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Executive Summary 4

Climate risk is increasingly understood as a major threat to the stability of the financial system. It is unique in both its
potential scale (recent estimates say the impacts of climate change could shrink the global economy by one fifth - Swiss Re
Institute, 2021) and its inherent uncertainties and non-linearities. As public awareness and regulatory scrutiny rise, financial
institutions face multifaceted pressure to progress on the task of managing climate risks. Integrating climate risks into
existing risk management systems and organisations has evolved from a fringe issue addressed by a small number of front-
running institutions to a sector-wide task (e.g., European Central Bank, 2022). One of the biggest challenges in determining the
best methodologies and models to measure climate risk is the quantification of uncertainties. This is a crucial step toward

one day reliably assessing the scope and impact of these risks —and pricing them accordingly.

While physical risks (caused by, e.g., acute extreme weather events or permanent shifts in weather patterns and sea levels)
are already beginning to materialise today, it is transition risks that are expected to dominate in their financial impact in the
short and medium term. These include policy and legal actions, technology changes, market responses, and reputational
considerations as part of societal efforts to mitigate and adapt to global warming (TCFD, 2017; TCFD, 2021b). With this in mind,
a company’s or portfolio’s own contribution to climate change, i.e., its climate impact, is a significant and material factor in

climate risk assessment.

Among the available methodologies to measure climate impact, so-called ‘temperature alignment’ (TA) or ‘implied
temperature rise’ (ITR) approaches (TCFD, 2021a) are moving to the forefront. TA tools allow investors to benchmark the
greenhouse gas (GHG) emission trajectory of an entity or a portfolio against normative decarbonisation pathways with

the result expressed in expected global temperature rise (Helmke et al., 2020; TCFD, 2021a). One such methodology is the
X-Degree Compatibility (XDC) Model, developed by right. based on science GmbH. The model calculates the temperature
alignment of portfolios as well as single securities from various asset classes (listed equity, private equity, corporate debt,
sovereign bonds, and real estate), centring on the question: “How much global warming could be expected, if the world

exhibited the same climate performance as the entity in question?”

Making the XDC metric useful to and applicable in risk management processes will require reliable quantification of the
inherent uncertainties. One source of these uncertainties lies in the conversion of emissions to temperature. For this, the
XDC Model draws on the Finite Amplitude Impulse Response (FalR) climate model (Leach et al., 2021; Smith et al. 2018; Millar
etal., 2017). As a first step to investigating the various sources of uncertainty in XDC Model results, this paper first explores

parametric uncertainty quantification for the FalR Model.

We apply the Markov Chain Monte Carlo (MCMC) method, which is also commonly adopted for uncertainty quantification
of financial risk measures (Chib, Nardari, and Shephard, 2002; Raggi and Bordignon, 2006), in combination with the Delayed
Rejection Adaptive Metropolis (DRAM) algorithm (Haario et al. 2001, 2006).

We select two scenarios to evaluate the validity of the results:
(e} Emissions from Representative Concentration Pathway (RCP) 8.5, a global emissions scenario
according to which the radiative forcing will reach 8.5W/m2 by the end of the century. This can be

considered a business-as-usual scenario with high baseline emissions.

o Emissions of a sample company from the chemicals sector. Starting from 2017 as the base year, the

emissions are assumed to grow according to a business-as-usual scenario until the target year.




These two scenarios were chosen because the XDC Model aims to provide an entity-specific perspective which enables

both comparability among assets as well as steering. This is achieved by mapping emissions from one single entity, such as a
company, to the world. However, the resulting upscaled global emissions may be exceptionally high (imagine the entire world
emitting greenhouse gases at the rate of a chemical plant). Therefore, the validity of the XDC Model calculations through FalR

must be tested both for a ‘moderate’ scenario and for extreme emissions and temperatures.

Emission data from both scenarios are provided as input to 5,000 MCMC simulations, in which the FalR model is used to
visualize the temperature evolution according to various parameter samples. The calculations provide a minimum and
maximum temperature value for each pointin time, yielding a temperature bandwidth. For the timeframe from 1850-2005, the
results of these model simulations show a good fit to observed temperatures, serving as a calibration (see Fig. 1). The further
the projections move into the future, the wider the span between minimum and maximum becomes (see Fig. 2 and Fig. 4).
This increased range in possible temperatures shows that the MCMC simulation results can capture the uncertainties of a

forward-looking methodology.

