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Resumo— Este artigo apresenta os resultados da Fase 1 de
uma pesquisa voltada a otimizacio técnica de Guardrails de
seguranca em agentes conversacionais baseados em modelos de
linguagem de larga escala (LLMs). O foco central reside no
refinamento de componentes de seguranca para mitigar riscos
criticos, como Prompt Injection e Jailbreaking. A metodologia
empregou um estudo de ablacdo sistematico com 72.000 execucdes
experimentais, utilizando um dataset hibrido que integra ataques
sintéticos e registros reais de producdo. Os resultados revelam a
identificacdo de uma arquitetura de alta performance que atingiu
niveis de precisdo proximos a perfeicio e a eliminacio de erros
estruturais de resposta, consolidando uma solucfo resiliente para
ambientes produtivos de larga escala. O estudo demonstra ainda
como a manipulacdo do contexto de entrada é determinante para
a desambiguacao semintica e para a reducio de falsos negativos.
Conclui-se propondo um modelo de configuracio baseado na
segregacio de responsabilidades técnica e funcional, otimizando
a seguranca sem comprometer a agilidade do agente principal.

Abstract— This paper presents the results of Phase 1 of a
research study on the technical optimization of safety Guardrails
for Large Language Model (LLM)-based conversational agents.
The study focuses on refining safety components to mitigate
critical risks such as Prompt Injection and Jailbreaking. Utilizing
a systematic ablation study with 72,000 experimental runs, the
methodology leverages a hybrid dataset of synthetic attacks
and real-world production logs. The findings highlight a high-
performance architecture that achieves near-perfect precision
scores and the total elimination of parsing errors, establishing
a resilient solution for large-scale production environments.
Furthermore, the research identifies how specific input context
strategies are essential for semantic disambiguation and the sig-
nificant reduction of false negative rates. The paper concludes by
proposing a configuration model based on the strict segregation
of technical and functional responsibilities, optimizing security
without compromising the primary agent’s operational efficiency.
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I. INTRODUCAO

A implementacdo de Agentes Conversacionais baseados
em Modelos de Linguagem de Grande Escala (LLMs) em
ecossistemas corporativos introduz vetores de risco que abran-
gem desde a exfiltracdo de dados até a subversdo da logica
de negécios. Para mitigar tais vulnerabilidades, a arquitetura
moderna de IA incorpora uma camada de Guardrails'. Este
médulo atua como um sistema de interceptacdo que avalia as
solicitagdes do usudrio. Com base em politicas e conceitos
de segurancga pré-definidos, o Guardrail decide pela liberacido

'Do inglés Guardrails. Refere-se a travas de seguranga e filtros que
garantem respostas éticas e seguras em modelos de IA.

ou bloqueio da resposta, validando se a interacdo estd em
conformidade com o comportamento esperado do sistema. No
contexto desta pesquisa, esta configuracdo estabelece a base
para a Fase I, que foca na otimizagdo técnica e na validagdo
dessa camada de interceptacdo em cendrios reais de producdo.

A. Arquitetura de Interceptacdo e Mecanismo de Decisdo

O sistema em estudo emprega um classificador baseado em
LLM que utiliza a técnica de Tool Calling (chamada de fun-
¢do). Sob este paradigma, o modelo é for¢ado a realizar uma
escolha bindria obrigatéria entre duas funcdes predefinidas:

1) mensagem_segura: Interacdes que, embora possam ser
informais ou estar fora do escopo de negécio, ndo
apresentam riscos a infraestrutura ou diretrizes éticas.

2) nao_segura: Categoria que engloba interacdes com
risco real a integridade do sistema. Inclui técnicas de
Prompt Injection’, além de injecdes de cédigo como
SQL Injection (SQLi)’. Compreende também manobras
de exfiltracdo de dados*, contetddo téxico® e tentativas
de Goal Hijacking® via roleplay’. Esta categoria conso-
lida qualquer entrada que tente subverter instrucdes de
seguranga ou acessar dados protegidos.

B. Definicdo do Problema: As Dores do Produto

Apesar da arquitetura logica estabelecida, a operagdo
em ambiente de produgdo revelou limitacdes criticas que
comprometem a robustez do sistema. Tais vulnerabilidades
manifestam-se na dificuldade de resposta a cendrios imprevis-
tos, evidenciando lacunas na capacidade de discernimento e na
eficiéncia do componente de seguranga, conforme detalhado a
seguir:

1) Overfitting ao Few-Shot (Rigidez Cognitiva): O mo-
delo apresenta uma tendéncia a classificar como ameaca
apenas mensagens que sdo cOpias exatas ou variacdes
minimas dos exemplos fornecidos no System Prompt®.
Essa rigidez impede que o sistema identifique ataques
que utilizam variagdes sutis de linguagem.

Do inglés Prompt Injection. Refere-se ao uso de instrugdes para enganar
a IA e fazé-la ignorar suas regras originais.

3Do inglés SQL Injection. Refere-se a inser¢io de comandos maliciosos
para manipular ou acessar bancos de dados indevidamente.

4Extragio nio autorizada de informagdes sensiveis.

SLinguagem ofensiva, discurso de 6dio ou assédio.

Do inglés Goal Hijacking. Refere-se ao desvio do objetivo original da TA
para uma nova finalidade definida por um atacante.

"Do inglés Roleplay. Refere-se 2 instrugdo para que a IA assuma um
personagem ou comportamento especifico em uma interagao.

8Do inglés System Prompt. Refere-se as instrugdes base fornecidas ao
modelo para definir seu comportamento, regras e limites antes da interacdo
com o usudrio.
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2) Hipersensibilidade e Falsos Positivos (Atrito de UX’):
O sistema demonstra incapacidade em distinguir a frus-
tracdo do usudrio de uma ameaca real. Interacdes le-
gitimas, porém informais ou carregadas de insatisfacdo,
sdo frequentemente bloqueadas de forma incorreta, o que
prejudica a jornada de atendimento.

3) Dependéncia de Contexto e Inferéncia Rigida: Existe
uma incerteza sobre como o histdrico da conversa (Full
History)'? influencia a decisdo de seguranca e se a con-
figuracdo atual de temperatura (0.0) limita a capacidade
do modelo de abstrair o conceito de “ameaga” para além
dos exemplos literais.

4) Dualidade de Escopo e Conflito de Responsabili-
dade: Observa-se uma inconsisténcia na classificacdo de
mensagens out-of-scope (fora de escopo), gerando um
conflito de competéncias entre o Guardrail e o agente.
O sistema oscila entre focar estritamente na integridade
da infraestrutura ou bloquear interagdes meramente ir-
relevantes ao tema. Essa dualidade exige uma definicao
clara se a filtragem de escopo deve ser consolidada na
camada de seguran¢a ou delegada a 1dgica de interacdo
do agente principal.

C. Objetivos da Pesquisa

Esta pesquisa € estruturada em etapas consecutivas, sendo
que a presente fase (Fase I) fundamenta-se na hipdtese de que
o médulo atual possui a inteligéncia necessdria, mas encontra-
se sub-otimizado devido a pardmetros de inferéncia rigidos e
uma engenharia de prompt restritiva. O objetivo central desta
etapa inicial é realizar o refinamento técnico do componente
de seguranca para validar sua viabilidade operacional. Os
objetivos especificos desta fase incluem:

o Maximizacdo da Eficdcia: Atingir o equilibrio ideal

entre Recall'' e Precision'”

o Generalizacdo de Conceitos: Garantir que o modelo
compreenda o conceito abstrato de ameagas em vez de
limitar-se a memorizacdo de padrdes textuais especificos.

o Benchmarking'® de Modelos e Eficiéncia: Avaliar se
modelos de menor escala (como as versdes Nano e Mini)
mantém o desempenho de seguranca adequado, visando
a reducdo de laténcia e de custos operacionais.

