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4Executive Summary 

Climate risk is increasingly understood as a major threat to the stability of the financial system. It is unique in both its 
potential scale (recent estimates say the impacts of climate change could shrink the global economy by one fifth - Swiss Re 
Institute, 2021) and its inherent uncertainties and non-linearities. As public awareness and regulatory scrutiny rise, financial 
institutions face multifaceted pressure to progress on the task of managing climate risks. Integrating climate risks into 
existing risk management systems and organisations has evolved from a fringe issue addressed by a small number of front-
running institutions to a sector-wide task (e.g., European Central Bank, 2022). One of the biggest challenges in determining the 
best methodologies and models to measure climate risk is the quantification of uncertainties. This is a crucial step toward 
one day reliably assessing the scope and impact of these risks – and pricing them accordingly.
 
While physical risks (caused by, e.g., acute extreme weather events or permanent shifts in weather patterns and sea levels) 
are already beginning to materialise today, it is transition risks that are expected to dominate in their financial impact in the 
short and medium term. These include policy and legal actions, technology changes, market responses, and reputational 
considerations as part of societal efforts to mitigate and adapt to global warming (TCFD, 2017; TCFD, 2021b). With this in mind, 
a company’s or portfolio’s own contribution to climate change, i.e., its climate impact, is a significant and material factor in 
climate risk assessment.

Among the available methodologies to measure climate impact, so-called ‘temperature alignment’ (TA) or ‘implied 
temperature rise’ (ITR) approaches (TCFD, 2021a) are moving to the forefront. TA tools allow investors to benchmark the 
greenhouse gas (GHG) emission trajectory of an entity or a portfolio against normative decarbonisation pathways with 
the result expressed in expected global temperature rise (Helmke et al., 2020; TCFD, 2021a). One such methodology is the 
X-Degree Compatibility (XDC) Model, developed by right. based on science GmbH. The model calculates the temperature 
alignment of portfolios as well as single securities from various asset classes (listed equity, private equity, corporate debt, 
sovereign bonds, and real estate), centring on the question: “How much global warming could be expected, if the world 
exhibited the same climate performance as the entity in question?” 

Making the XDC metric useful to and applicable in risk management processes will require reliable quantification of the 
inherent uncertainties. One source of these uncertainties lies in the conversion of emissions to temperature. For this, the 
XDC Model draws on the Finite Amplitude Impulse Response (FaIR) climate model (Leach et al., 2021; Smith et al. 2018; Millar 
et al., 2017). As a first step to investigating the various sources of uncertainty in XDC Model results, this paper first explores 
parametric uncertainty quantification for the FaIR Model. 

We apply the Markov Chain Monte Carlo (MCMC) method, which is also commonly adopted for uncertainty quantification 
of financial risk measures (Chib, Nardari, and Shephard, 2002; Raggi and Bordignon, 2006), in combination with the Delayed 
Rejection Adaptive Metropolis (DRAM) algorithm (Haario et al. 2001, 2006). 

We select two scenarios to evaluate the validity of the results: 

Emissions from Representative Concentration Pathway (RCP) 8.5, a global emissions scenario 
according to which the radiative forcing will reach 8.5W/m2 by the end of the century. This can be 
considered a business-as-usual scenario with high baseline emissions.

Emissions of a sample company from the chemicals sector. Starting from 2017 as the base year, the 
emissions are assumed to grow according to a business-as-usual scenario until the target year.
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These two scenarios were chosen because the XDC Model aims to provide an entity-specific perspective which enables 
both comparability among assets as well as steering. This is achieved by mapping emissions from one single entity, such as a 
company, to the world. However, the resulting upscaled global emissions may be exceptionally high (imagine the entire world 
emitting greenhouse gases at the rate of a chemical plant). Therefore, the validity of the XDC Model calculations through FaIR 
must be tested both for a ‘moderate’ scenario and for extreme emissions and temperatures. 

Emission data from both scenarios are provided as input to 5,000 MCMC simulations, in which the FaIR model is used to 
visualize the temperature evolution according to various parameter samples. The calculations provide a minimum and 
maximum temperature value for each point in time, yielding a temperature bandwidth. For the timeframe from 1850-2005, the 
results of these model simulations show a good fit to observed temperatures, serving as a calibration (see Fig. 1). The further 
the projections move into the future, the wider the span between minimum and maximum becomes (see Fig. 2 and Fig. 4). 
This increased range in possible temperatures shows that the MCMC simulation results can capture the uncertainties of a 
forward-looking methodology.