For the RCP 8.5 scenario, the interval of possible temperatures in the target year 2050 is [2.3° C, 2.6° C] with a mean of 2.4° C.
Viewed as a histogram (see Fig. 3), it is evident that the distribution is markedly skewed towards higher temperatures, showing

that more parameter combinations result in an estimate above the mean than below it.

The same is true for the second scenario for a chemicals company: Since there is a much larger quantity of emissions in
this scenario, the estimated temperature increase is about twice as high. The temperature interval in the target year 2050
is [3.8° C; 4.9° C] with a mean of 4.3° C. Here, too, the distribution of values is skewed towards the higher end of the range

(see Fig.5).

The implication here for risk managers would be to apply more conservative assessments, as companies may need to reduce
emissions further than their decarbonisation target pathway might indicate. More importantly, this investigation shows

that the uncertainties arising from the conversion of emissions to degrees Celsius through the FalR Model can be reliably
quantified to enhance the transparency of the metric. Further investigations into other sources of uncertainty within the
model, such as the definition of sectors, input data, further model parameters (outside the climate-related elements), and
scenario uncertainty will be needed. Finally, model uncertainty with regard to the underlying climate model will also need to

be quantified.

Addressing these points will contribute to providing richer and more robust information to practitioners, which is vital to
allowing business leaders to identify and implement effective decarbonisation measures, while also enabling financial
actors to make sound choices on where to direct capital and how to both manage and price their climate risk. Underlying
methodologies must be sufficiently reliable, broadly applicable across asset classes, and scalable, while eschewing
oversimplification. Positioned at the intersection of financial decision making and climate science, TA approaches like the
XDC Model can promote better understanding of the effects of business activities and assets on climate change and global

temperature rise.

Evaluating TA approaches with concepts and frameworks already familiar to financial institutions, such as MCMC (Chib,
Nardari, and Shephard, 2002; Asai, McAleer, and Yu, 2006), facilitates the integration of climate risks into organisations

struggling with limited resources and capabilities for addressing the daunting task of managing climate risks.

The unprecedented uncertainties that climate change brings with it will not be resolved by any model or metric. However,
providing clarity and transparency on their extent, their sources, and their impact on results is crucial to creating a metric
that is suitable for practical use and integration into risk management processes. The work presented here, as well as further

collaborative investigations between business, finance, and academia, will bring us closer to this aim —degree by degree.




Introduction

During the 2008 Global Financial Crisis, financial institutions
were pushed to the brink of collapse and temporarily unable
to adequately assess and manage their risk exposure, owing
to their use of oversimplified measures and models about
the behaviour of housing and mortgage markets (Nickerson
and Griffin, 2017). In the space of two years, that crisis sent
global GDP plummeting from +4.4 % in 2007 to-1.3 % in 2009
(World Bank, 2022). What followed was a global recession, the
Euro crisis, and food shortages in several developing nations,
to name just a few consequences. However, as disastrous

as this was, it is dwarfed by the potential economic effects
from increasing atmospheric greenhouse gas (GHG)
concentration and rising global temperatures, which could
cause the global economy to shrink by almost one fifth
(Swiss Re Institute, 2021). Within financial risk management,
one of the key lessons drawn from the 2008 crisis is the
need for uncertainty quantification (UQ) for risk measures
and models (Moshirian, 2011; Chen, Flood, and Sowers, 2017).
Given the potentially crippling effects of climate change

on the global financial —as well as planetary — system, the
urgent need to reliably assess the associated financial risks,
and therefore to also quantify inherent uncertainties could

not be clearer.

Putting a Price on Climate Risk

The Task-Force on Climate-Related Financial Disclosures
(TCFD) divides climate risk into two categories: Physical risks,
resulting from ‘chronic’ changes in weather, precipitation
patterns, or rising sea levels, as well as ‘acute’ events such

as floods, wildfires, droughts, or heatwaves. In contrast,

transition risk refers to asset revaluation occurrences due

to societal and regulatory efforts to limit global warming,
including policy and legal actions, technology changes,
market responses, and reputational considerations (TCFD,
2017; TCFD, 2021b). The contribution of a company or
portfolio to climate change is a significant and material
factor in climate risk assessment. While both risk types are
interdependent, transition risks are expected to dominate in
the short and medium term, coming with deep uncertainties
about their exact timing and magnitude (Gambhir et al.,
2022). Regulators and banking institutions recognise the
immense challenges in managing transition risks and are
striving for methodological guidance and best practices for
risk management (TCFD, 2021a).

