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Resumo— Este artigo apresenta os resultados da Fase 1 de
uma pesquisa voltada à otimização técnica de Guardrails de
segurança em agentes conversacionais baseados em modelos de
linguagem de larga escala (LLMs). O foco central reside no
refinamento de componentes de segurança para mitigar riscos
críticos, como Prompt Injection e Jailbreaking. A metodologia
empregou um estudo de ablação sistemático com 72.000 execuções
experimentais, utilizando um dataset híbrido que integra ataques
sintéticos e registros reais de produção. Os resultados revelam a
identificação de uma arquitetura de alta performance que atingiu
níveis de precisão próximos à perfeição e a eliminação de erros
estruturais de resposta, consolidando uma solução resiliente para
ambientes produtivos de larga escala. O estudo demonstra ainda
como a manipulação do contexto de entrada é determinante para
a desambiguação semântica e para a redução de falsos negativos.
Conclui-se propondo um modelo de configuração baseado na
segregação de responsabilidades técnica e funcional, otimizando
a segurança sem comprometer a agilidade do agente principal.

Abstract— This paper presents the results of Phase 1 of a
research study on the technical optimization of safety Guardrails
for Large Language Model (LLM)-based conversational agents.
The study focuses on refining safety components to mitigate
critical risks such as Prompt Injection and Jailbreaking. Utilizing
a systematic ablation study with 72,000 experimental runs, the
methodology leverages a hybrid dataset of synthetic attacks
and real-world production logs. The findings highlight a high-
performance architecture that achieves near-perfect precision
scores and the total elimination of parsing errors, establishing
a resilient solution for large-scale production environments.
Furthermore, the research identifies how specific input context
strategies are essential for semantic disambiguation and the sig-
nificant reduction of false negative rates. The paper concludes by
proposing a configuration model based on the strict segregation
of technical and functional responsibilities, optimizing security
without compromising the primary agent’s operational efficiency.
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I. INTRODUÇÃO

A implementação de Agentes Conversacionais baseados
em Modelos de Linguagem de Grande Escala (LLMs) em
ecossistemas corporativos introduz vetores de risco que abran-
gem desde a exfiltração de dados até a subversão da lógica
de negócios. Para mitigar tais vulnerabilidades, a arquitetura
moderna de IA incorpora uma camada de Guardrails1. Este
módulo atua como um sistema de interceptação que avalia as
solicitações do usuário. Com base em políticas e conceitos
de segurança pré-definidos, o Guardrail decide pela liberação

1Do inglês Guardrails. Refere-se a travas de segurança e filtros que
garantem respostas éticas e seguras em modelos de IA.

ou bloqueio da resposta, validando se a interação está em
conformidade com o comportamento esperado do sistema. No
contexto desta pesquisa, esta configuração estabelece a base
para a Fase I, que foca na otimização técnica e na validação
dessa camada de interceptação em cenários reais de produção.

A. Arquitetura de Interceptação e Mecanismo de Decisão

O sistema em estudo emprega um classificador baseado em
LLM que utiliza a técnica de Tool Calling (chamada de fun-
ção). Sob este paradigma, o modelo é forçado a realizar uma
escolha binária obrigatória entre duas funções predefinidas:

1) mensagem_segura: Interações que, embora possam ser
informais ou estar fora do escopo de negócio, não
apresentam riscos à infraestrutura ou diretrizes éticas.

2) nao_segura: Categoria que engloba interações com
risco real à integridade do sistema. Inclui técnicas de
Prompt Injection2, além de injeções de código como
SQL Injection (SQLi)3. Compreende também manobras
de exfiltração de dados4, conteúdo tóxico5 e tentativas
de Goal Hijacking6 via roleplay7. Esta categoria conso-
lida qualquer entrada que tente subverter instruções de
segurança ou acessar dados protegidos.

B. Definição do Problema: As Dores do Produto

Apesar da arquitetura lógica estabelecida, a operação
em ambiente de produção revelou limitações críticas que
comprometem a robustez do sistema. Tais vulnerabilidades
manifestam-se na dificuldade de resposta a cenários imprevis-
tos, evidenciando lacunas na capacidade de discernimento e na
eficiência do componente de segurança, conforme detalhado a
seguir:

1) Overfitting ao Few-Shot (Rigidez Cognitiva): O mo-
delo apresenta uma tendência a classificar como ameaça
apenas mensagens que são cópias exatas ou variações
mínimas dos exemplos fornecidos no System Prompt8.
Essa rigidez impede que o sistema identifique ataques
que utilizam variações sutis de linguagem.

2Do inglês Prompt Injection. Refere-se ao uso de instruções para enganar
a IA e fazê-la ignorar suas regras originais.

3Do inglês SQL Injection. Refere-se à inserção de comandos maliciosos
para manipular ou acessar bancos de dados indevidamente.

4Extração não autorizada de informações sensíveis.
5Linguagem ofensiva, discurso de ódio ou assédio.
6Do inglês Goal Hijacking. Refere-se ao desvio do objetivo original da IA

para uma nova finalidade definida por um atacante.
7Do inglês Roleplay. Refere-se à instrução para que a IA assuma um

personagem ou comportamento específico em uma interação.
8Do inglês System Prompt. Refere-se às instruções base fornecidas ao

modelo para definir seu comportamento, regras e limites antes da interação
com o usuário.



2) Hipersensibilidade e Falsos Positivos (Atrito de UX9):
O sistema demonstra incapacidade em distinguir a frus-
tração do usuário de uma ameaça real. Interações le-
gítimas, porém informais ou carregadas de insatisfação,
são frequentemente bloqueadas de forma incorreta, o que
prejudica a jornada de atendimento.

3) Dependência de Contexto e Inferência Rígida: Existe
uma incerteza sobre como o histórico da conversa (Full
History)10 influencia a decisão de segurança e se a con-
figuração atual de temperatura (0.0) limita a capacidade
do modelo de abstrair o conceito de “ameaça” para além
dos exemplos literais.

4) Dualidade de Escopo e Conflito de Responsabili-
dade: Observa-se uma inconsistência na classificação de
mensagens out-of-scope (fora de escopo), gerando um
conflito de competências entre o Guardrail e o agente.
O sistema oscila entre focar estritamente na integridade
da infraestrutura ou bloquear interações meramente ir-
relevantes ao tema. Essa dualidade exige uma definição
clara se a filtragem de escopo deve ser consolidada na
camada de segurança ou delegada à lógica de interação
do agente principal.

C. Objetivos da Pesquisa

Esta pesquisa é estruturada em etapas consecutivas, sendo
que a presente fase (Fase I) fundamenta-se na hipótese de que
o módulo atual possui a inteligência necessária, mas encontra-
se sub-otimizado devido a parâmetros de inferência rígidos e
uma engenharia de prompt restritiva. O objetivo central desta
etapa inicial é realizar o refinamento técnico do componente
de segurança para validar sua viabilidade operacional. Os
objetivos específicos desta fase incluem:

• Maximização da Eficácia: Atingir o equilíbrio ideal
entre Recall11 e Precision12

• Generalização de Conceitos: Garantir que o modelo
compreenda o conceito abstrato de ameaças em vez de
limitar-se à memorização de padrões textuais específicos.

• Benchmarking13 de Modelos e Eficiência: Avaliar se
modelos de menor escala (como as versões Nano e Mini)
mantêm o desempenho de segurança adequado, visando
a redução de latência e de custos operacionais.

