
RAG Systems: A Comprehensive Guide

© 2025 Twig AI Page 1

Retrieval-Augmented Generation
(RAG)

Technical Foundations, Architectures, and Future Directions
- Chandan Maruthi, CEO & Founder, Twig AI

Published by Twig AI | Try it now at www.GetTwig.ai

© 2025 All Rights Reserved

RAG Systems: A Comprehensive Guide

© 2025 Twig AI Page 1

Table of Contents

Chapter 1 – The Evolution of RAG

Chapter 2 – Foundations of RAG Systems

Chapter 3 – Baseline RAG Pipeline

Chapter 4 – Context-Aware RAG

Chapter 5 – Dynamic RAG

Chapter 6 – Hybrid RAG

Chapter 7 – Multi-Stage Retrieval

Chapter 8 – Graph-Based RAG

Chapter 9 – Hierarchical RAG

Chapter 10 – Agentic RAG

Chapter 11 – Streaming RAG

Chapter 12 – Memory-Augmented RAG

Chapter 13 – Knowledge Graph Integration

Chapter 14 – Evaluation Metrics

Chapter 15 – Synthetic Data Generation

Chapter 16 – Domain-Specific Fine-Tuning

Chapter 17 – Privacy & Compliance in RAG

Chapter 18 – Real-Time Evaluation & Monitoring

Chapter 19 – Human-in-the-Loop RAG

Chapter 20 – Multi-Agent RAG Systems

Chapter 21 – Conclusion & Future Directions

This book provides a comprehensive guide to Retrieval-Augmented Generation systems, from

foundational concepts to advanced architectures and enterprise deployment strategies.

About the Author

Chandan Maruthi is the founder and CEO of San Francisco–based Twig AI, pioneering

enterprise-grade Retrieval-Augmented Generation (RAG) and multi-agent systems. He

leads product strategy, engineering, and research on context-aware, secure AI.

Before founding Twig AI, Chandan built large-scale AI systems for enterprise

automation and CX, specializing in RAG, memory models, and self-evaluating AI with

a focus on security, compliance, and scale.

Chandan completed Stanford’s Continuing Studies courses BUS 219 (AI in Business

Strategy) and BUS 28 (Applied AI for Product Innovation), focusing on how emerging

AI drives business transformation and next-gen enterprise software.

You can connect with Chandan on LinkedIn at: linkedin.com/in/chandanmaruthi

© 2025 Twig AI — All Rights Reserved

RAG Systems: A Comprehensive Guide Preface

© 2025 Twig AI Page 1

Preface

Over the past two years, the Twig team has been building enterprise-grade RAG systems

for some of the most demanding production environments. Through this journey, we

discovered a hard truth: the gap between a hackathon demo and a true enterprise

deployment is vast..

What looks impressive in a demo often breaks in production — due to missing steps in

robust data ingestion, intelligent chunking, context retrieval, and agentic orchestration.

Each of these layers requires precision, scalability, and observability to deliver reliable

results at scale.

We took everything we learned — from countless iterations, evaluations, and deployments

— and built it into Twig (GetTwig.ai), a complete platform for RAG developers. Twig

brings together ingestion pipelines, dynamic chunking, context-aware retrieval, and

self-evaluating AI workflows in one cohesive environment.

Today, development teams use Twig to ship RAG and agentic AI projects up to 80% faster,

moving confidently from prototype to production with enterprise reliability.

You can explore the Strategy Playground and experiment with RAG strategies firsthand at

www.GetTwig.ai

learn more at www.GetTwig.ai

www.GetTwig.ai

RAG Systems: A Comprehensive Guide The Evolution of RAG

© 2025 Twig AI Page 1

Chapter 1 – The Evolution of Retrieval-Augmented

Generation

Retrieval-Augmented Generation (RAG) represents one of the most important architectural

innovations in modern AI systems. It bridges the gap between language models' parametric

memory and external, factual knowledge sources. The idea—simple but profound—is to

retrieve relevant information before generating a response, grounding outputs in real data.

Figure 1 – The Evolution of Retrieval-Augmented Systems

Stage 1: Information Retrieval (TF-IDF, BM25)

Stage 2: Neural Retrieval (BERT, DPR, ColBERT)

Stage 3: Hybrid RAG (Retrieval + Generation)

Stage 4: Context-Aware / Dynamic RAG

Stage 5: Agentic and Multi-Agent RAG

→ Toward self-evaluating, autonomous retrieval systems

Figure 1 – From symbolic retrieval to adaptive, reasoning-based RAG architectures.

Early retrieval systems (pre-2018). Traditional search models such as TF-IDF and BM25

used lexical overlap to rank documents. These methods powered early information retrieval

systems and question answering pipelines but lacked semantic understanding.

Neural retrieval era (2018–2020). The introduction of dense vector embeddings through

models like BERT and DPR enabled semantic similarity search. Instead of relying on

keyword matching, systems began to compare meaning across sentences in

high-dimensional embedding space. This shift laid the foundation for neural information

access.

RAG Systems: A Comprehensive Guide The Evolution of RAG

© 2025 Twig AI Page 2

The RAG architecture (2020). Facebook AI Research's 2020 paper formally introduced

Retrieval-Augmented Generation, which combined a retriever with a generator in an

end-to-end differentiable loop. This hybrid model allowed large language models to access

up-to-date information while preserving fluency and reasoning ability.

Context-aware evolution (2022–2024). With advancements in embedding models (E5,

OpenAI Ada-2, Cohere Embed), retrievers began dynamically adapting to query intent and

user profiles. RAG architectures evolved into modular systems with reranking, memory,

and multi-hop retrieval components.

Agentic and multi-agent RAG (2024–2025). The latest wave integrates reasoning agents

that autonomously plan, query, and synthesize context across diverse knowledge sources.

This transition moves RAG beyond static pipelines into self-adaptive reasoning

ecosystems—where retrieval, memory, and generation continuously learn from feedback.

The next phase will see RAG merge with tool orchestration, memory systems, and

reinforcement loops to create autonomous, verifiable, and explainable knowledge

systems—fundamental to trustworthy enterprise AI.

RAG Systems: A Comprehensive Guide Foundations of RAG Systems

© 2025 Twig AI Page 1

Chapter 2 – Foundations of RAG Systems

Retrieval-Augmented Generation (RAG) systems couple information retrieval with

generative language models. This chapter formalizes the probabilistic foundations and

illustrates the interaction between retriever and generator components.