The German banking regulator BaFin guides banking
institutions to integrate sustainability risks, including
climate and related reputational risks, into existing risk
management frameworks and risk categories (BaFin, 2019).
In addition, recently published reports and guidelines

from the Basel Committee on Banking Supervision and the
European Banking Authority (EBA) highlight the necessity
of science-based quantitative risk measures for effectively
measuring, managing, and communicating transition risks
(Basel Committee on Banking Supervision, 2021; EBA, 2021).
Useful climate risk metrics must be both quantitative

and seamlessly integrated into existing risk management
practices and frameworks of the financial sector. A metric
that satisfies both aspects would allow bank risk managers
to work toward putting a price tag on climate risks and
integrating this risk type into existing asset pricing and risk

models.



Temperature Alignment
for Risk Management

Among the available methodologies to measure climate
impact, so-called ‘temperature alignment’ (TA) or ‘implied
temperature rise’ (ITR) approaches (TCFD, 2021a) are moving
to the forefront. TA tools allow investors to benchmark the
GHG emission trajectory of an entity or a portfolio against
normative decarbonisation pathways with the result
expressed in expected global temperature rise (Helmke et
al.,2020; TCFD, 2021a). Regulatory bodies and standard-
setting institutions recognise temperature alignment
metrics as a methodological approach for financial
institutions to evaluate and manage climate risks (EBA, 2021).
On a global level, the TCFD's Portfolio Alignment Team, in a
recently published report, suggests to financial institutions
the deliberate use of TA methodologies, particularly in

cases where the necessity for insights about the degree of
alignment or misalignment of a portfolio to the goals of the
Paris Climate Agreement is required or where there is a need
for an effective climate performance comparison of different
investing strategies (TCFD, 2021a). These recommendations
were also welcomed by the United Nations Environment
Programme - Finance Initiative (UNEP Fl), a strategic public-
private partnership that comprises 400 global financial
institutions (UNEP FI, 2021).

One such methodology is the X-Degree Compatibility (XDC)
Model developed by right. based on science GmbH. The XDC
Model calculates the temperature alignment of portfolios as
well as single securities from various asset classes (listed
equity, private equity, corporate debt, sovereign bonds, and
real estate), centring on the question: “How much global
warming could be expected, if the world exhibited the same
climate performance as the entity in question?” By scaling

from a company or asset to the world, the XDC Model is

geared towards understanding that single entity’s climate
impact, its alignment to the Paris Agreement goal, as well

as assessing its exposure to inside-out climate risks at

a preliminary stage. It is not designed to predict realistic
planetary warming scenarios, but rather extrapolated
results, to enable risk management and steering at a
company- or portfolio-level. To calculate this ‘extrapolated
warming effect’, the XDC Model draws on a climate model,
the Finite Amplitude Impulse Response (FalR) Model (Leach
et al.,2021; Smith et al. 2018; Millar et al., 2017). As a first step
to investigating the various sources of uncertainty in XDC
Model results, this paper explores parametric uncertainty
quantification for the FalR Model. Other analyses on these
uncertainties have been conducted (Leach et al., 2021; Smith
et al., 2018), which form the foundation of the work presented
here. The work discussed in this paper intends to extend
those previous analyses by using a different statistical
framework, different data, and a different cost function with

the aim of significantly reducing the uncertainty intervals.

This investigation is thus a first step towards fully
quantifying uncertainties within XDC results and thereby
lays the foundation for the integration of climate risks into
risk management frameworks through TA tools like the XDC
Model.

The research described here was conducted in a Master
thesis by Aleksandr Zinoveyv, supervised by Prof. Heikki
Haario, Ph.D. at Lappeenranta-Lahti University of Technology
as well as Dr. Jacopo Pellegrino and Dr. Hans-Peter Hafner of
right. based on science GmbH within the right. open initiative
(Zinoveyv, 2021).



Method 8

The X-Degree Compatibility (XDC) Model

The X-Degree Compatibility (XDC) Model calculates the temperature alignment of an economic entity, such
as a company (public or private), a building, a sovereign / state, or a portfolio covering one or several of

these asset classes. The calculation steps are as follows:

Determine the emission intensity in a given base year of the asset / portfolio in
question. This is defined as the ratio of GHG emissions (the ‘carbon footprint’) to
either gross value added (GVA), square metres (for buildings), or population (for

sovereign bonds).