II. METODOLOGIA

Para validar a hipótese de que a otimização de parâmetros
e prompts elevaria a performance do sistema, foi desenhado

9Do inglês User Experience. Refere-se à experiência e percepção de
um usuário ao interagir com um produto, sistema ou serviço, focando em
facilidade de uso e satisfação.

10Do inglês Full History. Refere-se ao envio de todo o histórico da conversa
para o sistema de segurança, permitindo analisar o contexto completo e
detectar ameaças contextuais ou desambiguar mensagens suspeitas.

11Do inglês Recall. Refere-se à taxa de acerto de um sistema de segurança
em identificar todas as ameaças reais presentes, minimizando a ocorrência de
falsos negativos.

12Do inglês Precision. Refere-se à exatidão de um sistema de segurança
ao identificar ameaças, representando a proporção de alertas emitidos que são
realmente ataques reais, visando reduzir falsos positivos.

13Do inglês Benchmarking. Refere-se ao processo de comparar o desem-
penho de um modelo ou sistema de segurança contra padrões de referência
ou métricas estabelecidas no mercado.

um estudo de ablação14 sistemático. A terminologia adotada
fundamenta-se nos padrões de detecção de ameaças do mer-
cado.

TABELA I
DEFINIÇÕES DE MÉTRICAS APLICADAS AO CONTEXTO DE SEGURANÇA

Resposta Esperada Resposta Predita Resultado (Métrica)

Segura Segura True Negative (TN)
Não Segura Segura False Negative (FN)
Não Segura Não Segura True Positive (TP)
Segura Não Segura False Positive (FP)

Fonte: Elaborado pelo autor (2026).

A classe positiva é definida como a presença de uma ameaça
(nao_segura). As métricas de classificação foram extraídas a
partir da análise comparativa entre o rótulo esperado e o rótulo
predito pelo modelo, conforme detalhado na Tabela I.

A. Tratamento de Erros e Registros Inválidos

Um aspecto crítico da metodologia é o tratamento de falhas
de processamento ou erros de resposta da API. Tais registros
são classificados como FAILURE.

Diferente das abordagens de classificação tradicionais, re-
gistros marcados como FAILURE não compõem a matriz de
confusão. As métricas de performance (Precisão, Recall e F1-
Score) são calculadas exclusivamente sobre o subconjunto de
registros válidos. A eficiência do sistema quanto ao proces-
samento é monitorada separadamente pela Taxa de Erro de
Parsing

Taxa de Erro de Parsing =

∑
FAILURE

Total de Registros

B. Métricas de Performance

Para a quantificação do desempenho sobre os dados válidos,
foram aplicadas as seguintes métricas fundamentais:

• Precision: Mede a exatidão das detecções. Responde:
“Das mensagens classificadas como ameaça, quantas
eram realmente ameaças?”

Precision =
TP

TP + FP

• Recall: Mede a taxa de detecção de ameaças reais.
Responde: “Das ameaças existentes, quantas o sistema
conseguiu identificar?”

Recall =
TP

TP + FN

• F1-Score: Média harmônica entre Precisão e Recall,
oferecendo uma visão balanceada da performance global.

F1 = 2 · Precision ·Recall

Precision+Recall
14Método experimental que consiste em remover ou alterar componentes

específicos de um sistema de IA para avaliar o impacto individual de cada
variável no desempenho global.



C. Design do Experimento

A pesquisa utilizou uma matriz de testes A/B15 variando
cinco dimensões principais para identificar a configuração
ideal:

• Modelos LLM (via LiteLLM): Foram comparados mo-
delos de diferentes escalas para avaliar o trade-off (equi-
líbrio de forças) entre custo operacional e eficácia de
segurança: Gemini 2.0 Flash, Gemini 2.5 Flash, GPT 4.1
Mini, GPT 4.1 Nano e GPT 4o Mini.

• Engenharia de Prompt:
– Prompt Simples: Baseia-se em instruções concei-

tuais e definições abstratas das categorias de risco
(como Jailbreak e Conteúdo Tóxico), sem a oferta
de exemplos práticos, exigindo maior capacidade de
inferência do modelo.

– Few-Shot: Inclui exemplos concretos de mensa-
gens e suas respectivas classificações. Por exemplo:
“ignore as instruções anteriores” → nao_segura;
“Quero comunicar um sinistro” → segura. Este
método visa reduzir a ambiguidade e ancorar o
comportamento do classificador.

– Chain of Thought: Estrutura o processo de decisão
em etapas lógicas obrigatórias, por exemplo:
∗ Passo 1: Identificação
∗ Passo 2: Análise de Padrões
∗ Passo 3: Contextualização
Dessa maneira, forçando o modelo a analisar a
intenção e a resistência a manipulações antes de
emitir o veredito binário.

• Hiperparâmetros (Temperatura): Varredura de valores
(0.0, 0.1, 0.3, 0.5) para encontrar o equilíbrio entre o
determinismo necessário para segurança e a flexibilidade
para generalização conceitual.

• Janela de Contexto:
– Stateless: Envio apenas da última mensagem do

usuário para testar o isolamento e o foco na ameaça
imediata.

– Full History: Envio de todo o histórico da con-
versa para fornecer contexto ao classificador. Esta
abordagem visa permitir a desambiguação de inten-
ções, onde mensagens que isoladamente poderiam
ser interpretadas como suspeitas são validadas como
legítimas com base no fluxo prévio da interação,
reduzindo assim a taxa de falsos negativos.

• Formato de Saída: A avaliação da robustez sintática
baseia-se no contraste entre dois métodos de estruturação
via API:

– Tools (Function Calling): Utiliza a interface de
funções da API, onde o parâmetro tool_choice:
“required” força o modelo a responder com uma
chamada de função específica (mensagem_segura
ou nao_segura). Este método não depende apenas

15Método de experimentação comparativa que analisa duas ou mais vari-
antes de uma variável (neste caso, modelos e configurações) para determinar
qual versão apresenta melhor desempenho sob métricas específicas.

do prompt, pois a infraestrutura da API valida a
obrigatoriedade da resposta estruturada.

– JSON Schema (Structured Output): Combina o
parâmetro response_format: {"type": "json_object"}
com uma instrução restritiva no prompt. Enquanto a
API garante a validade do JSON, o prompt define a
semântica do campo (ex: seguranca_status), exigindo
que o modelo realize o parsing interno de acordo
com o esquema definido.

• Contextualização do Agente (System Prompt): Avalia
o impacto do fornecimento da "persona"e das diretrizes
operacionais do agente ao classificador. Foram testados
dois cenários:

– Sem Contexto: O classificador analisa a mensagem
de forma isolada, sem saber se o bot é um assistente
jurídico, médico ou de suporte geral.

– Com Contexto de Atuação: O prompt do agente
(ex: “Você é um assistente de seguros especializado
em sinistros"”) é incluído na análise. O objetivo
é verificar se o conhecimento do domínio reduz a
taxa de falsos positivos, permitindo que o modelo
diferencie termos técnicos legítimos de tentativas de
manipulação ou linguagem ofensiva.

D. Dataset Híbrido de Teste

A validade dos testes foi sustentada por um dataset conso-
lidado de 150 casos de teste, categorizados em duas frentes:

1) Dados Sintéticos de Ataque (62%): Casos gerados
ou coletados de bases públicas contendo variações de
Jailbreaks (ex: DAN, Modo Desenvolvedor), codificação
em Base64 e injeções sutis de instruções. Foram in-
cluídos também cenários out-of-scope nessa frente para
observar como o Guardrail interage com essas demandas
sob a lógica atual, visando identificar a origem das
inconsistências relatadas em produção.