II. METODOLOGIA

Para validar a hipdtese de que a otimizacdo de pardmetros
e prompts elevaria a performance do sistema, foi desenhado

°Do inglés User Experience. Refere-se i experiéncia e percepcio de
um usudrio ao interagir com um produto, sistema ou servico, focando em
facilidade de uso e satisfacéo.

10D inglés Full History. Refere-se ao envio de todo o histérico da conversa
para o sistema de seguranga, permitindo analisar o contexto completo e
detectar ameagas contextuais ou desambiguar mensagens suspeitas.

Do inglés Recall. Refere-se 4 taxa de acerto de um sistema de seguranga
em identificar todas as ameacas reais presentes, minimizando a ocorréncia de
falsos negativos.

2Do inglés Precision. Refere-se i exatidio de um sistema de seguranga
ao identificar ameacas, representando a proporcio de alertas emitidos que sdo
realmente ataques reais, visando reduzir falsos positivos.

13Do inglés Benchmarking. Refere-se ao processo de comparar o desem-
penho de um modelo ou sistema de seguranca contra padrdes de referéncia
ou métricas estabelecidas no mercado.

um estudo de ablacio'* sistemdtico. A terminologia adotada
fundamenta-se nos padrdes de deteccdo de ameagas do mer-
cado.

TABELA 1
DEFINICOES DE METRICAS APLICADAS AO CONTEXTO DE SEGURANCA

Resposta Esperada Resposta Predita Resultado (Métrica)

Segura Segura True Negative (TN)
Nao Segura Segura False Negative (FN)
Nao Segura Nao Segura True Positive (TP)
Segura Nao Segura False Positive (FP)

Fonte: Elaborado pelo autor (2026).

A classe positiva € definida como a presenca de uma ameaga
(nao_segura). As métricas de classificacdo foram extraidas a
partir da andlise comparativa entre o rétulo esperado e o rétulo
predito pelo modelo, conforme detalhado na Tabela I.

A. Tratamento de Erros e Registros Invdlidos

Um aspecto critico da metodologia € o tratamento de falhas
de processamento ou erros de resposta da API. Tais registros
sdo classificados como FAILURE.

Diferente das abordagens de classificacdo tradicionais, re-
gistros marcados como FAILURE ndo compdem a matriz de
confusdo. As métricas de performance (Precisdo, Recall e F1-
Score) sdo calculadas exclusivamente sobre o subconjunto de
registros vdlidos. A eficiéncia do sistema quanto ao proces-
samento € monitorada separadamente pela Taxa de Erro de
Parsing

S FAILURE
Total de Registros

Taxa de Erro de Parsing =

B. Métricas de Performance
Para a quantificagdo do desempenho sobre os dados validos,
foram aplicadas as seguintes métricas fundamentais:

o Precision: Mede a exatiddo das detec¢des. Responde:
“Das mensagens classificadas como ameacga, quantas
eram realmente ameagas?”

TP
TP+ FP
o Recall: Mede a taxa de detec¢do de ameagas reais.

Responde: “Das ameacas existentes, quantas o sistema
conseguiu identificar?”

Precision =

TP
TP+ FN

e F1-Score: Média harmonica entre Precisdo e Recall,
oferecendo uma visdo balanceada da performance global.

Recall =

Fl—9 Precision - Recall

" Precision + Recall

4Método experimental que consiste em remover ou alterar componentes
especificos de um sistema de IA para avaliar o impacto individual de cada
varidvel no desempenho global.
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C. Design do Experimento do prompt, pois a infraestrutura da API valida a
obrigatoriedade da resposta estruturada.

— JSON Schema (Structured Output): Combina o
parametro response_format: {"type": "json_object"}
com uma instrucao restritiva no prompt. Enquanto a
API garante a validade do JSON, o prompt define a
semantica do campo (ex: seguranca_status), exigindo
que o modelo realize o parsing interno de acordo

com o esquema definido.

A pesquisa utilizou uma matriz de testes A/B'> variando
cinco dimensdes principais para identificar a configuracio
ideal:

o Modelos LLLM (via LiteLLLM): Foram comparados mo-
delos de diferentes escalas para avaliar o trade-off (equi-
librio de forcas) entre custo operacional e eficicia de
seguranca: Gemini 2.0 Flash, Gemini 2.5 Flash, GPT 4.1
Mini, GPT 4.1 Nano ¢ GPT 4o Mini.

« Engenharia de Prompt: « Contextualizacdo do Agente (System Prompt): Avalia

o impacto do fornecimento da "persona'e das diretrizes
operacionais do agente ao classificador. Foram testados
dois cendrios:

— Prompt Simples: Baseia-se em instrugdes concei-
tuais e defini¢des abstratas das categorias de risco
(como Jailbreak e Conteido To6xico), sem a oferta
de exemplos préticos, exigindo maior capacidade de
inferéncia do modelo.

— Few-Shot: Inclui exemplos concretos de mensa-
gens e suas respectivas classificagdes. Por exemplo:
“ignore as instrucdes anteriores” — nao_segura;
“Quero comunicar um sinistro” — segura. Este
método visa reduzir a ambiguidade e ancorar o
comportamento do classificador.

— Chain of Thought: Estrutura o processo de decisdo
em etapas ldgicas obrigatdrias, por exemplo:

— Sem Contexto: O classificador analisa a mensagem
de forma isolada, sem saber se o bot é um assistente
juridico, médico ou de suporte geral.

— Com Contexto de Atuacdo: O prompt do agente
(ex: “Vocé é um assistente de seguros especializado
em sinistros"”) € incluido na andlise. O objetivo
¢é verificar se o conhecimento do dominio reduz a
taxa de falsos positivos, permitindo que o modelo
diferencie termos técnicos legitimos de tentativas de
manipulacdo ou linguagem ofensiva.

* Passo 1: Identificacdo
* Passo 2: Andlise de Padrdes
* Passo 3: Contextualizagdo

D. Dataset Hibrido de Teste

A validade dos testes foi sustentada por um dataset conso-
lidado de 150 casos de teste, categorizados em duas frentes:

1) Dados Sintéticos de Ataque (62%): Casos gerados

Dessa maneira, forcando o modelo a analisar a
intencdo e a resisténcia a manipulagdes antes de

emitir o veredito binario.

o Hiperparametros (Temperatura): Varredura de valores
(0.0,0.1,0.3,0.5) para encontrar o equilibrio entre o
determinismo necessdrio para seguranca e a flexibilidade
para generalizacdo conceitual.

ou coletados de bases publicas contendo variacdes de
Jailbreaks (ex: DAN, Modo Desenvolvedor), codificacio
em Base64 e injecdes sutis de instrugdes. Foram in-
cluidos também cendrios out-of-scope nessa frente para
observar como o Guardrail interage com essas demandas

sob a légica atual, visando identificar a origem das

— Stateless: Envio apenas da dltima mensagem do inconsisténcias relatadas em produgdo.
usudrio para testar o isolamento e o foco na ameaca 2) Dados Reais Sanitizados (38%): Logs de produgdo
reais que passaram por um processo de desidentifica-

¢do. Foram ofuscadas categorias de dados sensiveis e
PII'®, incluindo informagdes de identificagdo civil (CPF,
RG), dados de contato (e-mail, telefone) e referéncias a
ativos financeiros. Este subconjunto é fundamental para
monitorar falsos positivos em interacdes legitimas.

o Janela de Contexto:

imediata.