Formally, a RAG system is expressed as:

P(y | x) = Σ■d■ P(y | x, d) · P(d | x)

where x is the query, d represents retrieved documents, and y is the generated answer.

[User Query] → [Retriever] → [Generator]

↓

Knowledge Source

Figure 2 – Standard RAG Pipeline.

The retriever encodes both queries and documents into a shared vector space, selecting

top-k contexts with maximum cosine similarity. The generator conditions its

language-model decoding on these contexts. Fusion techniques such as late fusion and

token fusion balance context and prior knowledge. Training typically minimizes the

negative log-likelihood of generated tokens while retrieval is optimized through contrastive

learning. RAG therefore unifies retrieval and generation under a probabilistic framework,

allowing models to adapt to new information without full re-training.

RAG Systems: A Comprehensive Guide Baseline RAG Pipeline

© 2025 Twig AI Page 1

Chapter 3 – Baseline RAG Pipeline

The baseline Retrieval-Augmented Generation (RAG) model integrates dense retrieval

with a sequence-to-sequence generator. It represents the canonical form of RAG and

provides a foundation for subsequent variants like Dynamic and Context-Aware RAG.

[User Query] → [Retriever] → [Top-k Contexts]

↓

[Generator (LLM)]

↓

[Response]Figure 3 – Standard Baseline RAG Pipeline.

The baseline pipeline operates in three sequential phases: retrieval, context fusion, and

generation. A retriever encodes both query and document embeddings into a shared vector

space, often via a bi-encoder architecture like DPR. Top-k context passages are selected by

cosine similarity search over the embedding index. These are concatenated or fused and

provided to a language model such as BART, T5, or Llama-2-Chat for conditioned

generation.

The retriever and generator may be jointly trained or decoupled. In the decoupled case,

retrieval models are trained using contrastive objectives, while the generator fine-tunes on

supervised QA pairs. Joint training optimizes both retrieval and generation via marginal

likelihood, ensuring end-to-end differentiability.

Although simple, baseline RAG provides strong grounding and efficient adaptation to

external data. Its modular design allows drop-in replacement of retrievers and generators,

making it ideal for production systems and research baselines.

RAG Systems: A Comprehensive Guide Context-Aware RAG

© 2025 Twig AI Page 1

Chapter 4 – Context-Aware RAG

Context-Aware Retrieval-Augmented Generation (RAG) introduces adaptive mechanisms

that leverage conversational or multi-turn context to reformulate user queries before

retrieval. Unlike the baseline pipeline, which treats each input independently,

context-aware architectures maintain and evolve a running state representation.

[Conversation History] → [Query Rewriter] → [Retriever]

↓

[Generator]

Figure 4 – Context-Aware RAG introduces dynamic query rewriting.

The key innovation is the *query rewriter*, a transformer sub-module trained to compress

dialogue history into a concise, self-contained question. This rewritten query is passed to

the retriever, which then accesses relevant knowledge. The generator conditions on both

the retrieved content and latent state embeddings derived from past turns.

Context tracking can be implemented using sliding-window encoders, hierarchical

attention, or memory tokens. Systems such as ChatGPT-RAG and MemoryGPT employ

this design to enable continuity and reasoning across multiple turns without exceeding

token limits.

Evaluation of Context-Aware RAG often uses metrics like Contextual Recall and Dialogue

Faithfulness. These measure how effectively the model integrates prior turns and preserves

conversational coherence.

RAG Systems: A Comprehensive Guide Dynamic RAG

© 2025 Twig AI Page 1

Chapter 5 – Dynamic RAG

Dynamic Retrieval-Augmented Generation (Dynamic RAG) extends baseline RAG by

introducing adaptive retrieval strategies that respond to query complexity, uncertainty, and

user context. Instead of always retrieving a fixed number of documents, Dynamic RAG

adjusts retrieval depth, reranking thresholds, and even iterative refinement based on

generation confidence.

Figure 5 – Dynamic RAG Architecture

[User Query] → [Complexity Classifier] → [Adaptive Retriever]

↓
[Generator + Confidence Score]

If confidence < threshold:

→ Re-retrieve with expanded query

→ Increase top-k

Figure 5 – Dynamic RAG adapts retrieval based on query complexity and confidence.

Adaptive retrieval depth. Dynamic RAG employs a query complexity classifier that

estimates the difficulty of answering a given question. Simple factual queries may require

only 2-3 retrieved passages, while complex multi-hop questions trigger deeper retrieval

(k=10-20) or multiple retrieval rounds. This approach optimizes both latency and accuracy.

Confidence-based iteration. After an initial generation pass, the system evaluates output

confidence using uncertainty estimation, semantic consistency checks, or self-verification

prompts. If confidence falls below a threshold, the retriever is invoked again with refined

queries or expanded contexts, forming a closed-loop reasoning cycle.

RAG Systems: A Comprehensive Guide Dynamic RAG

© 2025 Twig AI Page 2

Query reformulation. Dynamic RAG may rewrite user queries based on intermediate

generation results. For instance, if the generator identifies missing information (e.g., 'The

user asked about X but context only covers Y'), the system automatically generates a

follow-up retrieval query targeting the gap.

Cost-aware retrieval. In production systems, Dynamic RAG can balance retrieval cost

and accuracy. Queries flagged as low-risk use minimal retrieval, while high-stakes or

ambiguous queries trigger exhaustive search. This adaptive policy reduces token usage and

latency while maintaining quality for critical queries.

Implementation strategies. Dynamic RAG can be implemented using reinforcement

learning to train the retrieval policy, rule-based heuristics (e.g., query length, named entity

count), or meta-learning approaches that predict optimal retrieval parameters. Some

systems use a lightweight 'controller' model that decides when to retrieve and when to

generate from existing context.

Evaluation metrics. Dynamic RAG systems are typically evaluated on

efficiency-accuracy trade-offs: retrieval count vs answer quality, latency vs correctness,

and token cost vs user satisfaction. Adaptive policies should outperform fixed-k baselines

across diverse query distributions.

When to use: Dynamic RAG is ideal for heterogeneous query workloads where some

questions are simple and others require multi-hop reasoning, or when optimizing for both

quality and cost in production environments with variable query complexity.