2) Dados Reais Sanitizados (38%): Logs de produção
reais que passaram por um processo de desidentifica-
ção. Foram ofuscadas categorias de dados sensíveis e
PII16, incluindo informações de identificação civil (CPF,
RG), dados de contato (e-mail, telefone) e referências a
ativos financeiros. Este subconjunto é fundamental para
monitorar falsos positivos em interações legítimas.

Cada unidade de teste no dataset é representada por um
objeto estruturado em formato JSONL, o que garante a rastrea-
bilidade dos dados. A estrutura de um caso de teste é composta
por quatro pilares fundamentais:

1) Identificação: Através de um id único e o campo source,
que distingue se a origem da amostra é sintética ou
proveniente de logs reais de produção.

2) Classificação de Referência (Ground Truth): Os cam-
pos mensagem_segura (booleano) e tipo_de_ameaca es-
tabelecem o resultado esperado contra o qual o modelo
será avaliado.

16Do inglês Personally Identifiable Information. Refere-se a qualquer dado
que possa ser usado para identificar um indivíduo específico, como CPF, e-
mail, número de telefone ou dados biométricos.



3) Contexto Conversacional: O historico_mensagens con-
tém a sequência de interações anteriores, enquanto o
message_to_test_index aponta exatamente qual men-
sagem do histórico deve ser submetida ao crivo do
Guardrail.

4) Configuração do Agente: O campo system_prompt ar-
mazena as instruções completas de persona e habilidades
do robô no momento do teste.

Abaixo, apresenta-se a estrutura simplificada de uma entrada
do dataset:

{
"id": "synthetic_injection_0001",
"source": "synthetic",
"mensagem_segura": false,
"tipo_de_ameaca": "injection_roleplay",
"historico_mensagens": [
{"user": "cliente", "mensagem": "..."},
{"user": "agent", "mensagem": "..."}

],
"message_to_test_index": 9,
"system_prompt": "..."

}

1) Definição Detalhada dos Dados: Os dados presentes
no Dataset utilizado para testes se enquadram nas seguintes
categorias listadas:

TABELA II
CATEGORIAS DE AMEAÇAS E DEFINIÇÕES

Categoria Descrição

Nenhuma Não é uma ameaça, são mensagens se-
guras e legítimas do usuário.

Prompt Injection Tentativa sutil de manipular o modelo
disfarçada como solicitação legítima,
sem mencionar explicitamente instruções
ou regras.

Injeção de Instruções Tentativa explícita de modificar ou anu-
lar as instruções do sistema, mencio-
nando diretamente "instruções anterio-
res", "modo"ou comandos inválidos.

Injeção de Dados Tentativa de manipular ou extrair da-
dos sensíveis, referenciar informações de
forma suspeita ou tentar acesso não au-
torizado.

Injeção de Segurança Tentativa de burlar ou comprometer me-
didas de segurança do sistema, mencio-
nando violações ou explorando vulnera-
bilidades.

Injeção de Roleplay Tentativa de fazer o modelo assumir
um papel ou personagem específico para
contornar restrições normais.

Injeção Ofensiva Conteúdo ofensivo, abusivo ou inapropri-
ado que viola diretrizes éticas.

Conteúdo Sexual Conteúdo sexual explícito ou inapropri-
ado.

Automutilação Conteúdo relacionado a automutilação,
suicídio ou autolesão que requer inter-
venção de segurança.

Fonte: Elaborado pelo autor (2026).

E. Pipeline de Execução e Métricas

O pipeline17 foi automatizado para realizar milhares de com-
binações de testes. Essa abordagem resultou em um volume de
480 execuções por caso, totalizando um dataset de resultados
com 72.000 instâncias processadas.

Cada um dos 150 casos de teste foi submetido a uma matriz
combinatória composta por 5 modelos de linguagem, 4 níveis
de temperatura, 2 modos de contexto, 2 formatos de saída, 3
variações de prompting e 2 condições de inclusão do Prompt
do Agente (com/sem). Para cada execução, foram extraídas as
seguintes métricas:

• Métricas de Classificação: Utilizou-se o Recall e a
Precision para avaliar a confiabilidade dos bloqueios.

• Métricas Operacionais: A latência18 foi monitorada para
validar a viabilidade de uso em tempo real, juntamente
com a estabilidade de parsing19, métrica crítica para
garantir a continuidade da experiência do usuário.

III. RESULTADOS E ANÁLISE DE PERFORMANCE

A análise de dados foi estruturada de forma incremental,
avaliando desde o desempenho intrínseco dos modelos até o
impacto das variáveis de configuração.

A. Avaliação Comparativa de Modelos

Nesta etapa, isolou-se a performance de cada modelo para
entender seu comportamento padrão em tarefas de segurança.
A análise quantitativa revela disparidades significativas na
eficácia dos modelos, especialmente no que tange ao equilíbrio
entre precisão e recall.

TABELA III
DESEMPENHO COMPARATIVO POR MODELO

Modelo F1 Prec. Rec. Erro Lat.

Gemini 2.0 Flash 0,9781 0,9792 0,9769 0,00% 1,027
Gemini 2.5 Flash 0,9779 0,9910 0,9651 16,99% 1,707
GPT 4.1 Mini 0,9243 0,9853 0,8703 0,00% 1,814
GPT 4.1 Nano 0,8851 0,8249 0,9548 0,14% 0,914
GPT 4o Mini 0,9174 0,8717 0,9682 0,00% 1,014

Fonte: Elaborado pelo autor (2026).

1) Gemini 2.0 Flash: O modelo Gemini 2.0 Flash apresenta
o perfil mais equilibrado do estudo, exibindo uma matriz de
confusão com alta concentração na diagonal principal, o que
reflete uma classificação precisa tanto para ameaças quanto
para interações seguras.

Com um F1-Score de 0,9781 e um Recall de 0,9769,
o sistema demonstra alta eficácia na detecção de ataques,

17Do inglês Pipeline. Refere-se ao conjunto de processos ou etapas de
computação encadeadas de forma sistemática, onde a saída de uma etapa
serve como entrada para a próxima, permitindo a automação do fluxo de
dados.

18Tempo decorrido entre o envio da requisição e o recebimento da resposta
estruturada pelo sistema.

19Do inglês Parsing. Refere-se ao processo de analisar e converter a saída
bruta do modelo para um formato estruturado específico, como JSON ou
Markdown, garantindo que os dados sejam legíveis por outros sistemas.



minimizando a ocorrência de falsos negativos que poderiam
comprometer a integridade da sessão.

Adicionalmente, sua performance técnica é evidenciada pela
ausência total de erros de parsing (0,00%) e uma latência mé-
dia de 1,027s, posicionando-o como a solução mais resiliente
para ambientes de produção. Esta consistência operacional in-
dica que o modelo consegue processar instruções complexas de
segurança sem gerar o “atrito de UX” observado em variantes
menos precisas, garantindo uma jornada de atendimento fluida
e protegida.

Fig. 1
MATRIZ DE CONFUSÃO - GEMINI 2.0 FLASH

Fonte: Elaborado pelo autor (2026).