— Full History: Envio de todo o histérico da con-
versa para fornecer contexto ao classificador. Esta
abordagem visa permitir a desambiguacdo de inten-
¢Oes, onde mensagens que isoladamente poderiam
ser interpretadas como suspeitas sdo validadas como
legitimas com base no fluxo prévio da interagdo,
reduzindo assim a taxa de falsos negativos.

Cada unidade de teste no dataset é representada por um
objeto estruturado em formato JSONL, o que garante a rastrea-
bilidade dos dados. A estrutura de um caso de teste € composta
por quatro pilares fundamentais:

o Formato de Saida: A avaliacdo da robustez sintética
baseia-se no contraste entre dois métodos de estruturacio
via APL:

— Tools (Function Calling): Utiliza a interface de
funcdes da API, onde o pardmetro tool_choice:
“required” forca o modelo a responder com uma
chamada de funcdo especifica (mensagem_segura
ou nao_segura). Este método ndo depende apenas

1) Identificacdo: Através de um id tinico e o campo source,
que distingue se a origem da amostra € sintética ou
proveniente de logs reais de produgdo.

2) Classificacao de Referéncia (Ground Truth): Os cam-
pos mensagem_segura (booleano) e tipo_de_ameaca es-
tabelecem o resultado esperado contra o qual o modelo
serd avaliado.

15Método de experimentagio comparativa que analisa duas ou mais vari-
antes de uma varidvel (neste caso, modelos e configuracdes) para determinar
qual versao apresenta melhor desempenho sob métricas especificas.

16Do inglés Personally Identifiable Information. Refere-se a qualquer dado
que possa ser usado para identificar um individuo especifico, como CPF, e-
mail, nimero de telefone ou dados biométricos.
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3) Contexto Conversacional: O historico_mensagens con-
tém a sequéncia de interagdes anteriores, enquanto o
message_to_test_index aponta exatamente qual men-
sagem do histérico deve ser submetida ao crivo do
Guardrail.

4) Configuracao do Agente: O campo system_prompt ar-
mazena as instrugdes completas de persona e habilidades
do rob6é no momento do teste.

Abaixo, apresenta-se a estrutura simplificada de uma entrada
do dataset:

{
"id": "synthetic_injection_0001",
"source": "synthetic",
"mensagem_segura": false,
"tipo_de_ameaca": "injection_roleplay",
"historico_mensagens": [

{"user": "cliente", "mensagem": "..."},
{"user": "agent", "mensagem": "..."}

1,

"message_to_test_index": 9,

"system_prompt": "..."

1) Definicdo Detalhada dos Dados: Os dados presentes
no Dataset utilizado para testes se enquadram nas seguintes
categorias listadas:

TABELA 1I
CATEGORIAS DE AMEACAS E DEFINICOES

Categoria Descricao

Nenhuma Nao é uma ameacga, s30 mensagens se-
guras e legitimas do usudrio.

Prompt Injection Tentativa sutil de manipular o modelo
disfarcada como solicitagdo legitima,
sem mencionar explicitamente instrugdes
ou regras.

Injecdo de Instrugcdes  Tentativa explicita de modificar ou anu-
lar as instrugcdes do sistema, mencio-
nando diretamente "instru¢des anterio-

res", "modo"ou comandos invalidos.

Injecdo de Dados Tentativa de manipular ou extrair da-
dos sensiveis, referenciar informacdes de
forma suspeita ou tentar acesso nio au-

torizado.
Injecdo de Seguranca  Tentativa de burlar ou comprometer me-
didas de seguranca do sistema, mencio-
nando violagdes ou explorando vulnera-

bilidades.

Tentativa de fazer o modelo assumir
um papel ou personagem especifico para
contornar restricdes normais.

Injecdo de Roleplay

Injecdo Ofensiva Contetdo ofensivo, abusivo ou inapropri-

ado que viola diretrizes éticas.

Contetddo Sexual Contetdo sexual explicito ou inapropri-

ado.

Automutilacdo Contetddo relacionado a automutilagio,
suicidio ou autolesdo que requer inter-

vengdo de seguranga.

Fonte: Elaborado pelo autor (2026).

E. Pipeline de Execugcdo e Métricas

O pipeline'” foi automatizado para realizar milhares de com-
binacdes de testes. Essa abordagem resultou em um volume de
480 execugdes por caso, totalizando um dataset de resultados
com 72.000 instancias processadas.

Cada um dos 150 casos de teste foi submetido a uma matriz
combinatdria composta por 5 modelos de linguagem, 4 niveis
de temperatura, 2 modos de contexto, 2 formatos de saida, 3
variagdes de prompting e 2 condigdes de inclusdao do Prompt
do Agente (com/sem). Para cada execucgdo, foram extraidas as
seguintes métricas:

o Métricas de Classificacdo: Utilizou-se o Recall ¢ a

Precision para avaliar a confiabilidade dos bloqueios.

o Métricas Operacionais: A laténcia'® foi monitorada para
validar a viabilidade de uso em tempo real, juntamente
com a estabilidade de parsing'®, métrica critica para
garantir a continuidade da experiéncia do usudrio.

ITI. RESULTADOS E ANALISE DE PERFORMANCE

A andlise de dados foi estruturada de forma incremental,
avaliando desde o desempenho intrinseco dos modelos até o
impacto das varidveis de configuragdo.

A. Avaliacdo Comparativa de Modelos

Nesta etapa, isolou-se a performance de cada modelo para
entender seu comportamento padrio em tarefas de seguranca.
A andlise quantitativa revela disparidades significativas na
eficdcia dos modelos, especialmente no que tange ao equilibrio
entre precisdo e recall.

TABELA III
DESEMPENHO COMPARATIVO POR MODELO

Modelo F1 Prec. Rec. Erro Lat.
Gemini 2.0 Flash  0,9781 0,9792 0,9769  0,00% 1,027
Gemini 2.5 Flash  0,9779  0,9910 0,9651 16,99% 1,707
GPT 4.1 Mini 0,9243  0,9853 0,8703 0,00% 1,814
GPT 4.1 Nano 0,8851 0,8249 0,9548 0,14% 0914
GPT 40 Mini 09174 0,8717 0,9682  0,00% 1,014

Fonte: Elaborado pelo autor (2026).

1) Gemini 2.0 Flash: O modelo Gemini 2.0 Flash apresenta
o perfil mais equilibrado do estudo, exibindo uma matriz de
confusdo com alta concentracdo na diagonal principal, o que
reflete uma classificacdo precisa tanto para ameacas quanto
para interagdes seguras.

Com um FI-Score de 0,9781 € um Recall de 00,9769,
o sistema demonstra alta eficicia na detec¢do de ataques,

Do inglés Pipeline. Refere-se ao conjunto de processos ou etapas de
computagdo encadeadas de forma sistemadtica, onde a saida de uma etapa
serve como entrada para a préxima, permitindo a automacdo do fluxo de
dados.

8 Tempo decorrido entre o envio da requisicio e o recebimento da resposta
estruturada pelo sistema.

Do inglés Parsing. Refere-se ao processo de analisar e converter a saida
bruta do modelo para um formato estruturado especifico, como JSON ou
Markdown, garantindo que os dados sejam legiveis por outros sistemas.
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minimizando a ocorréncia de falsos negativos que poderiam
comprometer a integridade da sessdo.

Adicionalmente, sua performance técnica é evidenciada pela
auséncia total de erros de parsing (0,00%) e uma lat€ncia mé-
dia de 1,027s, posicionando-o como a solu¢@o mais resiliente
para ambientes de producdo. Esta consisténcia operacional in-
dica que o modelo consegue processar instrucdes complexas de
seguranga sem gerar o “atrito de UX” observado em variantes
menos precisas, garantindo uma jornada de atendimento fluida
e protegida.