For the RCP 8.5 scenario, the interval of possible temperatures in the target year 2050 is [2.3° C, 2.6° C] with a mean of 2.4° C. 
Viewed as a histogram (see Fig. 3), it is evident that the distribution is markedly skewed towards higher temperatures, showing 
that more parameter combinations result in an estimate above the mean than below it. 

The same is true for the second scenario for a chemicals company: Since there is a much larger quantity of emissions in 
this scenario, the estimated temperature increase is about twice as high. The temperature interval in the target year 2050 
is [3.8° C; 4.9° C] with a mean of 4.3° C. Here, too, the distribution of values is skewed towards the higher end of the range 
(see Fig. 5).

The implication here for risk managers would be to apply more conservative assessments, as companies may need to reduce 
emissions further than their decarbonisation target pathway might indicate. More importantly, this investigation shows 
that the uncertainties arising from the conversion of emissions to degrees Celsius through the FaIR Model can be reliably 
quantified to enhance the transparency of the metric. Further investigations into other sources of uncertainty within the 
model, such as the definition of sectors, input data, further model parameters (outside the climate-related elements), and 
scenario uncertainty will be needed. Finally, model uncertainty with regard to the underlying climate model will also need to 
be quantified. 

Addressing these points will contribute to providing richer and more robust information to practitioners, which is vital to 
allowing business leaders to identify and implement effective decarbonisation measures, while also enabling financial 
actors to make sound choices on where to direct capital and how to both manage and price their climate risk. Underlying 
methodologies must be sufficiently reliable, broadly applicable across asset classes, and scalable, while eschewing 
oversimplification. Positioned at the intersection of financial decision making and climate science, TA approaches like the 
XDC Model can promote better understanding of the effects of business activities and assets on climate change and global 
temperature rise.

Evaluating TA approaches with concepts and frameworks already familiar to financial institutions, such as MCMC (Chib, 
Nardari, and Shephard, 2002; Asai, McAleer, and Yu, 2006), facilitates the integration of climate risks into organisations 
struggling with limited resources and capabilities for addressing the daunting task of managing climate risks.

The unprecedented uncertainties that climate change brings with it will not be resolved by any model or metric. However, 
providing clarity and transparency on their extent, their sources, and their impact on results is crucial to creating a metric 
that is suitable for practical use and integration into risk management processes. The work presented here, as well as further 
collaborative investigations between business, finance, and academia, will bring us closer to this aim – degree by degree.
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During the 2008 Global Financial Crisis, financial institutions 
were pushed to the brink of collapse and temporarily unable 
to adequately assess and manage their risk exposure, owing 
to their use of oversimplified measures and models about 
the behaviour of housing and mortgage markets (Nickerson 
and Griffin, 2017). In the space of two years, that crisis sent 
global GDP plummeting from +4.4 % in 2007 to -1.3 % in 2009 
(World Bank, 2022). What followed was a global recession, the 
Euro crisis, and food shortages in several developing nations, 
to name just a few consequences. However, as disastrous 
as this was, it is dwarfed by the potential economic effects 
from increasing atmospheric greenhouse gas (GHG) 
concentration and rising global temperatures, which could 
cause the global economy to shrink by almost one fifth 
(Swiss Re Institute, 2021). Within financial risk management, 
one of the key lessons drawn from the 2008 crisis is the 
need for uncertainty quantification (UQ) for risk measures 
and models (Moshirian, 2011; Chen, Flood, and Sowers, 2017). 
Given the potentially crippling effects of climate change 
on the global financial – as well as planetary – system, the 
urgent need to reliably assess the associated financial risks, 
and therefore to also quantify inherent uncertainties could 
not be clearer.