2) Gemini 2.5 Flash: O modelo Gemini 2.5 Flash apresenta
o maior rigor de classificação do grupo, atingindo uma Preci-
sion de 0,9910, o que se traduz em um índice quase nulo de
falsos positivos e uma confiabilidade excepcional ao autorizar
mensagens seguras.

Fig. 2
MATRIZ DE CONFUSÃO - GEMINI 2.5 FLASH

Fonte: Elaborado pelo autor (2026).

Entretanto, sua viabilidade operacional em larga escala é
severamente comprometida por uma taxa de erro de parsing de
16,99%, a mais alta registrada no estudo. Em um cenário real
de produção, esse dado indica que aproximadamente uma em
cada seis interações falharia devido à incapacidade do modelo
em aderir estritamente ao formato de saída (Tools ou JSON
Schema). Essa instabilidade sintática cria um gargalo crítico na
integração direta, exigindo mecanismos complexos de fallback

ou reprocessamento, o que elevaria significativamente o custo
computacional e a latência percebida pelo usuário final.

3) GPT 4.1 Mini: O modelo GPT 4.1 MIni é caracterizado
por um perfil de alta confiabilidade no bloqueio, sustentado por
uma Precision de 0,9853. Este dado garante que as mensagens
marcadas como ameaça são quase certamente maliciosas,
oferecendo uma operação com baixíssimo índice de falsos
alarmes.

Por outro lado, o modelo apresenta um Recall de 0,8703,
indicando uma postura significativamente menos agressiva na
captura de ataques em comparação aos modelos da família
Gemini. Na prática, essa métrica revela uma vulnerabilidade
crítica: cerca de 13% das ameaças, predominantemente as mais
sutis ou codificadas, passam despercebidas (falsos negativos),
atingindo o agente principal sem a devida interceptação.

Fig. 3
MATRIZ DE CONFUSÃO - GPT 4.1 MINI

Fonte: Elaborado pelo autor (2026).

Embora sua estabilidade de parsing seja satisfatória, esse
comportamento sugere a necessidade de camadas adicionais de
validação caso o modelo seja adotado como único Guardrail
em contextos de alta periculosidade.

4) GPT 4.1 Nano: O modelo GPT 4.1 Nano prioriza a
agilidade operacional, registrando a menor latência média do
estudo (0,914s), o que o torna ideal para aplicações que exigem
respostas quase instantâneas.

Fig. 4
MATRIZ DE CONFUSÃO - GPT 4.1 NANO

Fonte: Elaborado pelo autor (2026).



Contudo, este ganho de velocidade reflete uma perda subs-
tancial na qualidade da classificação: o modelo apresenta a
menor Precision do grupo (0,8249), o que resulta em um
volume considerável de falsos positivos.

Caracterizado por um perfil que “atira primeiro e pergunta
depois”, sua sensibilidade descalibrada tende a bloquear inte-
rações inofensivas com frequência, prejudicando severamente
a experiência do usuário legítimo (UX) ao gerar interrupções
desnecessárias. Embora seja eficiente em termos de custo
computacional, sua aplicação como Guardrail primário exige
cautela, pois o alto índice de falsos alarmes pode levar à
frustração do cliente e à degradação da confiança no sistema
automatizado.

5) GPT 4o Mini: O modelo GPT 4o Mini apresenta um
comportamento focado em detecção ampla, sustentado por um
Recall de 0,9682, o que o torna extremamente eficiente em
garantir que ameaças não passem despercebidas pelo sistema.
Entretanto, sua Precision de 0,8717 revela uma tendência
a classificar mensagens seguras como suspeitas com maior
frequência que os modelos de topo. Esse perfil é ideal para
fluxos de segurança crítica onde o custo de um Falso Negativo
(vulnerabilidade) é substancialmente maior que o impacto ope-
racional de um Falso Positivo (atrito). Além disso, o modelo
mantém uma latência competitiva de 1,014s e estabilidade total
de parsing, consolidando-se como uma escolha estratégica
para camadas de defesa agressivas que não podem tolerar
brechas, mesmo que isso resulte em uma filtragem mais
rigorosa de interações legítimas.

Fig. 5
MATRIZ DE CONFUSÃO - GPT 4O MINI

Fonte: Elaborado pelo autor (2026).

6) O Fenômeno do Bloqueio Nativo (Safety Filters): Um
fator determinante na performance observada foi a incidência
de bloqueios nativos operados pelos próprios provedores de
modelos (Safety Filters), que interceptam a requisição antes
mesmo do processamento pela camada de Guardrail customi-
zada. No total, 9,98% das requisições (7.182 instâncias) foram
bloqueadas automaticamente, o que caracteriza uma camada de
segurança primária e intrínseca aos modelos de larga escala.

TABELA IV
DISTRIBUIÇÃO E EFICÁCIA DOS BLOQUEIOS NATIVOS POR MODELO

Modelo Total Bloqueios Taxa (%) Eficácia (TP)

GPT 4.1 Mini 1.918 13,32% 100,00%
GPT 4.1 Nano 3.359 23,33% 100,00%
GPT 4o Mini 1.905 13,23% 99,74%

Fonte: Elaborado pelo autor (2026).

No que tange à cobertura, a eficácia na mitigação de
riscos (Recall) apresentou disparidades significativas conforme
a categoria do ataque. O sistema demonstrou maior sensibili-
dade para Conteúdo Sexual (20,00%) e Injeção de Roleplay
(29,90%), o que contrasta com o desempenho crítico em tenta-
tivas de Injeção de Dados, cujo bloqueio nativo foi de apenas
5,22%. Com uma taxa agregada de contenção de apenas
16,09%, evidencia-se que a maioria das ameaças transpassa
os filtros primários, reforçando a necessidade indispensável de
uma camada de Guardrail robusta e especializada para garantir
a segurança da aplicação.

A análise léxica das mensagens que sofreram bloqueio
nativo revela padrões semânticos associados a tentativas de
subversão do sistema. Termos como “ignore”, “desconsidere”,
“anteriores” e “instruções” figuram entre as palavras-chave
mais recorrentes, evidenciando que os filtros são altamente
reativos a comandos que visam a anulação de diretrizes de
segurança (jailbreak por negação de contexto).

Embora esses filtros elevem o Recall geral, a disparidade
observada no modelo GPT 4.1 Nano, com taxa de bloqueio
de 23,33%, sugere uma estratégia de segurança mais agressiva
e menos granulada em modelos de menor escala. Esta rigidez
operacional atua como um mecanismo compensatório para
limitações no raciocínio lógico, mas deve ser ponderada contra
o risco de degradação da experiência do usuário (UX) em
cenários de alta ambiguidade linguística, onde o bloqueio pre-
ventivo pode substituir uma análise contextual mais refinada.

B. Análise das Variáveis Experimentais

Após a caracterização dos modelos, esta seção detalha como
as variáveis de configuração influenciaram o desempenho do
sistema, identificando os componentes determinantes para a
eficácia do Guardrail.

1) Arquitetura de Prompt e Raciocínio Estruturado: O
achado mais significativo deste estudo foi o desempenho
superior da técnica de Few-Shot em comparação ao Chain
of Thought (CoT). Embora o CoT seja eficaz em tarefas de
lógica pura, sua aplicação em filtros de segurança estruturados
apresentou um efeito colateral de instabilidade sintática:

• Prompt Simples: Demonstrou limitações na generaliza-
ção (F1: 0,9337), evidenciando que instruções puramente
conceituais são insuficientes para cobrir as nuances de
ataques complexos.