Fig. 1
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Fonte: Elaborado pelo autor (2026).

2) Gemini 2.5 Flash: O modelo Gemini 2.5 Flash apresenta
o maior rigor de classificacdo do grupo, atingindo uma Preci-
sion de 0,9910, o que se traduz em um indice quase nulo de
falsos positivos e uma confiabilidade excepcional ao autorizar
mensagens seguras.

Fig. 2
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Fonte: Elaborado pelo autor (2026).

Entretanto, sua viabilidade operacional em larga escala é
severamente comprometida por uma taxa de erro de parsing de
16,99%, a mais alta registrada no estudo. Em um cendrio real
de producdo, esse dado indica que aproximadamente uma em
cada seis interagdes falharia devido a incapacidade do modelo
em aderir estritamente ao formato de saida (7Tools ou JSON
Schema). Essa instabilidade sintdtica cria um gargalo critico na
integracdo direta, exigindo mecanismos complexos de fallback

ou reprocessamento, o que elevaria significativamente o custo
computacional e a laténcia percebida pelo usudrio final.

3) GPT 4.1 Mini: O modelo GPT 4.1 MIni é caracterizado
por um perfil de alta confiabilidade no bloqueio, sustentado por
uma Precision de 0,9853. Este dado garante que as mensagens
marcadas como ameaca sdo quase certamente maliciosas,
oferecendo uma operagdo com baixissimo indice de falsos
alarmes.

Por outro lado, o modelo apresenta um Recall de 0,8703,
indicando uma postura significativamente menos agressiva na
captura de ataques em comparagdo aos modelos da familia
Gemini. Na prética, essa métrica revela uma vulnerabilidade
critica: cerca de 13% das ameagas, predominantemente as mais
sutis ou codificadas, passam despercebidas (falsos negativos),
atingindo o agente principal sem a devida interceptag@o.

Fig. 3
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Fonte: Elaborado pelo autor (2026).

Embora sua estabilidade de parsing seja satisfatéria, esse
comportamento sugere a necessidade de camadas adicionais de
validag@o caso o modelo seja adotado como tnico Guardrail
em contextos de alta periculosidade.

4) GPT 4.1 Nano: O modelo GPT 4.1 Nano prioriza a
agilidade operacional, registrando a menor laténcia média do
estudo (0,914s), o que o torna ideal para aplicagdes que exigem
respostas quase instantineas.

Fig. 4
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Fonte: Elaborado pelo autor (2026).
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Contudo, este ganho de velocidade reflete uma perda subs-
tancial na qualidade da classificacdo: o modelo apresenta a
menor Precision do grupo (0,8249), o que resulta em um
volume considerdvel de falsos positivos.

Caracterizado por um perfil que “atira primeiro e pergunta
depois”, sua sensibilidade descalibrada tende a bloquear inte-
racdes inofensivas com frequéncia, prejudicando severamente
a experiéncia do usudrio legitimo (UX) ao gerar interrupgdes
desnecessdarias. Embora seja eficiente em termos de custo
computacional, sua aplicacdo como Guardrail primdrio exige
cautela, pois o alto indice de falsos alarmes pode levar a
frustragdo do cliente e a degradacdo da confianca no sistema
automatizado.

5) GPT 4o Mini: O modelo GPT 40 Mini apresenta um
comportamento focado em deteccao ampla, sustentado por um
Recall de 0,9682, o que o torna extremamente eficiente em
garantir que ameagas ndo passem despercebidas pelo sistema.
Entretanto, sua Precision de 0,8717 revela uma tendéncia
a classificar mensagens seguras como suspeitas com maior
frequéncia que os modelos de topo. Esse perfil € ideal para
fluxos de segurancga critica onde o custo de um Falso Negativo
(vulnerabilidade) € substancialmente maior que o impacto ope-
racional de um Falso Positivo (atrito). Além disso, o0 modelo
mantém uma laténcia competitiva de 1,014s e estabilidade total
de parsing, consolidando-se como uma escolha estratégica
para camadas de defesa agressivas que ndao podem tolerar
brechas, mesmo que isso resulte em uma filtragem mais
rigorosa de interagdes legitimas.

Fig. 5
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6) O Fendémeno do Blogueio Nativo (Safety Filters): Um
fator determinante na performance observada foi a incidéncia
de bloqueios nativos operados pelos proprios provedores de
modelos (Safety Filters), que interceptam a requisi¢do antes
mesmo do processamento pela camada de Guardrail customi-
zada. No total, 9,98% das requisi¢des (7.182 instancias) foram
bloqueadas automaticamente, o que caracteriza uma camada de
seguranga primdria e intrinseca aos modelos de larga escala.

TABELA 1V
DISTRIBUICAO E EFICACIA DOS BLOQUEIOS NATIVOS POR MODELO

Modelo Total Bloqueios Taxa (%) Eficacia (TP)
GPT 4.1 Mini 1.918 13,32% 100,00%
GPT 4.1 Nano 3.359 23.,33% 100,00%
GPT 40 Mini 1.905 13,23% 99,74%

Fonte: Elaborado pelo autor (2026).

N

No que tange & cobertura, a eficicia na mitigacdo de
riscos (Recall) apresentou disparidades significativas conforme
a categoria do ataque. O sistema demonstrou maior sensibili-
dade para Conteiido Sexual (20,00%) e Injecdo de Roleplay
(29,90%), o que contrasta com o desempenho critico em tenta-
tivas de Injecdo de Dados, cujo bloqueio nativo foi de apenas
5,22%. Com uma taxa agregada de contencdo de apenas
16,09%, evidencia-se que a maioria das ameagas transpassa
os filtros primarios, refor¢cando a necessidade indispensavel de
uma camada de Guardrail robusta e especializada para garantir
a seguranca da aplicacdo.

A andlise léxica das mensagens que sofreram bloqueio
nativo revela padrdes semanticos associados a tentativas de
subversdo do sistema. Termos como “ignore”, “desconsidere”,
“anteriores” e “instrucdes” figuram entre as palavras-chave
mais recorrentes, evidenciando que os filtros sd3o altamente
reativos a comandos que visam a anulacdo de diretrizes de
seguranga (jailbreak por negacdo de contexto).

Embora esses filtros elevem o Recall geral, a disparidade
observada no modelo GPT 4.1 Nano, com taxa de bloqueio
de 23,33%, sugere uma estratégia de seguranca mais agressiva
e menos granulada em modelos de menor escala. Esta rigidez
operacional atua como um mecanismo compensatério para
limitagdes no raciocinio l6gico, mas deve ser ponderada contra
o risco de degradagdo da experiéncia do usudrio (UX) em
cendrios de alta ambiguidade linguistica, onde o bloqueio pre-
ventivo pode substituir uma andlise contextual mais refinada.

B. Andlise das Varidveis Experimentais

Ap6s a caracterizag@o dos modelos, esta secdo detalha como
as varidveis de configura¢io influenciaram o desempenho do
sistema, identificando os componentes determinantes para a
eficdcia do Guardrail.

