/10.1016/j.oneear.2022.11.012>

The XDC Solution

**Ensuring Appropriate Understanding of
GHG and Climate Change in the XDC Model**

Understanding the Difference: CO_2 vs. CO_{2e} & non- CO_2

Your Resources | Relevance | Theoretical Background | [The XDC Solution](#) | Takeaways

CO_2 vs. CO_{2e}

What is the difference of CO_2 vs. $\text{CO}_{2e}/\text{CO}_{2\text{eq}}/\text{CO}_2\text{equivalent}$?

CO_2 means that only CO_2 emissions are counted.

CO_{2e} accounts for the effect of different GHGs on the climate by converting other sources of emissions to the equivalent amount of CO_2 counted.

Solution

Which climate data does the XDC Model use?

To ensure consistency with sector data, emissions of the entity should be in CO_{2e} .

Use of CO₂e for GHGs in the XDC Model

Your Resources | Relevance | Theoretical Background | **The XDC Solution** | Takeaways

1

Prompt

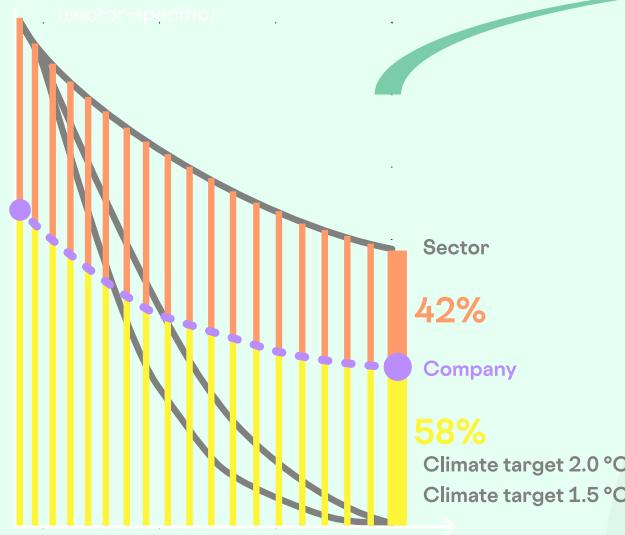
The X-Degree Compatibility (XDC) Model answers the following question...

...how much global warming would occur if the entire world had the same climate performance as the entity in question?

2

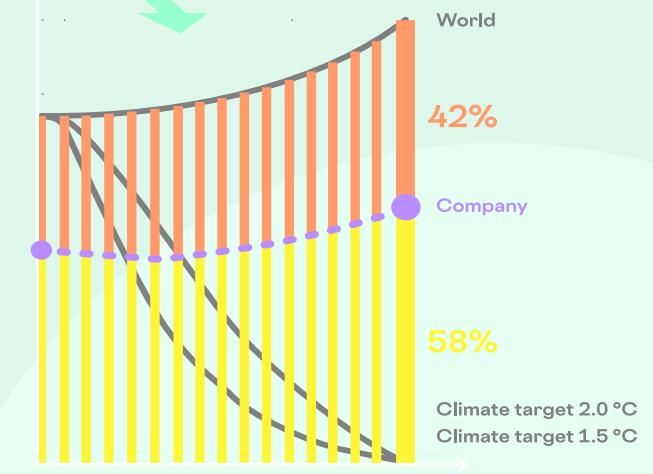
Approach

The X-Degree Compatibility (XDC) Model calculates the climate performance...


...of an entity based on emissions data as given in CO₂e due to the lack of existing data for the remaining greenhouse gases.

XDC Model: Calculating Climate Performance

Your Resources | Relevance | Theoretical Background | **The XDC Solution** | Takeaways


1.

For each year until 2100, we calculate the **climate performance** of the entity relative to the benchmarks.

2.

We map this **performance** to the global scale to calculate the emissions that would reach the atmosphere if the whole world would show the same climate performance **as the entity** across the same timeframe.

Inclusion of non-CO₂ GHGs in the XDC Model

Your Resources | Relevance | Theoretical Background | **The XDC Solution** | Takeaways

1

FaIR Model

The X-Degree Compatibility Model
calculates XDCs based on...

...the climate model FaIR, which takes 39
individual GHGs and other climate forces
into consideration as its main input.

2

XDC Model

Temperature (°C) values resulting from the
multi-gas model are more accurate than
those retrieved from a CO₂-only model.

If emission data for additional GHGs becomes
available, the XDC model is compatible to use
gas-specific performance.

Our Guide: Explaining GHGs in the XDC Model

Your Resources | Relevance | Theoretical Background | [The XDC Solution](#) | Takeaways

Context: What is the scientific basis of the XDC model?

1

The XDC Model draws on the *Finite Amplitude Impulse Response* (FaIR) climate model to calculate global warming and determine the corresponding XDCs.

2

The FaIR model includes a sufficient level of complexity, ...

2a

It is less computationally expensive compared to the complex earth system models:

- › It can emulate the temperature of such models.
- › It is ideal for large probabilistic ensemble and quantifying uncertainty.

2b

FaIR input includes the emission data for 39 gases whilst also considering their individual lifetimes as well as the interaction between gases and different Earth system feedbacks:

- › Calculates concentration of GHGs.
- › Calculates effective radiative forcing from GHGs, aerosols, ozone, and other agents.
- › Considers different timescales in carbon uptake by geological processes, the deep ocean, the biosphere, and the ocean mixed layer.

Takeaways

**Key Considerations in the Execution
of Reduction Strategies for Clients**

Understanding GHGs in the XDC Model

Your Resources | Relevance | Theoretical Background | The XDC Solution | **Takeaways**

Aspiration

- › Cultivate a **deeper understanding of the fundamental scientific background** of the XDC Model.

Takeaways

- › The XDC metric ($^{\circ}\text{C}$) is **calculated integrating a climate model**, which is scientifically validated.
- › **CO₂** is widely reported **as the crucial anthropogenic GHG** as it currently **accounts for the greatest portion** of the emissions/warming associated with human activities **and can remain in the Earth's atmosphere for centuries**.
- › **Temperature** ($^{\circ}\text{C}$) over the coming decades **can also be strongly affected by** non-CO₂ climate pollutants.
- › The **more detailed emissions data** we have (including non-CO₂ gases) **at company and sector level, the more representative the global mean temperature** ($^{\circ}\text{C}$) becomes in climate impact analyses.

Best Practice

- › Explain the **scientific difference between CO₂ and CO_{2e}** during project conversations and result presentations.
- › Practice **including both CO₂ and non-CO₂ gas-related reductions in climate strategy development** to assure reaching the 1.5 $^{\circ}\text{C}$ goal whilst taking the varying climate impacts of different greenhouse gases into consideration.

Q&A

to support your understanding

Contact

Hannah Helmke

h.helmke@right-basedonscience.de
+49 69 979 83452

<https://right-basedonscience.de>
<https://right-basedonscience.de/en/rightontarget>

right. based on science GmbH
c/o Spaces

Große Gallusstraße 16-18, 1. OG
60312 Frankfurt am Main
Deutschland