Putting a Price on Climate Risk
The Task-Force on Climate-Related Financial Disclosures 
(TCFD) divides climate risk into two categories: Physical risks, 
resulting from ‘chronic’ changes in weather, precipitation 
patterns, or rising sea levels, as well as ‘acute’ events such 
as floods, wildfires, droughts, or heatwaves. In contrast, 
transition risk refers to asset revaluation occurrences due 

to societal and regulatory efforts to limit global warming, 
including policy and legal actions, technology changes, 
market responses, and reputational considerations (TCFD, 
2017; TCFD, 2021b). The contribution of a company or 
portfolio to climate change is a significant and material 
factor in climate risk assessment. While both risk types are 
interdependent, transition risks are expected to dominate in 
the short and medium term, coming with deep uncertainties 
about their exact timing and magnitude (Gambhir et al., 
2022). Regulators and banking institutions recognise the 
immense challenges in managing transition risks and are 
striving for methodological guidance and best practices for 
risk management (TCFD, 2021a).

The German banking regulator BaFin guides banking 
institutions to integrate sustainability risks, including 
climate and related reputational risks, into existing risk 
management frameworks and risk categories (BaFin, 2019). 
In addition, recently published reports and guidelines 
from the Basel Committee on Banking Supervision and the 
European Banking Authority (EBA) highlight the necessity 
of science-based quantitative risk measures for effectively 
measuring, managing, and communicating transition risks 
(Basel Committee on Banking Supervision, 2021; EBA, 2021). 
Useful climate risk metrics must be both quantitative 
and seamlessly integrated into existing risk management 
practices and frameworks of the financial sector. A metric 
that satisfies both aspects would allow bank risk managers 
to work toward putting a price tag on climate risks and 
integrating this risk type into existing asset pricing and risk 
models.
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geared towards understanding that single entity’s climate 
impact, its alignment to the Paris Agreement goal, as well 
as assessing its exposure to inside-out climate risks at 
a preliminary stage. It is not designed to predict realistic 
planetary warming scenarios, but rather extrapolated 
results, to enable risk management and steering at a 
company- or portfolio-level. To calculate this ‘extrapolated 
warming effect’, the XDC Model draws on a climate model, 
the Finite Amplitude Impulse Response (FaIR) Model (Leach 
et al., 2021; Smith et al. 2018; Millar et al., 2017). As a first step 
to investigating the various sources of uncertainty in XDC 
Model results, this paper explores parametric uncertainty 
quantification for the FaIR Model. Other analyses on these 
uncertainties have been conducted (Leach et al., 2021; Smith 
et al., 2018), which form the foundation of the work presented 
here. The work discussed in this paper intends to extend 
those previous analyses by using a different statistical 
framework, different data, and a different cost function with 
the aim of significantly reducing the uncertainty intervals. 

This investigation is thus a first step towards fully 
quantifying uncertainties within XDC results and thereby 
lays the foundation for the integration of climate risks into 
risk management frameworks through TA tools like the XDC 
Model. 

The research described here was conducted in a Master 
thesis by Aleksandr Zinovev, supervised by Prof. Heikki 
Haario, Ph.D. at Lappeenranta-Lahti University of Technology 
as well as Dr. Jacopo Pellegrino and Dr. Hans-Peter Hafner of 
right. based on science GmbH within the right. open initiative 
(Zinovev, 2021).

Temperature Alignment 
for Risk Management

Among the available methodologies to measure climate 
impact, so-called ‘temperature alignment’ (TA) or ‘implied 
temperature rise’ (ITR) approaches (TCFD, 2021a) are moving 
to the forefront. TA tools allow investors to benchmark the 
GHG emission trajectory of an entity or a portfolio against 
normative decarbonisation pathways with the result 
expressed in expected global temperature rise (Helmke et 
al., 2020; TCFD, 2021a). Regulatory bodies and standard-
setting institutions recognise temperature alignment 
metrics as a methodological approach for financial 
institutions to evaluate and manage climate risks (EBA, 2021). 
On a global level, the TCFD's Portfolio Alignment Team, in a 
recently published report, suggests to financial institutions 
the deliberate use of TA methodologies, particularly in 
cases where the necessity for insights about the degree of 
alignment or misalignment of a portfolio to the goals of the 
Paris Climate Agreement is required or where there is a need 
for an effective climate performance comparison of different 
investing strategies (TCFD, 2021a). These recommendations 
were also welcomed by the United Nations Environment 
Programme - Finance Initiative (UNEP FI), a strategic public-
private partnership that comprises 400 global financial 
institutions (UNEP FI, 2021). 