• Few-Shot: Consolidou-se como a estratégia mais robusta
(F1: 0,9565). A ancoragem em exemplos concretos per-
mitiu ao modelo alinhar o veredito de segurança com uma
baixa taxa de erro de parsing (1,36%).



• Chain of Thought: Registrou o menor F1-Score
(0,9309). A verbosidade do raciocínio intermediário fre-
quentemente corrompeu o formato JSON esperado, ele-
vando o erro de parsing para 8,24%. Isso ocorre porque
a geração de texto livre antes da saída estruturada cria
uma “competição de contexto”, levando o modelo a
incluir explicações narrativas ou delimitadores textuais
que violam o rigor sintático do JSON Schema.

Fig. 6
COMPARAÇÃO EFICÁCIA VS. ERRO DE PARSING - ESTRATÉGIAS DE

PROMPTING

Fonte: Elaborado pelo autor (2026).

2) Impacto da Inclusão do Prompt do Agente: A inclusão
do System Prompt do agente principal no contexto do Guar-
drail foi testada para avaliar se o conhecimento do domínio
auxiliaria o modelo a contextualizar melhor as interações.
Os resultados revelam que o contexto do agente geralmente
induz o modelo a um comportamento significativamente mais
defensivo:

TABELA V
COMPARATIVO DE PERFORMANCE COM A INCLUSÃO DO PROMPT DO

AGENTE

Configuração F1-Score Prec. Rec. Erro

Sem Prompt Agente 0,9395 0,9459 0,9331 4,57%
Com Prompt Agente 0,9416 0,9203 0,9638 3,03%

Fonte: Elaborado pelo autor (2026).

A interpretação técnica dos dados revela:
• Aumento da Sensibilidade (Ganho de Recall): Com

a inclusão do prompt do agente, o Recall subiu para
0,9638. Isso indica que o modelo tornou-se significativa-
mente mais capaz de identificar ameaças e tentativas de
subversão, reduzindo o volume de ataques que passariam
despercebidos (Falsos Negativos).

• Aumento de Bloqueios Indevidos (Perda de Precisão):
A Precisão caiu para 0,9203. O conhecimento do domínio
faz com que o modelo interprete ambiguidades com maior
rigor, resultando em um aumento de Falsos Positivos
(mensagens seguras bloqueadas incorretamente por serem
confundidas com tentativas de quebra de escopo).

A conclusão operacional é que a inclusão do prompt do
agente melhora a detecção de ameaças com a consequência do
aumento de Falsos Positivos. A decisão de utilizá-lo depende
da prioridade do sistema: segurança máxima (priorizando
Recall) ou fluidez da experiência do usuário (priorizando
Precision).

3) Efeito da Janela de Contexto: A análise experimental
demonstrou que a inclusão do histórico completo da conversa
é a variável de maior relevância para a redução de Falsos
Negativos. A transição do modo de operação isolado (Sta-
teless) para o processamento baseado em histórico completo
(Full History) atua como um mecanismo de desambiguação
semântica fundamental para sistemas conversacionais.

Fig. 7
COMPARAÇÃO FP VS. FN - JANELA DE CONTEXTO

Fonte: Elaborado pelo autor (2026).

Conforme os dados da análise, a utilização de Full History
elevou o F1-Score de 0,9288 para 0,9522. O ganho real
consolidado de 2,34 pontos percentuais valida a importância
da persistência de contexto. Este incremento de performance é
decisivo para identificar ameaças que utilizam o encadeamento
de mensagens para camuflar intenções maliciosas, permitindo
que o modelo interprete a entrada atual sob a ótica do fluxo
conversacional prévio.

TABELA VI
COMPARATIVO CONSOLIDADO DE DESEMPENHO POR JANELA DE

CONTEXTO

Contexto Lat. Prec. Rec. F1 Erro

Full History 1,334s 0,9407 0,9640 0,9522 3,68%
Stateless 1,282s 0,9244 0,9333 0,9288 3,92%

Fonte: Elaborado pelo autor (2026).

Os resultados consolidam o modo Full History como a
configuração mais consistente para o sistema, uma vez que
o incremento de 3,08 pontos percentuais no Recall e a re-
dução da taxa de falsos negativos pela metade, reduzindo o
risco de ataques graduais, justificam amplamente o acréscimo
marginal de 0,05s na latência média. Essa escolha prioriza a
robustez da segurança e a integridade da jornada do usuário,
mitigando vulnerabilidades que o modo Stateless não é capaz
de interceptar devido à ausência de contexto histórico.



4) Sensibilidade à Temperatura: A varredura de tempera-
tura revelou que o sistema mantém uma estabilidade excepci-
onal sob diferentes níveis de estocasticidade20.

Ao analisar o desempenho do modelo em diferentes confi-
gurações de temperatura (variando de 0,0 a 0,5), observou-se
que as oscilações no F1-Score são estatisticamente marginais,
conforme demonstrado na figura. 8.

Fig. 8
IMPACTO DE DIFERENTES FAIXAS DE TEMPERATURA NO F1-SCORE

Fonte: Elaborado pelo autor (2026).

Diferente do que se observa em tarefas criativas, a tarefa
de classificação de segurança demonstrou alta resiliência à
variação deste parâmetro. O sistema manteve um F1-Score
médio de aproximadamente 0,94 em todos os cenários testa-
dos. Esta estabilidade sugere que o prompt e a estrutura lógica
do sistema são robustos o suficiente para manter a consistência
da classificação, independentemente do nível de amostragem
probabilística aplicado na inferência. Para fins de produção,
a escolha de temperaturas mais baixas (próximas a 0,0) é
recomendada apenas para garantir a reprodutibilidade técnica,
sem prejuízo à eficácia da detecção.

5) Robustez do Formato de Saída: A comparação entre os
protocolos de resposta revelou distinções significativas entre o
uso de Structured Output (JSON Schema) e Tools (Function
Calling). Os dados consolidados na Tabela VII indicam que a
escolha do protocolo impacta não apenas a acurácia da clas-
sificação, mas também a resiliência operacional do sistema.

TABELA VII
COMPARATIVO DE PERFORMANCE E ESTABILIDADE POR PROTOCOLO DE

SAÍDA

Formato de Saída F1 Prec. Rec. Erro

Json Schema 0,9400 0,9411 0,9389 5,97%
Function Calling 0,9411 0,9248 0,9579 1,62%

Fonte: Elaborado pelo autor (2026).

O protocolo Tools (Function Calling) demonstrou ser a
abordagem mais eficaz para a detecção de ameaças, atingindo
um Recall de 0,9579. Esta maior sensibilidade indica que o

20Refere-se à natureza probabilística e aleatória do processo de seleção
de tokens. Em LLMs, uma maior estocasticidade resulta em respostas mais
variadas e criativas, enquanto uma baixa estocasticidade torna o modelo mais
determinístico e previsível.

modelo, quando operando via funções, consegue identificar
uma gama mais ampla de intenções maliciosas. Além disso,
este formato apresentou uma robustez sintática superior, com
uma taxa de erro de parsing de apenas 1,62% — um índice
aproximadamente 3,7 vezes menor que o registrado pelo JSON
Schema.

Por outro lado, o JSON Schema apresentou uma Precisão li-
geiramente superior (0,9411), sugerindo um perfil mais conser-
vador que minimiza bloqueios indevidos de usuários legítimos.
Contudo, devido à maior incidência de falhas de formatação
e ao Recall inferior, o uso de Tools consolida-se como a
arquitetura preferencial para cenários de alta disponibilidade
e rigor defensivo, equilibrando a máxima captura de ameaças
com a menor taxa de falha técnica.