Project the future development of this emission intensity over time based on scenario
assumptions and compare this trajectory to benchmarks drawn from recognised
climate change mitigation scenarios (e.g., those provided by the International Energy
Agency (IEA), the Network for Greening the Financial System (NGFS), or the Carbon
Risk Real Estate Monitor (CRREM)) to establish the climate performance.

Assume the world would perform equally over the same timeframe and derive a time

series of global emissions.

Input this data into the FalR Model to obtain the resulting global mean temperature

time series.

There are several sources of uncertainty in the XDC Model, as in all TA methodologies and climate metrics:
The first is the measurement or estimation of the GHG emissions (or ‘carbon footprint’) attributed to a
particular entity. This is especially challenging for Scope 3 emissions (GHG Protocol, 2015), which are not
directly caused by the entity of interest but come from many different sources along its upstream and
downstream value chain. Further uncertainties relate to the projection of future growth and emissions

at the entity level as well as on a broader sectoral and global scale (scenario assumptions). Finally, there

are model uncertainties associated with converting emissions to temperature, including the uptake of

CO:z emissions by the ocean and land, as well as the magnitude and timescale of warming, associated with
the emissions that remain in the atmosphere. Most TA methodologies draw on target emission pathways
derived from emission budgets in different mitigation scenarios. However, as these budgets are themselves
uncertain, the uncertainties are ‘hidden’ in these TA approaches, making them difficult to quantify. To

the best of our knowledge, the XDC Model is the only TA/ ITR methodology to use an iterative climate
model (FalR), i.e., one that updates the state of the climate system for each year of input emissions and
considers multiple different gases explicitly. There are many advantages to this approach, one of which is
the ability to quantify the different impacts of early mitigation of emissions versus later use of negative
emission technologies as well as the effect of uncertainties on the TA calculation. This study provides a
first step towards quantifying these uncertainties. In order to provide a proof of concept in a generalisable
computational framework, we focus here on parametric uncertainty, i.e., uncertainty with regard to the
physical input parameters of the FalR model which needs to be propagated to its output. In future research,

we hope to use this framework to account for data, scenario, and model uncertainty.



The Finite Amplitude Impulse Response (FalR) Climate Model

FalR is a simplified climate model. This means, it is less computationally intensive than complex climate
models while still being able to emulate the global mean temperature response of such models. Thus, FalR
is perfectly suited for use by decision makers to test and validate potential climate strategies or possible
investment decisions. Likewise, FalR is ideal for integrating large probabilistic ensembles and quantifying
uncertainties. FalR has been used by the UN Intergovernmental Panel on Climate Change (IPCC) and

features in its recent report on the Mitigation of Climate Change (IPCC, 2022).
The process of the FalR model can be summarized in the following three steps:

A simplified representation of the carbon cycle determines how many COz emissions

peryear remain in the atmosphere and how many are taken up by the land and ocean.

Calculation of radiative forcing, or in other words, how much the energy balance of the
planet is affected by the change in atmospheric GHG concentration. Several sources

such as methane and nitrous oxide are considered in addition to CO2.

Computation of the global mean temperature anomaly compared to the pre-industrial
as a function of time resulting from total radiative forcing. In FalR, the temperature
anomaly in any particular year depends on the temperature anomaly in the previous

year, the current emissions, and the radiative forcing in the current year.

Every stage of the process from emissions to temperature change bears uncertainties. For example, there
are uncertainties associated to the share of emissions taken up by the ocean and land, which is expected
to decrease in the future, as increasing temperatures reduce the efficiency of uptake. Another example is
the radiative forcing caused by a doubling of atmospheric CO2 concentration. This can be affected by other
factors like clouds, which can act to mask the forcing. Finally, arguably the largest and most important
uncertainties of FalR come from the Equilibrium Climate Sensitivity (ECS) and the Transient Climate
Response (TCR): two parameters that determine how quickly and how much the global mean temperature

responds to the radiative forcing.
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Markov Chain Monte Carlo (MCMC) Method

In order to determine how large these uncertainties are and how much they affect the XDC Model results,
this research applies the so-called Markov Chain Monte Carlo (MCMC) method, which is also commonly
adopted for uncertainty quantification of financial risk measures (Chib, Nardari, and Shephard, 2002; Raggi
and Bordignon, 2006). The idea behind this approach is the following: FalR has approximately 20 main
physical parameters which are used for the calculation of atmospheric concentration, radiative forcing, and
temperature increase. For these parameters, the exact values are not known, but, from experiments and
theoretical considerations, ranges for the parameters can be estimated, and thus a theoretical distribution
can be defined for each. These theoretical distributions are called prior distributions or priors. The goal is,
given the priors, to find a feasible posterior distribution of model parameters such that the temperature

values which FalR estimates for historical periods are in line with observed temperature measurements.