One such methodology is the X-Degree Compatibility (XDC) 
Model developed by right. based on science GmbH. The XDC 
Model calculates the temperature alignment of portfolios as 
well as single securities from various asset classes (listed 
equity, private equity, corporate debt, sovereign bonds, and 
real estate), centring on the question: “How much global 
warming could be expected, if the world exhibited the same 
climate performance as the entity in question?” By scaling 
from a company or asset to the world, the XDC Model is 
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The X-Degree Compatibility (XDC) Model calculates the temperature alignment of an economic entity, such 
as a company (public or private), a building, a sovereign / state, or a portfolio covering one or several of 
these asset classes. The calculation steps are as follows:

Determine the emission intensity in a given base year of the asset / portfolio in 
question. This is defined as the ratio of GHG emissions (the ‘carbon footprint’) to 
either gross value added (GVA), square metres (for buildings), or population (for 
sovereign bonds). 

Project the future development of this emission intensity over time based on scenario 
assumptions and compare this trajectory to benchmarks drawn from recognised 
climate change mitigation scenarios (e.g., those provided by the International Energy 
Agency (IEA), the Network for Greening the Financial System (NGFS), or the Carbon 
Risk Real Estate Monitor (CRREM)) to establish the climate performance.

Assume the world would perform equally over the same timeframe and derive a time 
series of global emissions.

Input this data into the FaIR Model to obtain the resulting global mean temperature 
time series.

There are several sources of uncertainty in the XDC Model, as in all TA methodologies and climate metrics: 
The first is the measurement or estimation of the GHG emissions (or ‘carbon footprint’) attributed to a 
particular entity. This is especially challenging for Scope 3 emissions (GHG Protocol, 2015), which are not 
directly caused by the entity of interest but come from many different sources along its upstream and 
downstream value chain. Further uncertainties relate to the projection of future growth and emissions 
at the entity level as well as on a broader sectoral and global scale (scenario assumptions). Finally, there 
are model uncertainties associated with converting emissions to temperature, including the uptake of 
CO2 emissions by the ocean and land, as well as the magnitude and timescale of warming, associated with 
the emissions that remain in the atmosphere. Most TA methodologies draw on target emission pathways 
derived from emission budgets in different mitigation scenarios. However, as these budgets are themselves 
uncertain, the uncertainties are ‘hidden’ in these TA approaches, making them difficult to quantify. To 
the best of our knowledge, the XDC Model is the only TA / ITR methodology to use an iterative climate 
model (FaIR), i.e., one that updates the state of the climate system for each year of input emissions and 
considers multiple different gases explicitly. There are many advantages to this approach, one of which is 
the ability to quantify the different impacts of early mitigation of emissions versus later use of negative 
emission technologies as well as the effect of uncertainties on the TA calculation. This study provides a 
first step towards quantifying these uncertainties. In order to provide a proof of concept in a generalisable 
computational framework, we focus here on parametric uncertainty, i.e., uncertainty with regard to the 
physical input parameters of the FaIR model which needs to be propagated to its output. In future research, 
we hope to use this framework to account for data, scenario, and model uncertainty.

Method

The X-Degree Compatibility (XDC) Model

XDC

1

2

3

4
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FaIR

FaIR is a simplified climate model. This means, it is less computationally intensive than complex climate 
models while still being able to emulate the global mean temperature response of such models. Thus, FaIR 
is perfectly suited for use by decision makers to test and validate potential climate strategies or possible 
investment decisions. Likewise, FaIR is ideal for integrating large probabilistic ensembles and quantifying 
uncertainties. FaIR has been used by the UN Intergovernmental Panel on Climate Change (IPCC) and 
features in its recent report on the Mitigation of Climate Change (IPCC, 2022).

The process of the FaIR model can be summarized in the following three steps:

A simplified representation of the carbon cycle determines how many CO2 emissions 
per year remain in the atmosphere and how many are taken up by the land and ocean.

Calculation of radiative forcing, or in other words, how much the energy balance of the 
planet is affected by the change in atmospheric GHG concentration. Several sources 
such as methane and nitrous oxide are considered in addition to CO2.

Computation of the global mean temperature anomaly compared to the pre-industrial 
as a function of time resulting from total radiative forcing. In FaIR, the temperature 
anomaly in any particular year depends on the temperature anomaly in the previous 
year, the current emissions, and the radiative forcing in the current year. 