RAG Systems: A Comprehensive Guide Hybrid RAG

© 2025 Twig AI Page 1

Chapter 6 – Hybrid RAG

Hybrid Retrieval-Augmented Generation (Hybrid RAG) merges the strengths of sparse

lexical retrieval (e.g., BM25) and dense embedding-based retrieval (e.g., DPR,

Sentence-BERT). This approach balances precision and recall across structured and

unstructured content types, enabling both keyword and semantic search.

[Query] ■■■> [Sparse Retriever]

■■■> [Dense Retriever]

↓

[Fusion / Reranker]

↓

[Generator (LLM)]Figure 6 – Hybrid RAG: combining symbolic and neural retrieval pathways.

Sparse retrievers rely on inverted indexes and token-level overlap, providing strong lexical

precision. Dense retrievers, on the other hand, encode semantic meaning into vector space

embeddings, improving generalization and contextual matching. In Hybrid RAG, both

retrieval signals are fused to yield a richer candidate pool.

Fusion strategies include linear weighting of BM25 and embedding scores,

learning-to-rank approaches, or cascade retrieval where sparse candidates are re-ranked by

dense similarity. This combination enables the system to capture both keyword relevance

and conceptual similarity in responses.

Hybrid RAG is particularly useful in enterprise environments where data diversity is

high—structured FAQs, semi-structured documents, and free-text knowledge bases. It's

also common in code search, legal discovery, and technical documentation systems.

RAG Systems: A Comprehensive Guide Hybrid RAG

© 2025 Twig AI Page 2

While more computationally expensive due to dual retrieval pipelines, hybrid systems

yield robust accuracy improvements in noisy or heterogeneous domains. Efficiency can be

optimized with late fusion and selective reranking of overlapping results.

When to use: choose Hybrid RAG when the corpus spans both natural language and

domain-specific text, or when recall is critical and single-modality retrieval fails to

generalize.

RAG Systems: A Comprehensive Guide Multi-Stage Retrieval

© 2025 Twig AI Page 1

Chapter 7 – Multi-Stage Retrieval

Multi-Stage Retrieval decomposes retrieval into a fast candidate generation phase followed

by a high-precision reranking phase. The first stage maximizes recall using inexpensive

models and large fan-out; the second stage maximizes precision using compute-heavy

cross-encoders or late-interaction scoring. This design is standard in web search and adapts

well to RAG.

Stage 1: Candidate Generation (High Recall)

- Sparse BM25 / Keyword

- Dense ANN (HNSW / IVF)

- Filters: time, tags, ACL

-> top-N docs

Stage 2: Reranker (High Precision)

- Cross-Encoder score(q, d)

- Late Interaction (e.g., ColBERT)

- Diversification (MMR) -> top-k contexts

[Generator (LLM)]

Figure 7 – Two-stage retrieval: recall-first candidate generation followed by precision reranking.

Why multi-stage. A single retriever must trade off recall vs precision. Multi-stage designs

separate concerns: use broad, cheap retrieval to avoid missing relevant evidence, then

apply expensive scoring to a narrowed set. This reduces latency and token cost while

boosting groundedness.

Candidate generation. Combine sparse (BM25) and dense ANN indexes with permissive

filters to yield N=100..1000 candidates. Normalize scores and union results; de-duplicate

by document ID and shard. Time and ACL filters constrain visibility.

Reranking. Apply a cross-encoder f(q, d) that jointly attends to the query and passage, or a

late-interaction model that computes max-sim over token embeddings. Include

RAG Systems: A Comprehensive Guide Multi-Stage Retrieval

© 2025 Twig AI Page 2

diversification (e.g., MMR) to reduce redundancy and improve coverage of subtopics.

Practical tips. Tune fan-out (N) and final top-k by domain; log recall@k against labeled

sets. Cache cross-encoder scores; use approximate rerankers for speed-sensitive tiers.

Monitor token impact of retrieved contexts in generation.

When to use. Choose multi-stage retrieval when corpora are large, heterogeneous, or

noisy; when baseline dense-only systems miss edge cases; or when precision is critical

(support escalations, legal, medical).

RAG Systems: A Comprehensive Guide Graph-Based RAG

© 2025 Twig AI Page 1

Chapter 8 – Graph-Based RAG

Graph-Based Retrieval-Augmented Generation (Graph-RAG) replaces the traditional flat

corpus with a structured graph representation of knowledge. Nodes represent entities or

documents, while edges encode semantic or relational links between them. This enables

multi-hop reasoning and contextual retrieval beyond keyword or embedding similarity.

Figure 8 – Graph-Based RAG

(Node A) ■■ related_to ■■■ (Node B)

■ ▲

■ ■

(Node C) ■■■ cites ■■■■■■■■

[Retriever traverses neighborhood]

Figure 8 – Graph-Based RAG: retrieval follows semantic links across entities and documents.

In Graph-RAG, retrieval expands along graph edges rather than static text indexes. Starting

from a query node derived via entity linking or embedding similarity, the retriever

traverses neighboring nodes up to a configurable depth (k hops). Contexts from reachable

nodes are ranked and aggregated before feeding the generator.

Graphs can be built from structured databases, document metadata, citation networks, or

relational triples (subject–predicate–object). For unstructured corpora, entity extraction and

relation prediction models automatically construct edges. Embedding propagation across

the graph improves retrieval coverage while maintaining semantic structure.

Popular frameworks such as Neo4j, TigerGraph, and GraphML pipelines support

Graph-RAG by enabling efficient traversal queries and hybrid indexing (text + graph).

Some modern RAG systems embed nodes and edges jointly, enabling learned graph

retrieval.

RAG Systems: A Comprehensive Guide Graph-Based RAG

© 2025 Twig AI Page 2

Graph-RAG excels when queries require multi-hop reasoning, such as tracing cause–effect

chains, navigating dependencies in codebases, or exploring interconnected scientific

literature. However, graph construction and maintenance can be costly and error-prone if

relations are noisy or incomplete.

When to use: apply Graph-RAG in knowledge-heavy domains with explicit

relationships—scientific research, enterprise knowledge graphs, cybersecurity threat

graphs, or medical ontologies.

RAG Systems: A Comprehensive Guide Hierarchical RAG

© 2025 Twig AI Page 1

Chapter 9 – Hierarchical RAG

Hierarchical Retrieval-Augmented Generation (Hierarchical RAG) organizes retrieval and

reasoning at multiple levels of abstraction — from high-level document clustering to

fine-grained passage selection. This architecture mirrors human information search:

scanning topics broadly, then zooming into relevant details.