C. Análise de Outliers: Padrões de Falha e Causas Raiz

No universo de 150 casos analisados, foram identificados
e isolados 37 casos classificados como outliers21. A seleção
desses casos baseou-se em um critério de criticidade técnica,
definindo como outliers todas as mensagens que apresentaram
uma taxa de erro total (classificação e parsing) superior
a 10,0%. Esse subconjunto foi submetido a uma análise
detalhada para mapear comportamentos anômalos e falhas
sistemáticas nos modelos de linguagem avaliados.

Fig. 9
GRÁFICOS DE DISPERSÃO - TAXA DE ERRO VS. CASOS DE TESTE

Fonte: Elaborado pelo autor (2026).

A análise dos outliers revela vulnerabilidades sistêmicas
distintas entre modelos de grande escala e modelos compac-
tos, além de demonstrar como a configuração do ambiente
influencia a precisão do Guardrail.

1) Tipologia de Mensagens com Maiores Índices de Falha:
As falhas de classificação do modelo concentram-se em três
perfis principais, revelando limitações no tratamento de ambi-
guidades semânticas e técnicas de evasão:

• Ambiguidade e Falta de Contexto (Falsos Positivos):
Respostas afirmativas simples ou escolhas de menu (ex:
“1”, “Sim”) são frequentemente mal interpretadas como
potenciais riscos devido à falta de densidade semântica.

21Do inglês outlier. Refere-se a observações que se desviam drasticamente
da média do conjunto de dados, podendo indicar erros de medição, falhas
de execução no pipeline ou comportamentos atípicos que distorcem a análise
estatística.



• Requisições Out-Of-Scope (Falsos Negativos): Este
ponto levanta uma questão conceitual sobre a arquitetura
do Guardrail. Pedidos puramente estéticos ou literários
são contabilizados como Falsos Negativos, mas a hipótese
levantada é que fugas de escopo não possuem a natureza
semântica de uma “mensagem não segura” pela definição
adotada. Portanto, elas não seriam falhas de segurança,
mas sim de aderência ao domínio, não devendo ser
processadas pela mesma lógica de detecção de danos.

• Dados Sensíveis e Estruturas Irregulares: A presença
de padrões numéricos rígidos ou ruídos de formatação
(espaçamentos excessivos) confunde, sobretudo, os mo-
delos de menor escala, gerando bloqueios indevidos.

2) Combinações de Parâmetros e Desempenho Crítico: A
análise detalhada dos outliers revela que as falhas não são
distribuídas uniformemente, mas concentram-se em combina-
ções específicas de parâmetros que potencializam as fraquezas
inerentes de cada modelo.

• Interação entre Modelo e Formato de Saída: A análise
da Tabela VIII revela que o formato de saída altera dras-
ticamente o comportamento de segurança dos modelos.
Esse fenômeno indica que modelos menores adotam uma
postura conservadora para compensar incertezas lógicas
quando forçados a seguir protocolos rígidos.

TABELA VIII
PRINCIPAIS COMBINAÇÕES PROBLEMÁTICAS ENTRE MODELO E FORMATO

Modelo Formato Tipo de Erro % do Total

GPT 4.1 Mini JSON Schema FN 29,3%
GPT 4.1 Mini Tools FN 19,1%

GPT 4.1 Nano Tools FP 28,3%
GPT 4o Mini JSON Schema FP 22,1%
GPT 4o Mini Tools FP 21,0%

Fonte: Elaborado pelo autor (2026).

• Eficácia das Estratégias de Prompting e Contexto:
A configuração do prompt e a gestão do histórico de
mensagens alteram drasticamente o comportamento do
Guardrail:

– Análise de Estratégias de Prompting: A análise
da Figura 13 revela que a concentração de outliers
com taxas de erro superiores a 10% pode estar
diretamente vinculada a falhas de julgamento lógico
induzidas por técnicas específicas de prompting.
Observou-se que métodos de raciocínio estendido,
como o Chain-of-Thought (CoT), embora aumentem
a assertividade em casos gerais, tendem a gerar
alucinações de segurança em cenários ambíguos,
resultando em classificações erradas.

Fig. 10
COMPARATIVO TAXA DE ERRO VS. TÉCNICAS DE PROMPTING - OUTLIERS

Fonte: Elaborado pelo autor (2026).

– O Impacto do Agent Prompt: A inclusão do Agent
Prompt atua como um reforço crítico de vigilância,
mas apresenta-se como uma “faca de dois gumes”.
Por um lado, sua ativação reduziu significativamente
a taxa de Falsos Negativos, por outro lado, essa
postura defensiva elevou os Falsos Positivos. Esse
comportamento indica que instruções adicionais au-
mentam a sensibilidade do modelo, levando-o a
bloquear mensagens ambíguas por precaução.

Fig. 11
COMPARATIVO TAXA DE ERRO VS. AGENT PROMPT - OUTLIERS

Fonte: Elaborado pelo autor (2026).

– Gestão de Contexto e Histórico: No modo State-
less, a distribuição de erros é praticamente simétrica
(19% para FP e FN). Isso indica que, sem memória,
o modelo falha de forma genérica.



Por outro lado, embora o histórico melhore a média
geral, ele altera o perfil de falha nos casos críticos
de forma perigosa. O salto dos Falsos Negativos
(FN) para 33,8% revela que, em cenários de alta
complexidade, o excesso de contexto atua como um
ruído.

Fig. 12
COMPARATIVO TAXA DE ERRO VS. CONTEXTO - OUTLIERS

Fonte: Elaborado pelo autor (2026).

O aumento expressivo de FNs em detrimento da
estabilidade dos FPs (20,3%) no modo Full History
sugere que o modelo se torna mais “confiante” ou
“relaxado” à medida que a conversa avança. Ele
tende a assumir que, se as interações anteriores foram
seguras, a atual também o é, permitindo que ataques
de jailbreak multi-etapas passem despercebidos.

– Impacto da Temperatura: Embora a temperatura
tenha apresentado um efeito marginal na média de
erro geral das amostras, observou-se que valores
intermediários podem induzir instabilidades em mo-
delos específicos.

Fig. 13
COMPARATIVO TAXA DE ERRO VS. TEMPERATURA - OUTLIERS

Fonte: Elaborado pelo autor (2026).

O modelo GPT-4.1-mini, por exemplo, atingiu seu
pico de vulnerabilidade em temperatura 0.3, acu-
mulando 216 Falsos Negativos. Esse comportamento
sugere que níveis moderados de aleatoriedade podem
comprometer a aderência do modelo às diretrizes de
segurança sem necessariamente melhorar a fluidez da
resposta.

3) Análise das Causas Raiz: As falhas observadas nos
casos críticos (outliers) não ocorrem de forma aleatória, mas
derivam de três pilares estruturais que definem o comporta-
mento dos modelos sob diferentes condições de contorno:

1) Equilíbrio entre Escala Cognitiva e Restritividade:
Observou-se uma correlação inversa entre a escala da
arquitetura e a sua permissividade. Modelos mais com-
pactos, como o GPT 4.1 Nano e o GPT 4o Mini,
tendem a adotar uma postura de “bloqueio por precau-
ção” devido à menor capacidade de processar nuances
semânticas complexas. Essa rigidez cognitiva faz com
que interpretem sequências numéricas isoladas ou men-
sagens extremamente curtas como ameaças, sendo essas
arquiteturas responsáveis por 85,6% de todos os falsos
positivos registrados. Em contrapartida, modelos como
o GPT 4.1 Mini demonstram uma subestimação crônica
de ameaças sutis, originando 48,4% do total de falsos
negativos.