Every stage of the process from emissions to temperature change bears uncertainties. For example, there 
are uncertainties associated to the share of emissions taken up by the ocean and land, which is expected 
to decrease in the future, as increasing temperatures reduce the efficiency of uptake. Another example is 
the radiative forcing caused by a doubling of atmospheric CO2 concentration. This can be affected by other 
factors like clouds, which can act to mask the forcing. Finally, arguably the largest and most important 
uncertainties of FaIR come from the Equilibrium Climate Sensitivity (ECS) and the Transient Climate 
Response (TCR): two parameters that determine how quickly and how much the global mean temperature 
responds to the radiative forcing. 

1
2

3

The Finite Amplitude Impulse Response (FaIR) Climate Model 
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In order to determine how large these uncertainties are and how much they affect the XDC Model results, 
this research applies the so-called Markov Chain Monte Carlo (MCMC) method, which is also commonly 
adopted for uncertainty quantification of financial risk measures (Chib, Nardari, and Shephard, 2002; Raggi 
and Bordignon, 2006). The idea behind this approach is the following: FaIR has approximately 20 main 
physical parameters which are used for the calculation of atmospheric concentration, radiative forcing, and 
temperature increase. For these parameters, the exact values are not known, but, from experiments and 
theoretical considerations, ranges for the parameters can be estimated, and thus a theoretical distribution 
can be defined for each. These theoretical distributions are called prior distributions or priors. The goal is, 
given the priors, to find a feasible posterior distribution of model parameters such that the temperature 
values which FaIR estimates for historical periods are in line with observed temperature measurements.

The non-linearity of the FaIR model together with noise in the data raise severe identifiability issues, which 
are amplified as the number of parameters grows, thus rendering the problem of designing an efficient 
MCMC sampling algorithm a challenging task. By combining state of the art Delayed Rejection Adaptive 
Metropolis (DRAM) MCMC sampling (Haario et al. 2001, 2006) with novel ideas to pre-process the available 
temperature data and modelling of the cost function, we found a framework to produce superior estimates 
of the parameter posterior distribution in the sense that it provides tighter uncertainty bounds. An 
introduction to the MCMC methodology as well as a workflow summarizing the posterior estimation can be 
found in the Appendix.

By employing this estimation framework, a distribution of possible values for each parameter is obtained. 
Starting from these distributions, point and spread estimates at any wanted accuracy, such as 90% 
confidence intervals (5% - 95% quantile), can be used to define the accepted parameter combinations to 
propagate parametric uncertainty to the outputs of the FaIR Model.

Markov Chain Monte Carlo (MCMC) Method

MCMC
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To investigate the parametric uncertainty in the FaIR Model, the MCMC methodology described in the 
previous section was applied using two different scenarios and prior distributions according to the findings 
of Smith et al. 2018. (Other assumptions for the priors were tested and then discarded, as they lead to either 
physically impossible results or calculation overflow.)  While some interesting observations on the accuracy 
of the MCMC simulation results can be made across the full timeframe from 1850 to 2050, the crucial year 
to better understand the uncertainties that affect XDC Model results and climate risk management is the 
target year (in this case, 2050 was chosen). The histograms Fig. 3 and Fig. 5 show the distribution of results 
for the target year.

Results

In selecting scenarios for this analysis, it is important to bear in mind that the XDC Model maps emissions 
from one single entity, such as a company, to the world to provide an extrapolated metric that can be used 
not only by the finance and investment side, but also by companies themselves, to steer their climate 
strategies. By moving a step beyond the carbon footprint (i.e., absolute emissions in a particular year) to a 
forward-looking climate impact measurement which is upscaled to a global level, the XDC metric provides 
comparability among various companies and assets. 

This metric is intended as an assessment and comparison tool, not as a realistic projection of the future 
that awaits us. In fact, for emission-intensive entities and sectors, the calculation may produce extremely 
high upscaled emissions and temperature values. Therefore, the scenarios chosen for this analysis must 
ensure validity of the results not only in a ‘moderate’ emissions scenario, but also for extreme emissions 
and temperatures. These scenarios are:

Emissions from Representative Concentration Pathway (RCP) 8.5, a global emissions 
scenario according to which the radiative forcing will reach 8.5W/m2 by the end of 
the century. This can be considered a business-as-usual scenario with high baseline 
emissions.