The non-linearity of the FalR model together with noise in the data raise severe identifiability issues, which
are amplified as the number of parameters grows, thus rendering the problem of designing an efficient
MCMC sampling algorithm a challenging task. By combining state of the art Delayed Rejection Adaptive
Metropolis (DRAM) MCMC sampling (Haario et al. 2001, 2006) with novel ideas to pre-process the available
temperature data and modelling of the cost function, we found a framework to produce superior estimates
of the parameter posterior distribution in the sense that it provides tighter uncertainty bounds. An
introduction to the MCMC methodology as well as a workflow summarizing the posterior estimation can be

found in the Appendix.

By employing this estimation framework, a distribution of possible values for each parameter is obtained.
Starting from these distributions, point and spread estimates at any wanted accuracy, such as 90%
confidence intervals (5% - 95% quantile), can be used to define the accepted parameter combinations to

propagate parametric uncertainty to the outputs of the FalR Model.
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To investigate the parametric uncertainty in the FalR Model, the MCMC methodology described in the
previous section was applied using two different scenarios and prior distributions according to the findings
of Smith et al. 2018. (Other assumptions for the priors were tested and then discarded, as they lead to either
physically impossible results or calculation overflow.) While some interesting observations on the accuracy
of the MCMC simulation results can be made across the full timeframe from 1850 to 2050, the crucial year
to better understand the uncertainties that affect XDC Model results and climate risk management is the
target year (in this case, 2050 was chosen). The histograms Fig. 3 and Fig. 5 show the distribution of results

for the target year.

Scenarios

In selecting scenarios for this analysis, it is important to bear in mind that the XDC Model maps emissions
from one single entity, such as a company, to the world to provide an extrapolated metric that can be used
not only by the finance and investment side, but also by companies themselves, to steer their climate

strategies. By moving a step beyond the carbon footprint (i.e., absolute emissions in a particular year) to a
forward-looking climate impact measurement which is upscaled to a global level, the XDC metric provides

comparability among various companies and assets.

This metric is intended as an assessment and comparison tool, not as a realistic projection of the future
that awaits us. In fact, for emission-intensive entities and sectors, the calculation may produce extremely
high upscaled emissions and temperature values. Therefore, the scenarios chosen for this analysis must
ensure validity of the results not only in a ‘moderate’ emissions scenario, but also for extreme emissions

and temperatures. These scenarios are:

(o] Emissions from Representative Concentration Pathway (RCP) 8.5, a global emissions
scenario according to which the radiative forcing will reach 8.5W/m?2 by the end of
the century. This can be considered a business-as-usual scenario with high baseline

emissions.

(o) Emissions of a sample company from the chemicals sector. Starting from 2017 as

the base year, the emissions are assumed to grow according to a business-as-usual

scenario until the target year.

Temperature dataset

In this study, a temperature dataset consisting of the temperature output of 11 different climate models
during the period 1850-2005 was used (see Fig. 1). The model parameters were calibrated to a composite
temperature time series obtained by averaging over the different climate model outputs. The mean annual
variance divided by the number of measurements was used as measurement error variance. We found
that using this pre-processed composite dataset has a significant stabilizing effect on the parameter

calibration.
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Results of MCMC calibration

Using the framework described above (see Method), emission data from both scenarios were provided as
input to 5,000 MCMC simulations each, in which the FalR model was used to determine the temperature
evolution according to the various parameter samples. The calculations provide a minimum and maximum
temperature value for each point in time, which serve as a bandwidth (shaded green area in Fig. 1, Fig. 2, and
Fig. 4). Awell-calibrated approach would be indicated by the actual (observed) temperature values of past
years falling within this bandwidth. As shown in Fig. 1, the results of the model simulations with parameters
drawn from the posterior (shaded green area) show a good fit to the observed composite data (black dots).
This is especially true for more recent years, in which observations are assumed to be more accurate than in

the past.

Calibration data: minimum to maximum temperatures range of simulations and observed data
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FIGURE 1: Evolution of simulated and observed temperatures starting from 1850 (beginning of observations) until 2005.
Data are compared to the minimum and maximum values obtained via the MCMC experiments.