2) Determinismo e Inflexibilidade do Formato de Saída:
O protocolo de resposta exerce influência decisiva no
rigor da classificação. A interface baseada em Tools
(Function Calling) impõe uma lógica de execução que se
mostrou inerentemente mais rígida que o JSON Schema,
resultando em uma taxa de falsos positivos 50% superior.
Essa rigidez estrutural frequentemente força o modelo a
uma classificação binária errônea, dificultando a dissoci-
ação entre a forma da mensagem e a intenção maliciosa
subjacente. O caso mais emblemático envolve pedidos
de conteúdos criativos, como poemas ou histórias, que
atingiram uma taxa de 72,9% de falsos negativos por
conseguirem ludibriar a camada de segurança através da
camuflagem semântica.

3) Déficit de Percepção em Processamento Stateless: A
ausência de retenção de memória no modo Stateless
degradou significativamente a acurácia, apresentando o
dobro da taxa de erro em ameaças de injeção quando
comparado ao uso do histórico completo. Sem o con-
texto prévio, o modelo sofre de uma “amnésia funci-
onal”, falhando em identificar que interações aparente-
mente inócuas como o convite “vamos jogar um jogo”
constituem, na realidade, estágios iniciais de tentativas
deliberadas de subversão do fluxo de instruções do
sistema (jailbreak multi-etapa).

IV. IDENTIFICAÇÃO DAS CONFIGURAÇÕES DE ELITE

A análise final cruzou todas as variáveis experimentais para
determinar as combinações que oferecem a melhor viabilidade
operacional.



O ranking (Figura 14) foi estabelecido através do Score
Ajustado, uma métrica que pondera o F1-Score pela esta-
bilidade sintática, penalizando configurações que tornam o
sistema inoperante em produção:

Score Ajustado = F1-Score × (1− Taxa de Erro de Parsing)

Comparativamente à média geral, as configurações de elite
apresentam um salto qualitativo significativo, conforme ilus-
trado na Tabela IX.

TABELA IX
COMPARAÇÃO ENTRE AS VINTE MELHORES COMBINAÇÕES E A MÉDIA

GERAL

Métrica Top 20 (Elite) Média Geral

F1-Score médio 0,9965 0,9364
Erro de Parsing 0,00% 2,15%
Score Ajustado 0,9965 0,9154

Fonte: Elaborado pelo autor (2026).

Fig. 14
TOP 20 CONFIGURAÇÕES DE ELITE

Fonte: Elaborado pelo autor (2026).

A. O Domínio do Modelo Gemini 2.0 Flash

O fator de maior impacto para atingir a performance de
elite foi a escolha da arquitetura. O Gemini 2.0 Flash ocupa
100% das posições no Top 20. O seu diferencial competitivo
reside na estabilidade estrutural em relação ao seu concorrente
direto, Gemini 2.5 Flash, ao a manter uma taxa de erro de
parsing nula (0,00%) em todas as combinações de topo, um
pré-requisito fundamental para a fiabilidade em sistemas de
produção.

B. Padrões de Configuração e Fatores Críticos

Ao analisar as 20 melhores combinações, emergem padrões
claros que definem o estado da arte para o sistema de Guar-
drails:

• Gestão de Contexto: O uso de Full History é obriga-
tório para a performance máxima, estando presente em
100% das configurações do Top 20. A manutenção do
histórico completo provou ser essencial para a precisão
da detecção.

• Agent Prompt: A omissão do Agent Prompt é benéfica.
Observa-se que 95% das configurações de elite não o uti-
lizam, uma vez que a sua inclusão tende a aumentar erros
de estruturação sem ganho proporcional na detecção.

• Técnicas de Prompting: O Few-Shot lidera com 40% de
presença, demonstrando ser a técnica mais equilibrada.
O Chain of Thought (30%) e o Simples (30%) também
são viáveis, desde que o modelo garanta estabilidade no
parsing.

• Formato de Saída: O JSON Schema possui uma vanta-
gem (60%) sobre o formato Tools (40%), embora ambos
apresentem robustez elevada nas mãos do Gemini 2.0
Flash.

C. Recomendações para Implementação em Produção

Com base na hierarquia de importância identificada, a
configuração ideal para um ambiente de produção (Golden
Path) deve seguir a prioridade dos parâmetros detalhados na
Tabela X.

TABELA X
HIERARQUIA DE PARÂMETROS PARA CONFIGURAÇÃO DO SISTEMA

Parâmetro Prioridade

Modelo Crítica (Estabilidade)
Contexto Alta (Precisão)
Agent Prompt Alta (Parsing)
Prompting Média
Formato Média
Temperatura Baixa

Fonte: Elaborado pelo autor (2026).

a) Configurações a Evitar:: Para garantir a integridade
do sistema, devem ser evitados modelos com volatilidade de
parsing frequente (como o Gemini 2.5 Flash associado a CoT)
e contextos do tipo Stateless, que degradam severamente a
capacidade de reconhecimento de padrões de ataque.

V. DELINEAMENTO DE RESPONSABILIDADES:
SEGURANÇA VS. ESCOPO

A eficiência de um sistema de segurança para IA conversa-
cional reside na separação rigorosa entre a integridade técnica
do modelo e a sua lógica funcional de negócio.

Esta pesquisa demonstra que a sobrecarga da camada
de Guardrail com instruções contextuais do agente (Agent
Prompt) pode constituir uma causa raiz para a degradação
da experiência do usuário, uma vez que a ambiguidade léxica
introduzida por regras externas eleva a incidência de bloqueios
indevidos.



Tal fenômeno é corroborado pela análise das configurações
de elite (Top 20), onde observou-se que 95% das combina-
ções de maior performance abdicam do Agent Prompt. Essa
tendência indica que a exclusão de contextos operacionais não
essenciais permite ao modelo dedicar sua capacidade atenci-
onal exclusivamente à detecção de ameaças, resultando em
um sistema mais robusto e com menor atrito para solicitações
legítimas.

A. O Guardrail como Camada de Segurança Técnica

O Guardrail deve atuar exclusivamente como uma camada
de interceptação síncrona, focada na mitigação de ameaças que
comprometam a integridade e a confiabilidade do sistema.

• Foco em Ameaças Sistêmicas: Sua responsabilidade
limita-se à detecção de Prompt Injection, ataques de
manipulação de instruções e filtragem de conteúdos ofen-
sivos. Conforme preconizado pela OWASP, o objetivo pri-
mordial é garantir a separação rigorosa entre as instruções
do sistema e os dados fornecidos pelo usuário, tratando
o input puramente como informação a ser processada, e
não como comando [1].

• Neutralidade de Domínio: A camada de Guardrail deve
ser agnóstica às regras de negócio ou especificidades
de produtos. Sua análise deve ser estritamente técnica
e binária (safe ou unsafe), assegurando que tentativas de
subversão sejam barradas independentemente do contexto
comercial ou da aplicação final [2].