Emissions of a sample company from the chemicals sector. Starting from 2017 as 
the base year, the emissions are assumed to grow according to a business-as-usual 
scenario until the target year.

In this study, a temperature dataset consisting of the temperature output of 11 different climate models 
during the period 1850-2005 was used (see Fig. 1). The model parameters were calibrated to a composite 
temperature time series obtained by averaging over the different climate model outputs. The mean annual 
variance divided by the number of measurements was used as measurement error variance. We found 
that using this pre-processed composite dataset has a significant stabilizing effect on the parameter 
calibration. 

Scenarios

Temperature dataset
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Shifting focus towards the time ahead, the results show that the more projections move into the future, the 
wider the span between minimum and maximum becomes. This demonstrates that the MCMC simulation 
results can capture the uncertainties of a forward-looking methodology (see Fig. 2 and Fig. 4).

FIGURE 1:  Evolution of simulated and observed temperatures starting from 1850 (beginning of observations) until 2005.
 Data are compared to the minimum and maximum values obtained via the MCMC experiments.

Forward-looking FaIR results with uncertainty quantification

Using the framework described above (see Method), emission data from both scenarios were provided as 
input to 5,000 MCMC simulations each, in which the FaIR model was used to determine the temperature 
evolution according to the various parameter samples. The calculations provide a minimum and maximum 
temperature value for each point in time, which serve as a bandwidth (shaded green area in Fig. 1, Fig. 2, and 
Fig. 4). A well-calibrated approach would be indicated by the actual (observed) temperature values of past 
years falling within this bandwidth. As shown in Fig. 1, the results of the model simulations with parameters 
drawn from the posterior (shaded green area) show a good fit to the observed composite data (black dots). 
This is especially true for more recent years, in which observations are assumed to be more accurate than in 
the past. 

Results of MCMC calibration
Te

m
pe

ra
tu

re
  V

ar
ia

tio
n 

(°
C)

Calibration data: minimum to maximum temperatures range of simulations and observed data

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1845 1865 1885 1905 1925 1945 1965 1985 2005
Years

ObservedMaxMin

Results



13

FIGURE 3:  Temperature distribution in target year based on RCP8.5 data. Shaded green area indicates the centre of distribution  
 (dark  grey line) and a ±1 standard deviation interval.

Results

FIGURE 2:  Temperature projection according to RCP8.5 data. The bandwidth between minimum and maximum grows when   
 moving forward into the future.

Projection until 2050 of RCP8.5 data: minimum to maximum temperatures range of simulations
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Based on the parameter combinations obtained as previously described, the interval of possible 
temperatures in the target year 2050 is [2.3° C, 2.6° C] with a mean of 2.4° C. This is also depicted by the 
histogram of temperature values in 2050 in Fig. 5. It is noteworthy that the histogram is markedly skewed 
to the right, showing that more parameter combinations result in an estimate above the mean than below 
it. The implication for risk managers is to apply more conservative assessments, as companies may need 
to reduce emissions further than their decarbonisation target pathway might indicate. Considering two 
different target pathways for a company, one for the lower and one for the upper boundary of the interval, 
there is a higher probability of reaching a temperature close to the upper bound than one closer to the 
lower bound.

RCP 8.5 scenario 
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FIGURE 5:  Temperature distribution in target year based on the CO2 concentration increase following the sample chemicals company.   
 Shaded green area indicates the centre of distribution (dark  grey line) and a ±1 standard deviation interval.

Results

For the second scenario (upscaled emissions of a company from the chemicals sector) the results look similar. 
Since there is a much larger amount of CO2 emissions in this scenario, the estimated temperature increase 
is about twice as high.  With the same constraints on the model parameters, providing this sample company 
dataset as input to the FaIR model leads to a temperature interval in the target year of [3.8° C; 4.9° C] with a 
mean of 4.3° C. As the histogram shows (Fig. 5), the distribution of the values is again skewed to the right. At first 
glance, this effect is less pronounced than in Fig. 4. However, as the temperature values overall are higher here, 
this still points to a greater likelihood of actual temperatures landing on the higher end of the scale and hence 
would imply a more conservative assessment for risk management purposes.