Forward-looking FalR results with uncertainty quantification

Shifting focus towards the time ahead, the results show that the more projections move into the future, the
wider the span between minimum and maximum becomes. This demonstrates that the MCMC simulation

results can capture the uncertainties of a forward-looking methodology (see Fig. 2 and Fig. 4).
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RCP 8.5 scenario

Based on the parameter combinations obtained as previously described, the interval of possible
temperatures in the target year 2050 is [2.3° C, 2.6° C] with a mean of 2.4° C. This is also depicted by the
histogram of temperature values in 2050 in Fig. 5. It is noteworthy that the histogram is markedly skewed
to the right, showing that more parameter combinations result in an estimate above the mean than below
it. The implication for risk managers is to apply more conservative assessments, as companies may need
to reduce emissions further than their decarbonisation target pathway might indicate. Considering two
different target pathways for a company, one for the lower and one for the upper boundary of the interval,
there is a higher probability of reaching a temperature close to the upper bound than one closer to the

lower bound.

Projection until 2050 of RCP8.5 data: minimum to maximum temperatures range of simulations
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FIGURE 2: Temperature projection according to RCP8.5 data. The bandwidth between minimum and maximum grows when
moving forward into the future.
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Chemicals company scenario

For the second scenario (upscaled emissions of a company from the chemicals sector) the results look similar.
Since there is a much larger amount of CO2 emissions in this scenario, the estimated temperature increase

is about twice as high. With the same constraints on the model parameters, providing this sample company
dataset as input to the FalR model leads to a temperature interval in the target year of [3.8° C; 4.9° C] with a
mean of 4.3° C. As the histogram shows (Fig. 5), the distribution of the values is again skewed to the right. At first
glance, this effect is less pronounced than in Fig. 4. However, as the temperature values overall are higher here,
this still points to a greater likelihood of actual temperatures landing on the higher end of the scale and hence

would imply a more conservative assessment for risk management purposes.

Projection until 2050 of sample chemicals company data: minimum to maximum temperatures range of simulations
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FIGURE 4: Temperature projection according to sample chemicals company data. The bandwidth between minimum and
maximum grows when moving forward into the future. Compared to the RCP8.5 case, temperatures are also higher
overall due to greater emissions in this scenario.
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The results discussed above show a rather narrow range for the temperature estimates compared to some

other climate change studies. This is likely due to the following:

(o) The only uncertainties considered here are the parametric ones originated by the
FalR climate model. Due to the limited current knowledge about several physical
processes of the climate system (such as the behaviour of clouds), different

representations in other climate models are possible.

(o) FalR works with the assumption that most processes within the climate system will
remain stable in the future. In reality, there are likely to be many different feedback
loops due to global heating, which may accelerate some developments of the system,

leading to a steeper rise in temperatures.

Therefore, a model uncertainty analysis based on an ensemble of climate models would almost certainly
lead to wider confidence intervals. Nevertheless, this initial investigation shows that even for a high-
emission scenario, the parametric uncertainty margins arising from the conversion of global emissions to
temperature rise through the FalR Model are not overly large and can therefore be used to provide valuable

information within risk assessment processes.



Discussion 16

Financial institutions face multifaceted pressure to progress on the task of managing climate risks. With
global warming reaching the top of the regulatory agenda, integrating climate risks into existing risk
management systems and organisations has evolved from a fringe issue addressed by a small number of
front-running institutions to a sector-wide task (e.g., European Central Bank, 2022). The effects of physical
climate risks are already beginning to materialise today, with assets lost, supply chains impacted, and
businesses hurt by floods, fires, storms, and drought. However, already in the short and medium term,
seismic shifts in public opinion and scrutiny as well as rising regulatory pressure will bring transitional
climate risks to the fore. In face of this new reality, risk management functions will urgently need to identify
and implement forward-looking methodologies that will allow them to reliably assess the scope and impact
of these risks —and price them accordingly. These methodologies must be sufficiently reliable, broadly
applicable across asset classes, and scalable. That being said, the temptation to oversimplify should be
resisted if robust risk assessments are to be achieved. Positioned at the intersection of financial decision
making and climate science, TA approaches like the XDC Model can serve to promote better understanding

of the effects of business activities and assets on climate change and global temperature rise.