Figure 9 – Hierarchical RAG

[Cluster Retriever] → [Document Retriever] → [Passage Retriever]

↓

[Generator (LLM)]

Context Hierarchy:

- Topic → Doc → Section → Sentence

Figure 9 – Hierarchical RAG: coarse-to-fine retrieval through clustered context levels.

Hierarchical RAG begins with coarse retrieval — selecting clusters or document groups

relevant to the query. Subsequent retrievers operate within that subset to identify

increasingly specific content (sections, paragraphs, or snippets). This layered approach

improves scalability and context quality for large corpora.

Each level of retrieval is often specialized: a lightweight sparse retriever for coarse

filtering, and dense or cross-encoder models for fine-grained ranking. The generator fuses

representations from multiple levels, conditioning on both global (topic) and local (detail)

evidence.

Hierarchical attention mechanisms or tree-structured memory encoders integrate

multi-level contexts efficiently. Architectures like Tree-RAG and HRAG (Hierarchical

Retrieval-Augmented Generation) show substantial gains in long-document reasoning,

RAG Systems: A Comprehensive Guide Hierarchical RAG

© 2025 Twig AI Page 2

where flat top-k retrieval struggles to capture hierarchical dependencies.

This method also enhances interpretability: retrieved clusters can be visualized as topic

outlines, showing how the model narrows focus. Caching can be applied at upper levels

(e.g., cluster or document retrieval) to reduce computation while maintaining coverage.

When to use: Hierarchical RAG is ideal for large-scale enterprise or scientific corpora

where topics span multiple subdomains. It also improves performance in long-context

reasoning tasks such as multi-chapter document synthesis and academic literature review.

RAG Systems: A Comprehensive Guide Agentic RAG

© 2025 Twig AI Page 1

Chapter 10 – Agentic RAG

Agentic Retrieval-Augmented Generation (Agentic RAG) extends RAG beyond static

pipelines by introducing autonomous reasoning agents that plan, retrieve, and adapt

dynamically. Instead of a single retrieval–generation loop, Agentic RAG decomposes the

task into multiple reasoning steps, where each step may involve querying new data,

reformulating sub-questions, and invoking external tools.

Figure 10 – Agentic RAG Workflow

[Planner Agent] → [Retriever Agent] → [Generator Agent]

↑ ↓
[Feedback / Context Memory Loop]

■ External Tools: Search APIs, Databases, APIs

[Final Answer]

Figure 10 – Agentic RAG: coordination between planner, retriever, and generator agents.

Agentic RAG typically consists of three core components: (1) a **planner** agent that

decides retrieval and generation strategy, (2) a **retriever** agent that interfaces with data

stores, and (3) a **generator** agent that synthesizes and evaluates results. This design

allows recursive self-reflection and multi-hop reasoning, improving factual consistency

and contextual grounding.

Recent frameworks such as AutoRAG, LlamaIndex Agents, and LangGraph implement

this paradigm. The planner issues retrieval sub-tasks based on intermediate hypotheses,

then re-invokes the generator with refined context. This structure enables compound tasks

such as summarizing multi-document evidence or synthesizing answers from evolving data

RAG Systems: A Comprehensive Guide Agentic RAG

© 2025 Twig AI Page 2

sources.

Agentic RAG benefits from an internal feedback loop. The generator evaluates its own

outputs via scoring functions (faithfulness, uncertainty, or coverage) and can trigger

re-retrieval if the confidence is low. These loops reduce hallucination and allow iterative

grounding in updated context.

Integration with external APIs further enhances adaptability. Agents can call

domain-specific search engines, knowledge graphs, and structured databases. Tool

invocation and adaptive query generation transform RAG from passive retrieval into an

active reasoning system.

When to use: Agentic RAG is ideal for complex workflows such as research synthesis,

compliance analysis, and real-time monitoring, where multi-step reasoning and tool

orchestration are essential. Its flexibility comes at higher compute cost and complexity but

offers the most autonomy and accuracy among RAG variants.

RAG Systems: A Comprehensive Guide Streaming RAG

© 2025 Twig AI Page 1

Chapter 11 – Streaming RAG

Streaming Retrieval Augmented Generation (Streaming RAG) integrates continuously

updating data sources with the retrieval step. Instead of indexing only static corpora, the

system consumes append-only feeds, pub-sub topics, or event streams and maintains a near

real-time index for retrieval. The generator can then answer questions with the freshest

available context.

Figure 11 – Streaming RAG Architecture

[Producers: APIs, Webhooks, Logs]

-> [Stream Ingest] -> [Preprocess] -> [Embed]

-> [ANN Index Update] // incremental

[User Query] -> [Retriever] -> [Top-k]-> [Generator] -> [Answer]

[Freshness Guard] TTL, watermark, late data

Figure 11 – Ingests events continuously, updates vector index incrementally, and enforces freshness.

Ingestion. Use a streaming substrate such as Kafka, Kinesis, or Pub/Sub to capture new

documents and deltas. Preprocess with lightweight parsers and chunkers that operate in

micro-batches to bound latency. Persist raw events to object storage for replay and backfill

to keep the index consistent.

Index maintenance. Maintain an incremental ANN pipeline (HNSW, IVF-Flat, PQ) that

supports fast upserts and deletes. Keep metadata columns for timestamps, source, and

ACL. Partition or time-slice large tables to accelerate pruning and TTL expiry.

Freshness controls. Enforce a time watermark on retrieval that drops stale chunks beyond

a TTL. Add a recency prior to the score, e.g., score = sim - lambda * age_hours. For

RAG Systems: A Comprehensive Guide Streaming RAG

© 2025 Twig AI Page 2

safety-critical answers, require at least one context updated within a freshness window.

Serving path. The retriever consults both the hot streaming index and a colder historical

index. A policy decides which to use based on query type and freshness requirements.

Answers include citations with timestamps to improve trust and traceability.

Backfill and reindex. When schemas or embeddings change, run a background reindex

job while continuing incremental updates. Use versioned embeddings and a dual-read

policy during migration to avoid downtime.

When to use. Streaming RAG is ideal for real-time monitoring, news summarization,

fraud and risk signals, and operational analytics. It trades additional ops complexity for the

ability to answer questions about the latest events.