Chemicals company scenario

FIGURE 4: Temperature projection according to sample chemicals company data. The bandwidth between minimum and   
 maximum grows when moving forward into the future. Compared to the RCP8.5 case, temperatures are also higher  
 overall due to greater emissions in this scenario.
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The results discussed above show a rather narrow range for the temperature estimates compared to some 
other climate change studies. This is likely due to the following:

The only uncertainties considered here are the parametric ones originated by the 
FaIR climate model. Due to the limited current knowledge about several physical 
processes of the climate system (such as the behaviour of clouds), different 
representations in other climate models are possible. 

FaIR works with the assumption that most processes within the climate system will 
remain stable in the future. In reality, there are likely to be many different feedback 
loops due to global heating, which may accelerate some developments of the system, 
leading to a steeper rise in temperatures.

Therefore, a model uncertainty analysis based on an ensemble of climate models would almost certainly 
lead to wider confidence intervals. Nevertheless, this initial investigation shows that even for a high-
emission scenario, the parametric uncertainty margins arising from the conversion of global emissions to 
temperature rise through the FaIR Model are not overly large and can therefore be used to provide valuable 
information within risk assessment processes. 

Results
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Financial institutions face multifaceted pressure to progress on the task of managing climate risks. With 
global warming reaching the top of the regulatory agenda, integrating climate risks into existing risk 
management systems and organisations has evolved from a fringe issue addressed by a small number of 
front-running institutions to a sector-wide task (e.g., European Central Bank, 2022). The effects of physical 
climate risks are already beginning to materialise today, with assets lost, supply chains impacted, and 
businesses hurt by floods, fires, storms, and drought. However, already in the short and medium term, 
seismic shifts in public opinion and scrutiny as well as rising regulatory pressure will bring transitional 
climate risks to the fore. In face of this new reality, risk management functions will urgently need to identify 
and implement forward-looking methodologies that will allow them to reliably assess the scope and impact 
of these risks – and price them accordingly. These methodologies must be sufficiently reliable, broadly 
applicable across asset classes, and scalable. That being said, the temptation to oversimplify should be 
resisted if robust risk assessments are to be achieved. Positioned at the intersection of financial decision 
making and climate science, TA approaches like the XDC Model can serve to promote better understanding 
of the effects of business activities and assets on climate change and global temperature rise.

Though sometimes decried as too complex for practical use at scale, scientifically sound TA metrics may 
prove to be well suited to fulfil the requirements expressed by the TCFD’s Portfolio Alignment Team, which 
advises financial institutions to ‘include a statement in their portfolio alignment disclosures regarding 
uncertainties arising from the methodology’ (TCFD, 2021a). 

With regards to the XDC Model in particular, this analysis has shown that the uncertainties arising from the 
conversion of emissions to degrees Celsius through the FaIR Model can be reliably quantified to enhance 
the transparency of the metric. Further investigations into other sources of uncertainty within the XDC 
Model calculations will serve to further support its use in risk management (see Outlook). 

The research conducted here also contributes to transparency on the uncertainties of climate risk metrics 
in general. The MCMC approach is a methodology that has become familiar to risk management academics 
and practitioners when it comes to volatility modelling (Chib, Nardari, and Shephard, 2002; Asai, McAleer, 
and Yu, 2006). Evaluating TA approaches with concepts and frameworks already familiar to financial 
institutions, such as MCMC (Chib, Nardari, and Shephard, 2002; Asai, McAleer, and Yu, 2006), facilitates 
the integration of climate risks into organisations struggling with limited resources and capabilities for 
addressing the daunting task of managing climate risks (European Commission, 2021). 



17Outlook

The investigation described in this paper can be considered a first and important step towards a wider 
coverage of uncertainties in the XDC Model. However, as described above, further sources of uncertainty 
will need to be considered and investigated before XDC results can be further qualified with, e.g., a margin 
of error and before this additional information can then be integrated into the software and products that 
draw on the XDC Model. Uncertainties may originate from the definition of sectors (with implications for 
classification and data availability), the input data, further model parameters (outside the climate-related 
elements), and scenarios. Finally, model uncertainty with regard to the underlying climate model will also 
need to be quantified.

Arguably the greatest challenge here will be to cope with uncertainties in input data, especially for 
emissions. Work to model and estimate emission data from company financial information and reporting 
has already begun. Advances here will improve the control and standardisation of input data and allow for 
uncertainty quantification in this crucial first calculation step. 