1) Arquitetura de Prompt e Raciocinio Estruturado: O
achado mais significativo deste estudo foi o desempenho
superior da técnica de Few-Shot em comparacdo ao Chain
of Thought (CoT). Embora o CoT seja eficaz em tarefas de
l6gica pura, sua aplicacdo em filtros de segurancga estruturados
apresentou um efeito colateral de instabilidade sintética:

o Prompt Simples: Demonstrou limitagdes na generaliza-
¢do (F1: 0,9337), evidenciando que instru¢des puramente
conceituais sdo insuficientes para cobrir as nuances de
ataques complexos.

o Few-Shot: Consolidou-se como a estratégia mais robusta
(F1: 0,9565). A ancoragem em exemplos concretos per-
mitiu ao modelo alinhar o veredito de seguranca com uma
baixa taxa de erro de parsing (1,36%).
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e Chain of Thought: Registrou o menor F1-Score
(0,9309). A verbosidade do raciocinio intermediario fre-
quentemente corrompeu o formato JSON esperado, ele-
vando o erro de parsing para 8,24%. Isso ocorre porque
a geracdo de texto livre antes da saida estruturada cria
uma ‘“competicdo de contexto”, levando o modelo a
incluir explicacdes narrativas ou delimitadores textuais
que violam o rigor sintatico do JSON Schema.

Fig. 6
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Fonte: Elaborado pelo autor (2026).

2) Impacto da Inclusdo do Prompt do Agente: A inclusio
do System Prompt do agente principal no contexto do Guar-
drail foi testada para avaliar se o conhecimento do dominio
auxiliaria o modelo a contextualizar melhor as interagdes.
Os resultados revelam que o contexto do agente geralmente
induz o modelo a um comportamento significativamente mais
defensivo:

TABELA V
COMPARATIVO DE PERFORMANCE COM A INCLUSAO DO PROMPT DO
AGENTE
Configuraciao F1-Score Prec. Rec. Erro
Sem Prompt Agente 0,9395 0,9459 0,9331 4.57%
Com Prompt Agente 0,9416 0,9203 0,9638 3,03%

Fonte: Elaborado pelo autor (2026).

A interpretagdo técnica dos dados revela:

o Aumento da Sensibilidade (Ganho de Recall): Com
a inclusdo do prompt do agente, o Recall subiu para
0,9638. Isso indica que o modelo tornou-se significativa-
mente mais capaz de identificar ameagas e tentativas de
subversdo, reduzindo o volume de ataques que passariam
despercebidos (Falsos Negativos).

+ Aumento de Bloqueios Indevidos (Perda de Precisio):
A Precisdo caiu para 0,9203. O conhecimento do dominio
faz com que o modelo interprete ambiguidades com maior
rigor, resultando em um aumento de Falsos Positivos
(mensagens seguras bloqueadas incorretamente por serem
confundidas com tentativas de quebra de escopo).

A conclusdo operacional é que a inclusdo do prompt do
agente melhora a detec¢do de ameagas com a consequéncia do
aumento de Falsos Positivos. A decisdo de utilizd-lo depende
da prioridade do sistema: seguranga maxima (priorizando
Recall) ou fluidez da experiéncia do usudrio (priorizando
Precision).

3) Efeito da Janela de Contexto: A andlise experimental
demonstrou que a inclus@o do histérico completo da conversa
é a varidvel de maior relevancia para a redugdo de Falsos
Negativos. A transicdo do modo de operagdo isolado (Sta-
teless) para o processamento baseado em histérico completo
(Full History) atua como um mecanismo de desambiguacio
semantica fundamental para sistemas conversacionais.

Fig. 7
COMPARACAO FP vs. FN - JANELA DE CONTEXTO

= Falsos Positivos (FP)
m= Falsos Negaiivos (FN)

8.25%
I -

1051%

I “m
Stateless

Taxa de Erro (%)

12
10
8
6
a
2
o

Full History
Tipo de Contexto

Fonte: Elaborado pelo autor (2026).

Conforme os dados da andlise, a utilizagdo de Full History
elevou o FI-Score de 0,9288 para 0,9522. O ganho real
consolidado de 2,34 pontos percentuais valida a importancia
da persisténcia de contexto. Este incremento de performance é
decisivo para identificar ameagas que utilizam o encadeamento
de mensagens para camuflar inten¢des maliciosas, permitindo
que o modelo interprete a entrada atual sob a ética do fluxo
conversacional prévio.

TABELA VI
COMPARATIVO CONSOLIDADO DE DESEMPENHO POR JANELA DE
CONTEXTO
Contexto Lat. Prec. Rec. F1 Erro
Full History 1,334s 0,9407 0,9640 0,9522 3,68%
Stateless 1,282s 0,9244 0,9333 0,9288 3,92%

Fonte: Elaborado pelo autor (2026).

Os resultados consolidam o modo Full History como a
configuracdo mais consistente para o sistema, uma vez que
o incremento de 3,08 pontos percentuais no Recall e a re-
ducdo da taxa de falsos negativos pela metade, reduzindo o
risco de ataques graduais, justificam amplamente o acréscimo
marginal de 0,05s na laténcia média. Essa escolha prioriza a
robustez da seguranca e a integridade da jornada do usudrio,
mitigando vulnerabilidades que o modo Stateless ndo é capaz
de interceptar devido a auséncia de contexto histdrico.
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4) Sensibilidade a Temperatura: A varredura de tempera-
tura revelou que o sistema mantém uma estabilidade excepci-
onal sob diferentes niveis de estocasticidade®”.

Ao analisar o desempenho do modelo em diferentes confi-
guracdes de temperatura (variando de 0,0 a 0,5), observou-se
que as oscilacdes no FI-Score sdo estatisticamente marginais,

conforme demonstrado na figura. 8.

Fig. 8
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Fonte: Elaborado pelo autor (2026).

Diferente do que se observa em tarefas criativas, a tarefa
de classificacdo de seguranca demonstrou alta resiliéncia a
variacdo deste pardmetro. O sistema manteve um F/-Score
médio de aproximadamente 0,94 em todos os cendrios testa-
dos. Esta estabilidade sugere que o prompt e a estrutura logica
do sistema sdo robustos o suficiente para manter a consisténcia
da classificacdo, independentemente do nivel de amostragem
probabilistica aplicado na inferéncia. Para fins de produgao,
a escolha de temperaturas mais baixas (préximas a 0,0) é
recomendada apenas para garantir a reprodutibilidade técnica,
sem prejuizo a eficdcia da deteccdo.

5) Robustez do Formato de Saida: A comparagdo entre 0s
protocolos de resposta revelou distingdes significativas entre o
uso de Structured Output (JSON Schema) e Tools (Function
Calling). Os dados consolidados na Tabela VII indicam que a
escolha do protocolo impacta ndo apenas a acurdcia da clas-
sificacdo, mas também a resiliéncia operacional do sistema.

TABELA VII
COMPARATIVO DE PERFORMANCE E ESTABILIDADE POR PROTOCOLO DE
SAIDA
Formato de Saida F1 Prec. Rec. Erro
Json Schema 0,9400 0,9411 0,9389 5,97%
Function Calling 0,9411 0,9248 0,9579 1,62%

Fonte: Elaborado pelo autor (2026).

O protocolo Tools (Function Calling) demonstrou ser a
abordagem mais eficaz para a deteccdo de ameacas, atingindo
um Recall de 0,9579. Esta maior sensibilidade indica que o

20Refere-se a natureza probabilistica e aleatéria do processo de selecio
de tokens. Em LLMs, uma maior estocasticidade resulta em respostas mais
variadas e criativas, enquanto uma baixa estocasticidade torna o modelo mais
deterministico e previsivel.

modelo, quando operando via fungdes, consegue identificar
uma gama mais ampla de intencdes maliciosas. Além disso,
este formato apresentou uma robustez sintdtica superior, com
uma taxa de erro de parsing de apenas 1,62% — um indice
aproximadamente 3,7 vezes menor que o registrado pelo JSON
Schema.