RAG Systems: A Comprehensive Guide Memory-Augmented RAG

© 2025 Twig AI Page 1

Chapter 12 – Memory-Augmented RAG

Memory-Augmented Retrieval-Augmented Generation (Memory RAG) enhances

traditional RAG by introducing a persistent memory layer that stores and retrieves

conversational or contextual knowledge across sessions. This design allows the model to

build long-term understanding, retain facts, and adapt to user-specific information without

full re-indexing.

Figure 12 – Memory-Augmented RAG

[Short-Term Context Buffer] → [Retriever] → [Generator]

↑
[Long-Term Memory Store]

↓
[Memory Controller (Write/Read)]

→ Persistent DB (Vector Store, Redis, Milvus)

Figure 12 – Persistent memory layer manages long-term context for adaptive retrieval.

Core concept. Unlike traditional RAG that resets between sessions, Memory RAG

introduces a long-term memory module that stores interactions, user preferences, and

intermediate reasoning traces. Retrieval can now include both static documents and prior

dialogue embeddings.

Memory controller. A lightweight neural controller governs read and write operations.

New facts or interactions are written into memory when confidence exceeds a threshold.

During generation, relevant memories are fetched based on semantic similarity or recency

weighting.

RAG Systems: A Comprehensive Guide Memory-Augmented RAG

© 2025 Twig AI Page 2

Architectural variants. Systems can employ explicit key-value stores (e.g., MemGPT,

ReAct-Mem) or differentiable memory networks (Neural Turing Machines,

Retrieval-augmented Transformers). The latter integrate memory access directly into

attention layers.

Benefits. Memory RAG reduces redundant retrieval calls, supports personalization, and

improves long-term coherence. It enables agents to recall prior knowledge without costly

re-ingestion or re-embedding of historical data.

Challenges. Long-term memory management introduces new risks: stale information,

privacy leakage, and memory bloat. Practical deployments require policies for forgetting,

summarization, and encryption. Efficient garbage collection and embedding pruning are

active research areas.

When to use. Memory RAG is ideal for chatbots, research assistants, and multi-session

enterprise agents where user-specific context and continuity are critical.

RAG Systems: A Comprehensive Guide Knowledge Graph Integration

© 2025 Twig AI Page 1

Chapter 13 – Knowledge Graph Integration

Integrating Knowledge Graphs (KGs) into Retrieval-Augmented Generation (RAG)

enables structured reasoning over entities, relations, and attributes. Instead of retrieving flat

text chunks, the model can navigate semantically rich graphs, combining symbolic

precision with neural contextualization.

Figure 13 – Knowledge Graph Integration in RAG

[Query Embedding] → [Graph Retriever] → [Subgraph Extraction]

↓
[Entity Nodes + Relations]

↓
[Generator (LLM)] – grounded via triples

Figure 13 – Graph retriever returns structured triples used for grounded text generation.

Architecture. A Knowledge-Graph-Integrated RAG system represents knowledge as

triples (subject, predicate, object). Queries are mapped to entities and relations using entity

linking or embedding alignment, then a subgraph is retrieved via graph traversal or

embedding similarity search.

Graph retrieval. Retrieval can combine symbolic queries (e.g., SPARQL) with vector

similarity on entity embeddings. Hybrid pipelines often use an initial symbolic expansion

followed by dense reranking. Relation paths can be scored with attention mechanisms or

graph neural networks (GNNs).

Generation. The generator consumes serialized subgraphs—triples linearized as natural

language templates or encoded as graph embeddings. Conditioning on relational structure

improves factual grounding, reduces hallucination, and enhances explainability by

RAG Systems: A Comprehensive Guide Knowledge Graph Integration

© 2025 Twig AI Page 2

exposing which edges supported each fact.

Integration strategies. (1) Pre-retrieval fusion: combine KG context with text

embeddings before ANN search. (2) Post-retrieval fusion: merge textual passages with

graph-derived facts prior to generation. (3) Joint embedding: train a unified model where

entity and text vectors coexist in one latent space.

Applications. KG-RAG is well suited for domains where relationships are explicit and

verifiable: biomedical research, supply-chain reasoning, enterprise knowledge

management, and question answering over structured datasets.

Challenges. Graph maintenance and schema alignment remain hard. Real-world graphs

evolve rapidly; ensuring embedding consistency and handling unseen entities requires

continual learning or graph delta ingestion.

When to use: adopt Knowledge-Graph Integration when the task demands relational

reasoning, multi-hop inference, or strict traceability of answers to structured sources.

RAG Systems: A Comprehensive Guide Evaluation Metrics

© 2025 Twig AI Page 1

Chapter 14 – Evaluation Metrics

Evaluation of Retrieval-Augmented Generation (RAG) systems requires measuring both

retrieval quality and generation quality. Unlike pure retrievers or language models, RAG

introduces interactions between components that affect factuality, grounding, and

completeness. Comprehensive evaluation thus involves intrinsic, extrinsic, and

human-centered metrics.

Figure 14 – RAG Evaluation Pipeline

[Retriever Metrics] → [Generator Metrics] → [Human Eval]

Retriever: Recall@k, Precision, MRR

Generator: Faithfulness, Factuality, BLEU, ROUGE

Human: Correctness, Helpfulness, Readability

→ Combined Score = α·Retrieval + β·Generation + γ·Human

Figure 14 – Multi-level RAG evaluation pipeline with retriever, generator, and human layers.

1. Retrieval metrics. Evaluate the retriever's ability to surface relevant context for each

query. Typical metrics include Recall@k (coverage of gold evidence), Precision@k, Mean

Reciprocal Rank (MRR), and NDCG. High Recall@k ensures grounding potential, while

MRR captures rank sensitivity.

2. Generation metrics. Assess output text quality. Intrinsic metrics like BLEU,

ROUGE-L, and METEOR quantify lexical overlap. However, these can miss semantic

alignment, so newer models use factual consistency scores (FactCC, QAGS, or GPT-based

judge models). Faithfulness measures how well answers align with retrieved evidence

rather than hallucinated content.

RAG Systems: A Comprehensive Guide Evaluation Metrics

© 2025 Twig AI Page 2

3. End-to-end metrics. Composite metrics evaluate the full pipeline. 'Groundedness' and

'Answer Support Rate' assess if generated answers can be justified from retrieved context.

'Answer Completeness' evaluates recall of multi-fact responses. Automatic evaluation

frameworks like TruLens and RAGAS combine these signals.

4. Latency and cost metrics. Operational metrics like end-to-end latency, token usage,

and retrieval time help balance quality with throughput. These are crucial for

production-grade deployments where cost per query matters.