Though sometimes decried as too complex for practical use at scale, scientifically sound TA metrics may
prove to be well suited to fulfil the requirements expressed by the TCFD’s Portfolio Alignment Team, which
advises financial institutions to ‘include a statement in their portfolio alignment disclosures regarding

uncertainties arising from the methodology’ (TCFD, 2021a).

With regards to the XDC Model in particular, this analysis has shown that the uncertainties arising from the
conversion of emissions to degrees Celsius through the FalR Model can be reliably quantified to enhance
the transparency of the metric. Further investigations into other sources of uncertainty within the XDC

Model calculations will serve to further support its use in risk management (see Outlook).

The research conducted here also contributes to transparency on the uncertainties of climate risk metrics
in general. The MCMC approach is a methodology that has become familiar to risk management academics
and practitioners when it comes to volatility modelling (Chib, Nardari, and Shephard, 2002; Asai, McAleer,
and Yu, 2006). Evaluating TA approaches with concepts and frameworks already familiar to financial
institutions, such as MCMC (Chib, Nardari, and Shephard, 2002; Asai, McAleer, and Yu, 2006), facilitates

the integration of climate risks into organisations struggling with limited resources and capabilities for

addressing the daunting task of managing climate risks (European Commission, 2021).



Outlook 17

The investigation described in this paper can be considered a first and important step towards a wider
coverage of uncertainties in the XDC Model. However, as described above, further sources of uncertainty
will need to be considered and investigated before XDC results can be further qualified with, e.g.,a margin
of error and before this additional information can then be integrated into the software and products that
draw on the XDC Model. Uncertainties may originate from the definition of sectors (with implications for
classification and data availability), the input data, further model parameters (outside the climate-related
elements), and scenarios. Finally, model uncertainty with regard to the underlying climate model will also

need to be quantified.

Arguably the greatest challenge here will be to cope with uncertainties in input data, especially for
emissions. Work to model and estimate emission data from company financial information and reporting
has already begun. Advances here will improve the control and standardisation of input data and allow for

uncertainty quantification in this crucial first calculation step.

Addressing all of these points will contribute to providing richer and more robust information to
practitioners from across finance, investment, and business through the XDC Model. Such information is
vital to allowing business leaders to identify and implement effective decarbonisation measures, while also
enabling financial actors to make sound choices on where to direct capital and how to both manage and

price their climate risk.

The unprecedented uncertainties that climate change brings with it will not be solved by any model or
metric. However, providing clarity and transparency on their extent, their sources, and their impact on
results is crucial to creating a metric that is suitable for practical use and integration into risk management
processes. The work presented here, as well as further collaborative investigations between business,

finance, and academia, will bring us closer to this aim —degree by degree.
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Appendix

Consider a non-linear model

y=f(x10)+e€

where y are the measurements, fis a non-linear function with parameters ¢ and design variables x,and [X is the error term. Due

to the error, it is impossible to estimate & with total precision, but it is possible to calculate the probability distribution of .

For this non-linear model, Bayes’ theorem can be written as

_ p(y16)p®)
p(oly) ~ [p(y16)p(6)do

where p( @ | y) is the posterior distribution of the parameter ¢ given the observationy,p(y | ¢)is the likelihood of y occurring
given that the parametervalues are ¢ ,p(¢)is a prior distribution of & ,the integralis a normalization constant and equal to the

prior distribution p(y).

Markov Chain Monte Carlo (MCMC) is a method that allows one to sample a posterior distribution by generating a sequence
(chain) (ei)év=1 which asymptotically approaches the posterior distribution. The chain is generated randomly (hence the
term Monte Carlo) and every member except the first depends only on the previous member (hence the term Markov Chain).
The main advantage of MCMC is the ability to sample the posterior distribution (in this case p(¢ | y)) without computing a

multidimensional integral.

Several algorithms exist to generate a MCMC chain. One of the most frequently used is the Metropolis Hastings (MH)
algorithm (Metropolis et al. 1953). It starts with the initial point &1 and it repeats the following steps until a chain of the

required length is generated (the distribution of the sequence is close to the posterior distribution):

e Choose a candidate 8 with respect to the proposal distribution q(@, en)
e Accept the candidate with probability

p(8)q(6,.9))

a(8,,8) = min| 1, ———=~
(6.9) p(6:)4(8,6,,)

The choice of the proposal distribution affects the speed of convergence and varies from case to case. Often a multivariate
normal distribution is used as the first proposal and then the choice of the covariance matrix can heavily influence the
optimal length of the chain and therefore the calculation time. To deal with that problem, the Adaptive Metropolis (AM)

algorithm can be used (Haario, H., Saaksman, E., and Tamminen, J., 2001).