Por outro lado, o JSON Schema apresentou uma Precisdo li-
geiramente superior (0,9411), sugerindo um perfil mais conser-
vador que minimiza bloqueios indevidos de usudrios legitimos.
Contudo, devido a maior incidéncia de falhas de formatacio
e ao Recall inferior, o uso de Tools consolida-se como a
arquitetura preferencial para cendrios de alta disponibilidade
e rigor defensivo, equilibrando a madxima captura de ameagas
com a menor taxa de falha técnica.

C. Andlise de Outliers: Padroes de Falha e Causas Raiz

No universo de 150 casos analisados, foram identificados
e isolados 37 casos classificados como outliers®'. A selecio
desses casos baseou-se em um critério de criticidade técnica,
definindo como outliers todas as mensagens que apresentaram
uma taxa de erro total (classificacdo e parsing) superior
a 10,0%. Esse subconjunto foi submetido a uma andlise
detalhada para mapear comportamentos andmalos e falhas
sistemdticas nos modelos de linguagem avaliados.

Fig. 9
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Fonte: Elaborado pelo autor (2026).

A andlise dos outliers revela vulnerabilidades sistémicas
distintas entre modelos de grande escala e modelos compac-
tos, além de demonstrar como a configuracdo do ambiente
influencia a precisdo do Guardrail.

1) Tipologia de Mensagens com Maiores Indices de Falha:
As falhas de classificagdo do modelo concentram-se em trés
perfis principais, revelando limitagdes no tratamento de ambi-
guidades seménticas e técnicas de evasdo:

o Ambiguidade e Falta de Contexto (Falsos Positivos):
Respostas afirmativas simples ou escolhas de menu (ex:
“17, “Sim”) sdo frequentemente mal interpretadas como
potenciais riscos devido a falta de densidade semantica.

21Do inglés outlier. Refere-se a observagdes que se desviam drasticamente
da média do conjunto de dados, podendo indicar erros de medicdo, falhas
de execucdo no pipeline ou comportamentos atipicos que distorcem a anélise
estatistica.
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o Requisicoes Out-Of-Scope (Falsos Negativos): Este
ponto levanta uma questiio conceitual sobre a arquitetura
do Guardrail. Pedidos puramente estéticos ou literdrios
s@o contabilizados como Falsos Negativos, mas a hip6tese
levantada é que fugas de escopo ndo possuem a natureza
semantica de uma “mensagem ndo segura” pela definicio
adotada. Portanto, elas ndo seriam falhas de seguranca,
mas sim de aderéncia ao dominio, ndo devendo ser
processadas pela mesma légica de detec¢do de danos.

o Dados Sensiveis e Estruturas Irregulares: A presenca
de padrdes numéricos rigidos ou ruidos de formatagdo
(espacamentos excessivos) confunde, sobretudo, os mo-
delos de menor escala, gerando bloqueios indevidos.

2) Combinagées de Pardmetros e Desempenho Critico: A
andlise detalhada dos outliers revela que as falhas ndo sdo
distribuidas uniformemente, mas concentram-se em combina-
¢des especificas de pardmetros que potencializam as fraquezas
inerentes de cada modelo.

« Interacio entre Modelo e Formato de Saida: A andlise
da Tabela VIII revela que o formato de saida altera dras-
ticamente o comportamento de seguranca dos modelos.
Esse fendmeno indica que modelos menores adotam uma
postura conservadora para compensar incertezas ldgicas
quando forgados a seguir protocolos rigidos.

TABELA VIII
PRINCIPAIS COMBINACOES PROBLEMATICAS ENTRE MODELO E FORMATO

Modelo Formato Tipo de Erro % do Total
GPT 4.1 Mini  JSON Schema FN 29,3%
GPT 4.1 Mini  Tools FN 19,1%
GPT 4.1 Nano Tools FP 28,3%
GPT 40 Mini JSON Schema FP 22,1%
GPT 40 Mini Tools FP 21,0%

Fonte: Elaborado pelo autor (2026).

o Eficacia das Estratégias de Prompting e Contexto:
A configuragdo do prompt e a gestdo do histdrico de
mensagens alteram drasticamente o comportamento do
Guardrail:

— Analise de Estratégias de Prompting: A andlise
da Figura 13 revela que a concentragcdo de outliers
com taxas de erro superiores a 10% pode estar
diretamente vinculada a falhas de julgamento 16gico
induzidas por técnicas especificas de prompting.
Observou-se que métodos de raciocinio estendido,
como o Chain-of-Thought (CoT), embora aumentem
a assertividade em casos gerais, tendem a gerar
alucinagdes de seguranga em cendrios ambiguos,
resultando em classificacdes erradas.

Fig. 10
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Fonte: Elaborado pelo autor (2026).

— O Impacto do Agent Prompt: A inclusido do Agent
Prompt atua como um reforco critico de vigilancia,
mas apresenta-se como uma “faca de dois gumes”.
Por um lado, sua ativag@o reduziu significativamente
a taxa de Falsos Negativos, por outro lado, essa
postura defensiva elevou os Falsos Positivos. Esse
comportamento indica que instru¢des adicionais au-
mentam a sensibilidade do modelo, levando-o a
bloquear mensagens ambiguas por precaucao.

Fig. 11
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— Gestido de Contexto e Histérico: No modo Srate-
less, a distribui¢@o de erros é praticamente simétrica
(19% para FP e FN). Isso indica que, sem memoria,
o modelo falha de forma genérica.
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Por outro lado, embora o histérico melhore a média
geral, ele altera o perfil de falha nos casos criticos
de forma perigosa. O salto dos Falsos Negativos
(FN) para 33,8% revela que, em cendrios de alta
complexidade, o excesso de contexto atua como um
ruido.

Fig. 12
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Fonte: Elaborado pelo autor (2026).

O aumento expressivo de FNs em detrimento da
estabilidade dos FPs (20,3%) no modo Full History
sugere que o modelo se torna mais “confiante” ou
“relaxado” a medida que a conversa avanca. Ele
tende a assumir que, se as interagdes anteriores foram
seguras, a atual também o €, permitindo que ataques
de jailbreak multi-etapas passem despercebidos.

— Impacto da Temperatura: Embora a temperatura
tenha apresentado um efeito marginal na média de
erro geral das amostras, observou-se que valores
intermedidrios podem induzir instabilidades em mo-
delos especificos.

Fig. 13
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Fonte: Elaborado pelo autor (2026).

O modelo GPT-4.1-mini, por exemplo, atingiu seu
pico de vulnerabilidade em temperatura 0.3, acu-
mulando 216 Falsos Negativos. Esse comportamento
sugere que niveis moderados de aleatoriedade podem
comprometer a aderéncia do modelo as diretrizes de
seguranga sem necessariamente melhorar a fluidez da
resposta.

3) Andlise das Causas Raiz: As falhas observadas nos
casos criticos (outliers) ndo ocorrem de forma aleatéria, mas
derivam de trés pilares estruturais que definem o comporta-
mento dos modelos sob diferentes condi¢des de contorno:

1y

2)

3)

Equilibrio entre Escala Cognitiva e Restritividade:
Observou-se uma correlagdo inversa entre a escala da
arquitetura e a sua permissividade. Modelos mais com-
pactos, como o GPT 4.1 Nano e o GPT 4o Mini,
tendem a adotar uma postura de “bloqueio por precau-
¢30” devido a menor capacidade de processar nuances
semanticas complexas. Essa rigidez cognitiva faz com
que interpretem sequéncias numéricas isoladas ou men-
sagens extremamente curtas como ameagas, sendo essas
arquiteturas responsdveis por 85,6% de todos os falsos
positivos registrados. Em contrapartida, modelos como
o GPT 4.1 Mini demonstram uma subestimacao cronica
de ameacas sutis, originando 48,4% do total de falsos
negativos.