5. Human evaluation. Human raters assess correctness, helpfulness, and clarity using

Likert or pairwise scales. Hybrid pipelines often calibrate automatic metrics against human

judgment baselines to ensure reliability.

6. Evaluation frameworks. Tools like LlamaIndex's EvalSuite, LangChain's QA Eval, and

OpenAI's Evals automate dataset-level testing. Academic work explores dynamic

benchmarks (REALM, KILT, and BEIR) that include retrieval and generation tasks jointly.

When to use. Evaluation metrics guide iteration. Use retrieval-focused metrics early in

development, end-to-end metrics during model tuning, and human evaluations for final

validation in customer-facing systems.

RAG Systems: A Comprehensive Guide Synthetic Data Generation

© 2025 Twig AI Page 1

Chapter 15 – Synthetic Data Generation for RAG Evaluation

Synthetic data generation has become a cornerstone technique for evaluating and training

Retrieval-Augmented Generation (RAG) systems. By automatically producing

question–answer–context triplets, synthetic datasets enable scalable benchmarking and

continuous improvement without relying solely on expensive human labeling.

Figure 15 – Synthetic Data Generation Pipeline

[Source Corpus] → [Question Generator (LLM)] → [Answer Synthesizer]

↓
[Evaluator / Filter] → [Synthetic QA Dataset]

→ Used for: RAG evaluation, retriever tuning, reward modeling

Figure 15 – LLM-generated QA pairs filtered for factuality to benchmark retrieval and generation.

1. Purpose. Synthetic data enables the creation of large-scale, diverse evaluation sets that

test retrieval fidelity, generation accuracy, and contextual grounding. It helps measure how

models handle noisy or incomplete information.

2. Generation pipeline. A typical workflow involves: (a) selecting passages from the

corpus, (b) prompting an LLM to generate realistic questions, (c) generating or extracting

ground-truth answers, and (d) filtering for factual correctness and coverage. This produces

a synthetic dataset suitable for RAG benchmarking or fine-tuning retrievers.

3. Filtering and scoring. Automatic verification models (e.g., GPT-Judge, FactScore,

RAGAS) evaluate whether generated answers are consistent with retrieved context.

Low-quality samples are removed or reweighted. Some pipelines use consistency checks

RAG Systems: A Comprehensive Guide Synthetic Data Generation

© 2025 Twig AI Page 2

across multiple LLMs to improve reliability.

4. Domain adaptation. Synthetic QA pairs can be customized for specific domains by

constraining prompts or conditioning generation on domain ontologies. For example,

financial RAG systems generate regulatory questions, while biomedical systems synthesize

clinical or molecular reasoning queries.

5. Reinforcement through feedback. Generated data can train reward models for

evaluating factual grounding or faithfulness, enabling reinforcement learning loops that

iteratively improve both retrieval and generation quality.

6. Limitations. Synthetic datasets risk encoding the biases of their source LLM. Moreover,

if generated questions too closely mirror the model's pretraining distribution, they may

inflate performance metrics. Diverse sampling and human spot-checks remain critical.

When to use: synthetic data generation is most useful for early-stage RAG prototyping,

retriever evaluation at scale, and reinforcement of factual grounding during continuous

model improvement.

RAG Systems: A Comprehensive Guide Domain-Specific Fine-Tuning

© 2025 Twig AI Page 1

Chapter 16 – Domain-Specific Fine-Tuning

Domain-Specific Fine-Tuning adapts RAG components—retriever, reranker, and

generator—to a target corpus and task distribution. While baseline RAG offers

generalization, domain tuning yields large gains in precision, grounding, and terminology

control for verticals such as finance, healthcare, legal, or developer tooling.

Figure 16 - Domain-Specific Fine-Tuning Pipeline

[Domain Corpus] → [Retriever Fine-Tune (Contrastive)]

[Labeled QA / Citations] → [Generator SFT/RLHF]

[Eval Sets] → [Reranker Fine-Tune]

↓

[Deployed RAG System]

→ Metrics: Recall@k, Faithfulness, Cost, Latency

Figure 16 – Fine-tuning retriever, reranker, and generator with domain-specific data and metrics.

Retriever fine-tuning. Train bi-encoders (e.g., DPR, E5) on in-domain question–passage

pairs using contrastive loss. Hard negatives from same-topic but irrelevant passages

improve discrimination. For small datasets, use parameter-efficient adapters (LoRA).

Reranker optimization. Cross-encoders (e.g., ms-marco–style) or late-interaction models

(ColBERT) rerank top-N. Fine-tune on pairwise preferences ('A more relevant than B') or

listwise objectives. Cache scores for popular queries to cut latency.

Generator adaptation. Supervised fine-tuning (SFT) on domain QA with citations aligns

tone and terminology. For higher factuality, add a faithfulness reward (answers must be

supported by retrieved spans) and optimize with RL (PPO/DPO).

RAG Systems: A Comprehensive Guide Domain-Specific Fine-Tuning

© 2025 Twig AI Page 2

Terminology control. Inject glossaries and style guides via system prompts or constrained

decoding. Use retrieval-time filters to prefer documents with recent policy versions; add

recency priors to scores in regulated domains.

Data curation. Build gold sets from human escalations, tickets, or SME-written QAs.

Augment with synthetic QAs to cover long-tail variants; deduplicate using semantic

hashing to avoid training leakage.

PEFT and distillation. For on-prem or low-latency deployments, combine LoRA adapters

with knowledge distillation into smaller student models. Quantization-aware training

(QAT) reduces memory without catastrophic drift in grounding quality.

Evaluation and rollout. Track retrieval metrics (Recall@k, MRR), generation

faithfulness, and edit-distance-to-accept metrics. Gate production with canary traffic and

shadow mode; use counterfactual eval (swap contexts) to detect prompt overfitting.

When to use: apply domain-specific fine-tuning when your corpus has unique jargon,

compliance requirements, or structured templates, and when baseline RAG underperforms

despite strong retrieval.

RAG Systems: A Comprehensive Guide Privacy & Compliance in RAG

© 2025 Twig AI Page 1

Chapter 17 – Privacy & Compliance in RAG

Privacy and compliance are core design pillars for enterprise-grade Retrieval-Augmented

Generation (RAG) systems. Since RAG often ingests sensitive internal data—emails,

tickets, and contracts—its architecture must enforce data protection principles such as least

privilege, auditability, and retention control.