The main idea of the AM is to update the covariance matrix during the chain generation. After the initial covariance matrix Co is
proposed, the chain is generated until the no-th member (so-called ‘burn-in’ period), and then every few steps the covariance

is updated.
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Another advanced method is the Delayed Rejection (DR) algorithm. It is the same as MH except in the case of rejection of a
candidate 9/(1) where the second candidate 9/(;)) is generated from the proposal distribution g, (6(2), @(1), Gn) with respect

to the rejected candidate. The probability of acceptance is

1 P(¥2)q1(V2,¥1) 92 (V2,y1.%) [1—0ay (3’2,3’1)])
T p(0)q1 (Y1) a2 (x,y1,y2) [1-a1 (x,y1)]

(6, y1,y2) = min(

where «1is calculated like the acceptance probability of the MH algorithm.

The combination of the above-mentioned methods is the Delayed Rejection Adaptive Metropolis (DRAM) algorithm (Haario

et al. 2006). The algorithm is the same as the AM algorithm except when a candidate is rejected (first step of DR), then the
further candidates are generated with respect to the scaled covariance matrix. In other words, in the first step of DR the
candidate GE) is generated from the proposal distribution q; (-, 8, | C}),and in the further steps the candidates "{8}_{(i)} are

generated from q;(+, 8¢9, ...,8™, 6, | CL),where C, = y,C} is a scaling parameter that can be chosen freely.

For the calculations, the MCMC Toolbox for MATLAB written by Marko Laine was used. For the code and examples, see

https:/mijlaine.github.io/mcmcstat/. This package allows one to use MH and AM algorithms as well.




Afirst sample (i.e., a set of parameters) is drawn from the prior distribution.

For the first iteration, a proposal distribution is defined which will be updated after the sample is accepted or
rejected.

A new sample is drawn from the proposal distribution.

The set of parameters is applied to the FalR model and the temperature on historical data is calculated.

The new sample is accepted when the probability of the observed data (temperatures and concentrations) given

the new parameter sample is larger than for the previous parameter set (i.e., when the deviation between the
observed temperature values and the ones estimated with FalR gets smaller). In case the probability isn't larger, a
probability for the acceptance of the new sample is computed.

The proposal distribution is updated according to the Delayed Rejection Adaptive Metropolis (DRAM) algorithm to

improve the efficiency of the sampling process (see above for more details).

Draw first sample
from priors

Define proposal
distribution

Draw new sample
from proposal
distribution

Compare the
resulting
temperature with
observations

Calculate
temperature using
historical data

Compare
probability of
observed
temperatures

Is probability
(new sample)
larger than probability
(previous sample)?

Reject Sample Accept Sample




Disclaimer

right. based on science GmbH is not an investment advisor and makes no representation regarding the
advisability of investing in any particular company, investment fund, or other vehicle. A decision to invest in
any such investment fund or other entity should not be made based on any of the statements set forth in this
publication.While right. based on science GmbH has obtained information believed to be reliable, right. based
on science GmbH shall not be liable for any claims or losses of any nature in connection with information
contained in this publication, including but not limited to, lost profits or punitive or consequential damages.
Some of the content of this paper may be proprietary and belong to right. based on science GmbH.

The information contained in this whitepaper does not constitute an offer to sell securities or the solicitation
of an offer to buy, or recommendation for investment in any securities within any jurisdiction. The information
is not intended as financial advice. This whitepaper provides general information only. The information

and opinions constitute a judgment at the date indicated and are subject to change without notice. The
information may therefore not be accurate or current. The information and opinions contained in this
whitepaper have been compiled or derived from sources believed to be reliable and in good faith, but no
representation or warranty, express or implied, is made by right. based on science GmbH as to their accuracy,
completeness, or correctness. Finally right. based on science GmbH does not warrant that the information is
up to date.

The contents, works, and information published in this whitepaper are subject to German copyright. Any kind
of duplication, processing, distribution, storage, and exploitation outside the limits of copyright requires the
prior written consent of the respective copyright holder. If you want to use the information provided, please

contact us.

Layout & Design: Orange Hive

right. based on science GmbH

Intzestraf3e 1| 60314 Frankfurt am Main

CEO: Hannah Helmke

Registry Office: Amtsgericht Frankfurt am Main HRB 106032

www.right-basedonscience.de
©2022 right. based on science GmbH