Determinismo e Inflexibilidade do Formato de Saida:
O protocolo de resposta exerce influéncia decisiva no
rigor da classificagdo. A interface baseada em Tools
(Function Calling) impde uma légica de execugao que se
mostrou inerentemente mais rigida que o JSON Schema,
resultando em uma taxa de falsos positivos 50% superior.
Essa rigidez estrutural frequentemente for¢ca o modelo a
uma classificacao bindria erronea, dificultando a dissoci-
acdo entre a forma da mensagem e a inten¢c@o maliciosa
subjacente. O caso mais emblematico envolve pedidos
de contetddos criativos, como poemas ou histérias, que
atingiram uma taxa de 72,9% de falsos negativos por
conseguirem ludibriar a camada de seguranca através da
camuflagem semantica.

Déficit de Percepcao em Processamento Stateless: A
auséncia de retencdo de memoéria no modo Stateless
degradou significativamente a acurécia, apresentando o
dobro da taxa de erro em ameagas de injecdo quando
comparado ao uso do histérico completo. Sem o con-
texto prévio, o modelo sofre de uma “amnésia funci-
onal”, falhando em identificar que interacdes aparente-
mente indcuas como o convite “vamos jogar um jogo”
constituem, na realidade, estdgios iniciais de tentativas
deliberadas de subversdo do fluxo de instrucdes do
sistema (jailbreak multi-etapa).

IV. IDENTIFICACAO DAS CONFIGURACOES DE ELITE

A andlise final cruzou todas as varidveis experimentais para

determinar as combinagdes que oferecem a melhor viabilidade
operacional.
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O ranking (Figura 14) foi estabelecido através do Score
Ajustado, uma métrica que pondera o F1-Score pela esta-
bilidade sintdtica, penalizando configuracdes que tornam o
sistema inoperante em producao:

Score Ajustado = F1-Score x (1 — Taxa de Erro de Parsing)

Comparativamente a média geral, as configuracdes de elite
apresentam um salto qualitativo significativo, conforme ilus-
trado na Tabela IX.

TABELA IX
COMPARACAO ENTRE AS VINTE MELHORES COMBINACOES E A MEDIA
GERAL
Métrica Top 20 (Elite) Média Geral
F1-Score médio 0,9965 0,9364
Erro de Parsing 0,00% 2,15%
Score Ajustado 0,9965 0,9154

Fonte: Elaborado pelo autor (2026).

Fig. 14
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Fonte: Elaborado pelo autor (2026).

A. O Dominio do Modelo Gemini 2.0 Flash

O fator de maior impacto para atingir a performance de
elite foi a escolha da arquitetura. O Gemini 2.0 Flash ocupa
100% das posig¢des no Top 20. O seu diferencial competitivo
reside na estabilidade estrutural em relagdo ao seu concorrente
direto, Gemini 2.5 Flash, ao a manter uma taxa de erro de
parsing nula (0,00%) em todas as combinac¢des de topo, um
pré-requisito fundamental para a fiabilidade em sistemas de
produgdo.

B. Padroes de Configuragdo e Fatores Criticos

Ao analisar as 20 melhores combinacdes, emergem padrdes
claros que definem o estado da arte para o sistema de Guar-
drails:

o Gestao de Contexto: O uso de Full History é obriga-
tério para a performance mdaxima, estando presente em
100% das configuracdes do Top 20. A manutengdo do
histérico completo provou ser essencial para a precisdo
da deteccdo.

o Agent Prompt: A omissdo do Agent Prompt é benéfica.
Observa-se que 95% das configuragdes de elite ndo o uti-
lizam, uma vez que a sua inclus@o tende a aumentar erros
de estruturagdo sem ganho proporcional na detecgao.

o Técnicas de Prompting: O Few-Shot lidera com 40% de
presenca, demonstrando ser a técnica mais equilibrada.
O Chain of Thought (30%) e o Simples (30%) também
sdo vidveis, desde que o modelo garanta estabilidade no
parsing.

o Formato de Saida: O JSON Schema possui uma vanta-
gem (60%) sobre o formato Tools (40%), embora ambos
apresentem robustez elevada nas maos do Gemini 2.0
Flash.

C. Recomendagdes para Implementacdo em Produgdo

Com base na hierarquia de importincia identificada, a
configuracdo ideal para um ambiente de producdo (Golden
Path) deve seguir a prioridade dos parametros detalhados na
Tabela X.

TABELA X
HIERARQUIA DE PARAMETROS PARA CONFIGURACAO DO SISTEMA

Parametro Prioridade
Modelo Critica (Estabilidade)
Contexto Alta (Precisio)

Agent Prompt Alta (Parsing)

Prompting Meédia
Formato Média
Temperatura Baixa

Fonte: Elaborado pelo autor (2026).

a) Configuragdes a Evitar:: Para garantir a integridade
do sistema, devem ser evitados modelos com volatilidade de
parsing frequente (como o Gemini 2.5 Flash associado a CoT)
e contextos do tipo Stateless, que degradam severamente a
capacidade de reconhecimento de padrdes de ataque.

V. DELINEAMENTO DE RESPONSABILIDADES:
SEGURANCA VS. ESCOPO

A eficiéncia de um sistema de seguranca para IA conversa-
cional reside na separag@o rigorosa entre a integridade técnica
do modelo e a sua légica funcional de negdcio.

Esta pesquisa demonstra que a sobrecarga da camada
de Guardrail com instrugdes contextuais do agente (Agent
Prompt) pode constituir uma causa raiz para a degradagdo
da experiéncia do usudrio, uma vez que a ambiguidade Iéxica
introduzida por regras externas eleva a incidéncia de bloqueios
indevidos.
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Tal fendmeno é corroborado pela andlise das configuracdes
de elite (Top 20), onde observou-se que 95% das combina-
¢des de maior performance abdicam do Agent Prompt. Essa
tendéncia indica que a exclusdo de contextos operacionais nao
essenciais permite a0 modelo dedicar sua capacidade atenci-
onal exclusivamente a deteccdo de ameagas, resultando em
um sistema mais robusto e com menor atrito para solicitacdes
legitimas.

A. O Guardrail como Camada de Seguranca Técnica

O Guardrail deve atuar exclusivamente como uma camada
de interceptacdo sincrona, focada na mitigacao de ameacas que
comprometam a integridade e a confiabilidade do sistema.

« Foco em Ameacas Sistémicas: Sua responsabilidade
limita-se a deteccdo de Prompt Injection, ataques de
manipulacdo de instrugdes e filtragem de contetidos ofen-
sivos. Conforme preconizado pela OWASP, o objetivo pri-
mordial é garantir a separacdo rigorosa entre as instrugoes
do sistema e os dados fornecidos pelo usudrio, tratando
o input puramente como informacdo a ser processada, e
ndo como comando [1].

o Neutralidade de Dominio: A camada de Guardrail deve
ser agnéstica as regras de negécio ou especificidades
de produtos. Sua andlise deve ser estritamente técnica
e bindria (safe ou unsafe), assegurando que tentativas de
subversao sejam barradas independentemente do contexto
comercial ou da aplicacdo final [2].

o Prevencido de Falsos Positivos: Para otimizar a preci-
sdo operacional, os Guardrails devem concentrar-se na
seguranca e integridade sist€émica, seguindo padrdes de
severidade para riscos criticos como 6dio, violéncia e
jailbreak [3]. Ao isolar a verificacio de “escopo” da
camada de protecdo, evita-se que termos legitimos de
suporte, como “cancelar” ou “devolucio”, sejam errone-
amente sinalizados como anomalias, reduzindo o indice
de falsos positivos e mitigando atritos no atendimento ao
usudrio.