Addressing all of these points will contribute to providing richer and more robust information to 
practitioners from across finance, investment, and business through the XDC Model. Such information is 
vital to allowing business leaders to identify and implement effective decarbonisation measures, while also 
enabling financial actors to make sound choices on where to direct capital and how to both manage and 
price their climate risk. 

The unprecedented uncertainties that climate change brings with it will not be solved by any model or 
metric. However, providing clarity and transparency on their extent, their sources, and their impact on 
results is crucial to creating a metric that is suitable for practical use and integration into risk management 
processes. The work presented here, as well as further collaborative investigations between business, 
finance, and academia, will bring us closer to this aim – degree by degree.
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Consider a non-linear model

where y are the measurements, f is a non-linear function with parameters θ and design variables x, and � is the error term. Due 
to the error, it is impossible to estimate θ with total precision, but it is possible to calculate the probability distribution of θ.

For this non-linear model, Bayes’ theorem can be written as

where p(θ∣y) is the posterior distribution of the parameter θ given the observation y, p(y∣θ) is the likelihood of y occurring 
given that the parameter values are θ, p(θ) is a prior distribution of θ, the integral is a normalization constant and equal to the 
prior distribution p(y).

Markov Chain Monte Carlo (MCMC) is a method that allows one to sample a posterior distribution by generating a sequence 
(chain)  which asymptotically approaches the posterior distribution. The chain is generated randomly (hence the 
term Monte Carlo) and every member except the first depends only on the previous member (hence the term Markov Chain). 
The main advantage of MCMC is the ability to sample the posterior distribution (in this case p(θ∣y)) without computing a 
multidimensional integral.

Several algorithms exist to generate a MCMC chain. One of the most frequently used is the Metropolis Hastings (MH) 
algorithm (Metropolis et al. 1953). It starts with the initial point θ1 and it repeats the following steps until a chain of the 
required length is generated (the distribution of the sequence is close to the posterior distribution):

• Choose a candidate  with respect to the proposal distribution
• Accept the candidate with probability

The choice of the proposal distribution affects the speed of convergence and varies from case to case. Often a multivariate 
normal distribution is used as the first proposal and then the choice of the covariance matrix can heavily influence the 
optimal length of the chain and therefore the calculation time. To deal with that problem, the Adaptive Metropolis (AM) 
algorithm can be used (Haario, H., Saaksman, E., and Tamminen, J., 2001).

The main idea of the AM is to update the covariance matrix during the chain generation. After the initial covariance matrix C0 is 
proposed, the chain is generated until the n0-th member (so-called ‘burn-in’ period), and then every few steps the covariance 
is updated.

20
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Another advanced method is the Delayed Rejection (DR) algorithm. It is the same as MH except in the case of rejection of a 
candidate  where the second candidate  is generated from the proposal distribution  with respect 
to the rejected candidate. The probability of acceptance is

where α1 is calculated like the acceptance probability of the MH algorithm.

The combination of the above-mentioned methods is the Delayed Rejection Adaptive Metropolis (DRAM) algorithm (Haario 
et al. 2006). The algorithm is the same as the AM algorithm except when a candidate is rejected (first step of DR), then the 
further candidates are generated with respect to the scaled covariance matrix. In other words, in the first step of DR the 
candidate  is generated from the proposal distribution , and in the further steps the candidates  are 
generated from , where  is a scaling parameter that can be chosen freely.

For the calculations, the MCMC Toolbox for MATLAB written by Marko Laine was used. For the code and examples, see 
https://mjlaine.github.io/mcmcstat/. This package allows one to use MH and AM algorithms as well.
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1. A first sample (i.e., a set of parameters) is drawn from the prior distribution.
2. For the first iteration, a proposal distribution is defined which will be updated after the sample is accepted or   
 rejected.
3. A new sample is drawn from the proposal distribution.
4. The set of parameters is applied to the FaIR model and the temperature on historical data is calculated.
5. The new sample is accepted when the probability of the observed data (temperatures and concentrations) given  
 the new parameter sample is larger than for the previous parameter set (i.e., when the deviation between the   
 observed temperature values and the ones estimated with FaIR gets smaller). In case the probability isn’t larger, a  
 probability for the acceptance of the new sample is computed. 
6. The proposal distribution is updated according to the Delayed Rejection Adaptive Metropolis (DRAM) algorithm to  
 improve the efficiency of the sampling process (see above for more details).
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