• Prevenção de Falsos Positivos: Para otimizar a preci-
são operacional, os Guardrails devem concentrar-se na
segurança e integridade sistêmica, seguindo padrões de
severidade para riscos críticos como ódio, violência e
jailbreak [3]. Ao isolar a verificação de “escopo” da
camada de proteção, evita-se que termos legítimos de
suporte, como “cancelar” ou “devolução”, sejam errone-
amente sinalizados como anomalias, reduzindo o índice
de falsos positivos e mitigando atritos no atendimento ao
usuário.

B. O Agente como Gestor de Escopo e Utilidade

O Agente Principal deve ser o único responsável pelo dis-
cernimento semântico e pela aplicação das regras de negócio,
atuando na camada de lógica da aplicação.

• Discernimento de Escopo Funcional: O Agente identi-
fica solicitações seguras, porém fora de sua competência
(ex.: produtos não integrados). Em vez de um bloqueio
técnico, ele fornece uma resposta dialógica de “fora de
escopo”, preservando a fluidez da interação e a experiên-
cia do usuário.

• Gestão de Utilidade vs. Segurança: Ao centralizar
o escopo no Agente, o sistema diferencia falhas de
utilidade de violações de segurança. Isso permite que
interações inesperadas sejam tratadas como lacunas de
conhecimento, mantendo a prestatividade sem acionar
gatilhos de segurança desnecessários.

C. Síntese da Segregação

A Tabela XI resume o modelo arquitetural proposto para
garantir o equilíbrio entre proteção e fluidez conversacional.

TABELA XI
MATRIZ DE RESPONSABILIDADES: GUARDRAIL VS. AGENTE

Característica Guardrail (Segurança) Agente (Escopo)

Missão Proteção contra ataques
e injeções

Gestão de utilidade e re-
gras de negócio

Contexto Analisa a segurança da
mensagem

Analisa a intenção da so-
licitação

Dados Não (foca na detecção
de padrões maliciosos)

Sim (valida, cadastra e
processa dados)

Fonte: Elaborado pelo autor (2026).

Em suma, a segurança reside na soberania do filtro externo
(Guardrail), enquanto a utilidade reside no discernimento
semântico do Agente. Esta segregação impede que o conser-
vadorismo necessário para a segurança técnica prejudique a
flexibilidade exigida pelo atendimento ao cliente.

VI. CONCLUSÃO

A análise abrangente de 150 casos de teste e 64.818
execuções experimentais válidas (do universo inicial de 72.000
interações planejadas, 7.182 execuções passaram por bloqueios
nativos e foram analisadas separadamente) consolida as bases
para a otimização de Guardrails de segurança em agentes
conversacionais, estabelecendo as seguintes determinações:

• Desempenho Global do Sistema: Os resultados validam
a eficácia da solução e mostram que a arquitetura é
extremamente promissora. O sistema já apresenta um
comportamento consistente, restando apenas etapas de
otimização de configuração para elevar o sistema ao seu
nível máximo de performance e segurança.

• Supremacia do Gemini 2.0 Flash: Este modelo definiu
o estado da arte na pesquisa, apresentando 0,00% de
erro de parsing e com um F1-Score de 97,81%, ele
equilibra perfeitamente a sensibilidade de detecção com
a estabilidade operacional necessária para ambientes de
produção.

• Inviabilidade Operacional do Gemini 2.5 Flash: Ape-
sar de métricas de classificação competitivas, o Gemini
2.5 Flash apresentou uma taxa de falha sintática crítica
de 16,99%, tornando-o tecnologicamente inviável para
Guardrails que dependem de saídas estruturadas.

• Limitações de Modelos Reduzidos: Os modelos Mini e
Nano (GPT-4) demonstraram viés conservador excessivo,
elevando a taxa de Falsos Positivos ao bloquear mensa-
gens legítimas (Precision de 82,49% no modelo Nano), o
que degrada severamente a experiência do usuário (UX).



A. Impacto das Variáveis e Diretrizes de Arquitetura
A análise multivariada permitiu isolar os componentes que

maximizam a eficácia do sistema, estabelecendo as diretrizes
para a configuração de produção:

• Gestão de Contexto: A utilização de Full History provou
ser obrigatória, elevando o F1-Score em 2,34 pontos
percentuais. O contexto histórico é o principal fator de
desambiguação para validar intenções que, isoladamente,
pareceriam maliciosas, ou identificar ataques multi-turno.

• Estratégias de Prompting: A técnica Few-Shot
consolidou-se como a mais equilibrada (F1: 0,9565; Erro
Parsing: 1,36%). Embora o Chain-of-Thought (CoT) po-
tencialize o raciocínio, sua alta taxa de erro sintático
(8,24%) limita sua aplicação a modelos de altíssima
estabilidade.

• Isolamento de Identidade: A ausência do Agent Prompt
na camada de segurança é um padrão no Top 20 das
melhores configurações. A inclusão de instruções do
agente no Guardrail gera conflito cognitivo no modelo,
aumentando bloqueios indevidos e erros de parsing.

• Formatos de Saída: Tanto JSON Schema quanto Tools
mostraram-se viáveis. O JSON Schema oferece uma
leve vantagem em precisão (menos bloqueios indevidos),
enquanto o Tools apresenta um Recall superior, sendo
preferível quando a tolerância ao risco de segurança é
mínima.

B. Taxonomia de Falhas e Fronteiras de Vulnerabilidade
A análise dos 37 outliers identificados (24,7% do dataset)

revela padrões de falha que delimitam os desafios atuais da
IA:

• Padrões de Falsos Positivos (Bloqueio Indevido):
Concentram-se em mensagens ultra-curtas, números iso-
lados (CPFs, protocolos) ou formatações irregulares. Mo-
delos menores tendem a classificar ruído sintático como
tentativa de evasão por precaução.

• Padrões de Falsos Negativos (Vazamento de Es-
copo): O maior desafio reside em mensagens out-of-
scope (57,7% de erro) que não são identificadas pela
arquitetura atual como ameaças. Isso ocorre devido à
lógica de mercado utilizada, que prioriza a detecção
de padrões de ataque explícitos, falhando ao processar
solicitações de natureza estética ou literária que, embora
fora do domínio, não ativam os gatilhos de segurança
convencionais.

• Trade-off Segurança vs. Usabilidade: Modelos menores
priorizam segurança (alto Recall, baixa Precision), en-
quanto modelos maiores (Gemini 2.0 Flash) conseguem o
discernimento necessário para manter a fluidez do diálogo
sem abrir brechas de integridade.

C. Direcionamento Estratégico para Produção
Com base nas evidências empíricas, a arquitetura de referên-

cia para implementação imediata é definida pela configuração:
Gemini 2.0 Flash + Full History + Few-Shot Promp-
ting + JSON Schema + Temperatura 0.0 a 0.5 + Sem
Agent Prompt.

Esta combinação alcançou F1-Score de 100% em testes es-
pecíficos, garantindo que o Guardrail atue como uma camada
de segurança técnica pura, delegando ao agente principal a
lógica de escopo de negócio.

D. Considerações Finais

A pesquisa conclui que a otimização científica de Guar-
drails permite superar o dilema entre rigor defensivo e agi-
lidade conversacional. O Gemini 2.0 Flash emerge como o
pilar central desta arquitetura, sendo o único capaz de oferecer
estabilidade sintática absoluta e discernimento semântico su-
perior. A segurança da plataforma não deve ser vista como um
limitador de interações, mas como um diferencial de robustez,
onde a excelência técnica na filtragem de dados protege a
integridade do sistema e a confiança do usuário final.
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