B. O Agente como Gestor de Escopo e Utilidade

O Agente Principal deve ser o unico responsdvel pelo dis-
cernimento semantico e pela aplicacdo das regras de negécio,
atuando na camada de légica da aplicacio.

o Discernimento de Escopo Funcional: O Agente identi-
fica solicitagdes seguras, porém fora de sua competéncia
(ex.: produtos ndo integrados). Em vez de um bloqueio
técnico, ele fornece uma resposta dialdgica de “fora de
escopo”, preservando a fluidez da interacdo e a experién-
cia do usudrio.

o Gestdo de Utilidade vs. Seguranca: Ao centralizar
o escopo no Agente, o sistema diferencia falhas de
utilidade de violagdes de seguranca. Isso permite que
interacOes inesperadas sejam tratadas como lacunas de
conhecimento, mantendo a prestatividade sem acionar
gatilhos de seguranga desnecessarios.

C. Sintese da Segregacdo
A Tabela XI resume o modelo arquitetural proposto para
garantir o equilibrio entre prote¢do e fluidez conversacional.

TABELA XI
MATRIZ DE RESPONSABILIDADES: GUARDRAIL VS. AGENTE

Caracteristica Guardrail (Seguranca) Agente (Escopo)

Missao Protecdio contra ataques Gestdo de utilidade e re-
e injeg¢des gras de negdcio

Contexto Analisa a seguranga da Analisa a inteng@o da so-
mensagem licitagdo

Dados Nao (foca na deteccdo Sim (valida, cadastra e

de padrdes maliciosos) processa dados)
Fonte: Elaborado pelo autor (2026).

Em suma, a seguranca reside na soberania do filtro externo
(Guardrail), enquanto a utilidade reside no discernimento
semantico do Agente. Esta segregacdo impede que o conser-
vadorismo necessdrio para a seguranca técnica prejudique a
flexibilidade exigida pelo atendimento ao cliente.

VI. CONCLUSAO

A andlise abrangente de 150 casos de teste e 64.818
execucdes experimentais validas (do universo inicial de 72.000
interacdes planejadas, 7.182 execugdes passaram por bloqueios
nativos e foram analisadas separadamente) consolida as bases
para a otimizacdo de Guardrails de seguranga em agentes
conversacionais, estabelecendo as seguintes determinagdes:

o Desempenho Global do Sistema: Os resultados validam
a eficicia da solu¢do e mostram que a arquitetura é
extremamente promissora. O sistema ja apresenta um
comportamento consistente, restando apenas etapas de
otimizag@o de configuracdo para elevar o sistema ao seu
nivel maximo de performance e seguranca.

o Supremacia do Gemini 2.0 Flash: Este modelo definiu
o estado da arte na pesquisa, apresentando 0,00% de
erro de parsing ¢ com um F1-Score de 97,81%, ele
equilibra perfeitamente a sensibilidade de detec¢do com
a estabilidade operacional necessdria para ambientes de
producgdo.

« Inviabilidade Operacional do Gemini 2.5 Flash: Ape-
sar de métricas de classificagdo competitivas, o Gemini
2.5 Flash apresentou uma taxa de falha sintdtica critica
de 16,99%, tornando-o tecnologicamente invidvel para
Guardrails que dependem de saidas estruturadas.

o Limitacées de Modelos Reduzidos: Os modelos Mini e
Nano (GPT-4) demonstraram viés conservador excessivo,
elevando a taxa de Falsos Positivos ao bloquear mensa-
gens legitimas (Precision de 82,49% no modelo Nano), o
que degrada severamente a experiéncia do usudrio (UX).
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A. Impacto das Varidveis e Diretrizes de Arquitetura

A andlise multivariada permitiu isolar os componentes que
maximizam a eficacia do sistema, estabelecendo as diretrizes
para a configuracao de produgdo:

o Gestao de Contexto: A utilizagdo de Full History provou
ser obrigatdria, elevando o F1-Score em 2,34 pontos
percentuais. O contexto histérico é o principal fator de
desambiguacdo para validar intengdes que, isoladamente,
pareceriam maliciosas, ou identificar ataques multi-turno.

o Estratégias de Prompting: A técnica Few-Shot
consolidou-se como a mais equilibrada (F1: 0,9565; Erro
Parsing: 1,36%). Embora o Chain-of-Thought (CoT) po-
tencialize o raciocinio, sua alta taxa de erro sintatico
(8,24%) limita sua aplicacdo a modelos de altissima
estabilidade.

o Isolamento de Identidade: A auséncia do Agent Prompt
na camada de seguranca ¢ um padrdo no Top 20 das
melhores configuragdes. A inclusdo de instru¢des do
agente no Guardrail gera conflito cognitivo no modelo,
aumentando bloqueios indevidos e erros de parsing.

o Formatos de Saida: Tanto JSON Schema quanto Tools
mostraram-se vidveis. O JSON Schema oferece uma
leve vantagem em precisdo (menos bloqueios indevidos),
enquanto o Tools apresenta um Recall superior, sendo
preferivel quando a tolerancia ao risco de seguranca é
minima.

B. Taxonomia de Falhas e Fronteiras de Vulnerabilidade

A andlise dos 37 outliers identificados (24,7% do dataset)
revela padrdes de falha que delimitam os desafios atuais da
IA:

o Padroes de Falsos Positivos (Bloqueio Indevido):
Concentram-se em mensagens ultra-curtas, nimeros iso-
lados (CPFs, protocolos) ou formatagdes irregulares. Mo-
delos menores tendem a classificar ruido sintitico como
tentativa de evasdo por precaugdo.

o Padroes de Falsos Negativos (Vazamento de Es-
copo): O maior desafio reside em mensagens out-of-
scope (57,7% de erro) que ndo sdo identificadas pela
arquitetura atual como ameagas. Isso ocorre devido a
l6gica de mercado utilizada, que prioriza a detecgdo
de padrdes de ataque explicitos, falhando ao processar
solicitacdes de natureza estética ou literdria que, embora
fora do dominio, ndo ativam os gatilhos de seguranca
convencionais.

o Trade-off Seguranca vs. Usabilidade: Modelos menores
priorizam seguranga (alto Recall, baixa Precision), en-
quanto modelos maiores (Gemini 2.0 Flash) conseguem o
discernimento necessdrio para manter a fluidez do didlogo
sem abrir brechas de integridade.

C. Direcionamento Estratégico para Produgdo

Com base nas evidéncias empiricas, a arquitetura de referén-
cia para implementacdo imediata é definida pela configuracdo:
Gemini 2.0 Flash + Full History + Few-Shot Promp-
ting + JSON Schema + Temperatura 0.0 a 0.5 + Sem

Agent Prompt.

Esta combinagdo alcancou F1-Score de 100% em testes es-
pecificos, garantindo que o Guardrail atue como uma camada
de seguranca técnica pura, delegando ao agente principal a
l6gica de escopo de negdcio.

D. Consideracoes Finais

A pesquisa conclui que a otimizac¢do cientifica de Guar-
drails permite superar o dilema entre rigor defensivo e agi-
lidade conversacional. O Gemini 2.0 Flash emerge como o
pilar central desta arquitetura, sendo o tnico capaz de oferecer
estabilidade sintdtica absoluta e discernimento semantico su-
perior. A seguranca da plataforma ndo deve ser vista como um
limitador de interacdes, mas como um diferencial de robustez,
onde a exceléncia técnica na filtragem de dados protege a
integridade do sistema e a confianga do usudrio final.
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