Figure 17 – Privacy and Compliance Layers

[Data Sources (Docs, Email, CRM)]→ [Ingestion + Redaction]

→ [Access Control Layer (ACL, OAuth, JWT)]

→ [Retriever + Audit Logging]

→ [Generator + PII Filtering]

→ [Compliance Exports (SOC2, GDPR, HIPAA)]

Figure 17 – Privacy enforcement pipeline from ingestion to generation.

Data minimization. RAG systems should only ingest information necessary for retrieval

and explicitly exclude non-relevant PII or sensitive content. Implement redaction pipelines

to mask personal identifiers before embedding or storage.

Access control. Retrieval should be filtered through fine-grained Access Control Lists

(ACLs). Each query context must carry user identity and scope tokens (e.g., JWT, OAuth

claims) to enforce row- and document-level access policies.

Data retention and deletion. Maintain lifecycle policies aligned with organizational

compliance requirements (e.g., GDPR's right to be forgotten). Vector databases must

support delete-by-ID and secure embedding retraction.

RAG Systems: A Comprehensive Guide Privacy & Compliance in RAG

© 2025 Twig AI Page 2

Auditability. Every retrieval and generation event should log query text, source IDs, and

retrieval metadata with immutable storage. Logs enable downstream compliance review

and data provenance tracking.

Compliance frameworks. Enterprise RAG deployments must align with SOC 2, ISO

27001, GDPR, HIPAA, or sector-specific regulations. SOC 2 compliance focuses on

security and confidentiality; GDPR emphasizes lawful processing and user consent.

Encryption and isolation. Encrypt data in transit (TLS 1.2+) and at rest (AES-256). For

multi-tenant architectures, separate vector indices per tenant or namespace. Avoid model

fine-tuning on proprietary data unless isolated per customer.

Prompt injection defense. Sanitize user input and enforce policy prompts to prevent data

exfiltration. Use retrieval whitelists or policy filters to block indirect prompt injection that

could reveal private information.

When to use: compliance-oriented RAG architectures are essential for regulated industries

like finance, healthcare, and government, where auditability, confidentiality, and consent

tracking are legally mandated.

RAG Systems: A Comprehensive Guide Real-Time Evaluation & Monitoring

© 2025 Twig AI Page 1

Chapter 18 – Real-Time Evaluation & Monitoring

Real-Time Evaluation and Monitoring provides continuous insight into

Retrieval-Augmented Generation (RAG) system performance. Unlike offline batch

evaluation, real-time monitoring captures live interactions, detects degradation, and

surfaces issues such as hallucination drift or retrieval mismatches as they occur.

Figure 18 – Real-Time RAG Monitoring Architecture

[User Query Stream] → [RAG Engine (Retriever + LLM)]

↓
[Metrics Collector] → [Evaluator (Faithfulness, Latency, Drift)]

↓
[Dashboard + Alerts (Prometheus, Grafana)]

→ [Feedback Loop → Retriever / Generator Tuning]

Figure 18 – Real-time evaluation captures metrics and enables adaptive improvement.

1. Observability pipeline. Real-time monitoring begins with event instrumentation. Each

retrieval, ranking, and generation step logs latency, token count, and retrieval depth.

Metrics are streamed into monitoring backends such as Prometheus, OpenTelemetry, or

Datadog for aggregation and visualization.

2. Key metrics. Core metrics include: (a) retrieval latency, (b) grounding rate (how often

context supports answer), (c) hallucination rate (detected via evaluator models), and (d)

token cost per query. Tracking deltas across time helps detect silent regressions or model

drift.

3. Automatic evaluation. Online evaluators such as RAGAS, TruLens, or custom

GPT-based judges continuously assess faithfulness and relevance. Evaluations can run

RAG Systems: A Comprehensive Guide Real-Time Evaluation & Monitoring

© 2025 Twig AI Page 2

asynchronously to avoid latency overhead, using sampled traffic or A/B splits.

4. Alerting and dashboards. Visual dashboards (Grafana, Kibana) display precision,

recall, cost, and satisfaction over time. Threshold-based alerts (e.g., hallucination rate >

15%) trigger investigations or automatic model rollbacks.

5. Feedback loop. Real-time metrics feed retraining pipelines. For example, low

faithfulness scores can automatically enqueue low-quality queries for retriever fine-tuning.

Adaptive weighting of documents or embeddings reduces future hallucinations.

6. Governance and SLAs. Production RAG systems often define SLAs for accuracy,

latency, and compliance. Live monitoring supports compliance auditing by storing metric

histories and user-level anonymized telemetry.

When to use: Real-time monitoring is essential for large-scale or customer-facing RAG

systems where reliability and factual accuracy must be maintained under changing data and

model conditions.

RAG Systems: A Comprehensive Guide Human-in-the-Loop RAG

© 2025 Twig AI Page 1

Chapter 19 – Human-in-the-Loop RAG Systems

Human-in-the-Loop (HITL) RAG systems integrate expert feedback directly into the

retrieval and generation pipeline. Instead of relying solely on automatic scoring, these

systems incorporate structured human judgments to refine context selection, reduce

hallucinations, and improve long-term accuracy through supervised feedback loops.

Figure 19 – Human-in-the-Loop Feedback Flow

[Query + Retrieved Contexts] → [Generator (LLM)]

↓
[Human Reviewer UI] → [Feedback DB (Ratings, Edits, Tags)]

↓
[Retraining or Reward Model Update]

→ [Improved Retriever + Generator]

Figure 19 – Human reviewers assess retrieval and answer quality for iterative improvement.

1. Feedback collection. RAG interfaces often present retrieved evidence and generated

answers to human experts, who rate relevance, correctness, and style. Feedback signals are

stored with metadata such as user role, timestamp, and context version for traceability.

2. Feedback integration. The feedback database powers retraining pipelines: retriever

fine-tuning uses relevance ratings, while generator fine-tuning uses edited answers as gold

responses. Hybrid signals (binary and text edits) can also train reward models for

reinforcement learning.

3. Active sampling. To minimize annotation costs, uncertainty sampling selects queries

where the model has low confidence or high retrieval entropy. This focuses human review

on cases that most improve system learning efficiency.

RAG Systems: A Comprehensive Guide Human-in-the-Loop RAG

© 2025 Twig AI Page 2

4. Feedback modalities. Feedback can be quantitative (1–5 rating), qualitative

(commentary), or corrective (rewritten answer). Combining modalities yields richer

supervision signals. Interfaces may highlight retrieved evidence for point-and-click

verification.

5. Reinforcement learning. RL from human feedback (RLHF) or direct preference

optimization (DPO) aligns generator behavior with expert preferences. RAG-specific

extensions introduce grounding rewards based on retrieved-context alignment and factual

correctness.

6. Governance. Human oversight ensures transparency and ethical safeguards in sensitive

deployments. Regulatory systems (e.g., healthcare, finance) require human validation loops

for model outputs before publication or use.

When to use: Human-in-the-loop RAG architectures are ideal for enterprise domains

demanding explainability, continual improvement, and human oversight—especially in

risk-sensitive workflows.

RAG Systems: A Comprehensive Guide Multi-Agent RAG Systems

© 2025 Twig AI Page 1

Chapter 20 – Multi-Agent RAG Systems

Multi-Agent RAG systems coordinate multiple specialized agents—planners, retrievers,

tool-executors, critics, and synthesizers—to solve complex tasks that exceed the

capabilities of a single retrieval–generation loop. Each agent has a clear contract (inputs,

tools, and outputs) and communicates via messages or a shared blackboard, enabling

concurrent retrieval and iterative reasoning.

Figure 20 – Multi-Agent RAG Orchestration

[Planner] -> [Retriever] -> [Tool Exec] -> [Generator]

■ Feedback / Critic

[Critic Agent] -> revise plan / re-retrieve

[Blackboard / Memory Bus]

- Messages, citations, scores

- Shared state for coordination

[Parallel Retrievers: text/code/graph]

[Tool calls: SQL, APIs, search]

→ [Final Synthesizer] -> Answer + citations

Figure 20 – Orchestration with planner, retriever, tools, generator, critic, and synthesizer over a shared

memory bus.

1. Roles and protocols. The planner decomposes the task into subgoals; retrievers query

specialized indices; tool agents execute structured actions (SQL, web, vector search); a

generator drafts hypotheses; and a critic evaluates faithfulness, coverage, and uncertainty.

The synthesizer merges evidence and emits a final, cited answer.

2. Concurrency and scheduling. Multi-agent systems benefit from parallel retrieval

across modalities and indices. Schedulers allocate budgets (latency, tokens) per agent and

cancel stragglers. A blackboard or message bus (e.g., Redis streams) enables decoupled

coordination and backpressure control.

RAG Systems: A Comprehensive Guide Multi-Agent RAG Systems

© 2025 Twig AI Page 2

3. Planning strategies. Graph-based planners (DAGs), chain-of-thought with tool-use, or

PDDL-style operators can drive agent plans. Closed-loop planning incorporates critic

feedback and retrieval uncertainty to replan when evidence is insufficient.

4. Safety and guardrails. Separate a policy/guard agent to enforce prompts, redact PII,

and validate citations. Critics run entailment or retrieval-grounding checks before answers

are released. High-risk tasks require human-in-the-loop approval.

5. Scaling. Horizontal scale emerges naturally via agent pools with autoscaling. Use

semantic caching for repeated sub-queries and memoize tool results. Track per-agent KPIs

(success, latency, cost) for adaptive routing.

6. When to use. Multi-Agent RAG is suited for research synthesis, incident response,

compliance analysis, and complex workflows that require multi-hop reasoning, tool use,

and parallel retrieval. The trade-off is increased complexity and orchestration overhead.

RAG Systems: A Comprehensive Guide Conclusion & Future Directions

© 2025 Twig AI Page 1

Chapter 21 – Conclusion & Future Directions

Retrieval-Augmented Generation (RAG) has evolved from a niche research method into a

cornerstone of enterprise AI. Across its variants—context-aware, dynamic, graph-based,

agentic, and multi-agent—RAG has reshaped how systems combine retrieval precision

with generative flexibility. This final chapter synthesizes lessons learned and explores

emerging trends that will define the next generation of RAG architectures.

Figure 21 – Evolution & Future of RAG Systems

2020: Classic RAG (Retriever + Generator)

2022: Context-Aware & Dynamic RAG

2023: Agentic / Graph / Hierarchical RAG

2024: Multi-Agent RAG + Synthetic Feedback Loops

2025+: Self-Evaluating & Continually Learning RAG Systems

→ Unified architectures with autonomous data governance & memory control

Figure 21 – The RAG landscape: from static retrieval to self-evaluating agentic ecosystems.

1. Convergence with agent ecosystems. RAG is becoming the information backbone for

multi-agent systems. Agents coordinate through shared retrieval APIs, combining symbolic

reasoning and neural synthesis. This fusion enables collaborative knowledge discovery and

tool-based automation at scale.

2. Continuous learning and feedback. Future RAG systems will learn continuously from

user feedback, retrieval logs, and self-critique signals. Online evaluation frameworks will

automatically flag hallucinations, refresh stale data, and retrain retrievers in near real time.

3. Adaptive context windows. Emerging architectures decouple memory and retrieval

entirely. Models will dynamically expand or compress context windows based on semantic

RAG Systems: A Comprehensive Guide Conclusion & Future Directions

© 2025 Twig AI Page 2

density, user profiles, and query intent, making retrieval fully adaptive rather than static.

4. RAG-native benchmarks. Traditional NLP metrics fail to capture contextual

grounding. Next-generation benchmarks—like RAGAS, GroundedEval, and

TrueFaith—measure faithfulness, completeness, and retrieval dependency as first-class

citizens of model evaluation.

5. Knowledge autonomy and compliance. Enterprises are moving toward

privacy-preserving RAG stacks that operate entirely within their trust boundaries.

Federated retrieval, encrypted embeddings, and governance-aware pipelines will enable

compliant yet powerful retrieval intelligence.

6. Looking ahead. The next leap will merge retrieval, memory, and planning into a single

continuous reasoning framework. RAG will evolve from a pipeline into a living

system—self-curating, explainable, and resilient across data drift and model decay.

As the field matures, the boundary between 'retrieval' and 'generation' will dissolve. Future

architectures may blend neural-symbolic reasoning, streaming memory graphs, and

embedded evaluation agents—culminating in RAG systems that learn, reason, and evolve

alongside their users.

In closing: RAG is not merely a retrieval strategy—it is the foundation of explainable,

controllable, and enterprise-ready AI. As models gain reasoning power, retrieval will

remain the anchor that grounds intelligence in reality.

