
POSITIONING OF WRN AS AN ONCOLOGY DRUG TARGET

    Executive Summary

PROBABILITY OF 
SUCCESS:

Patient data, in contrast to preclinical models, suggest that 
inhibition of WRN will not affect tumor growth. 

WRN inhibitors are unlikely to succeed in clinical trials.

The proprietary AI model was trained to differentiate successful drug targets from those that failed clinical trials
Publicly available datasets  massively underestimated the frequency of deleterious WRN mutations in patient tumor 
samples, creating an inflated perception of WRN attractiveness as a therapeutic target.

2/25Successful target-like properties

The technology evaluates whether dependencies observed in cell lines are present in real patient tumor data
While WRN dependency in MSI-H is detectable in patient samples, cell line models substantially overestimated its 
importance. Other dependencies observed in CRISPR screens were detected but are weak in patient data.

3/25Translatability of pre-clinical models

The AI model measures how critical for the tumor is the activity of drug target
WRN appears important but not critical for MSI-H tumors. Based on the strength of the signal in patient data, as a 
monotherapy WRNi are unlikely to succeed. 

2/25Clinical response rates in the primary indication

The AI model compares WRN with other drug targets in possible indications
Multiple other targets demonstrated stronger drug target-like properties and higher potential clinical utility than 
WRN helicase in tested indications. 

1/25Market expansion and competitive advantage over other drugs 

Conclusions & recommendations

SCORE :
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ANALYSIS OF WRN POTENTIAL AS A DRUG TARGET 
 
 
 
 
 
Summary 
WRN (Werner Syndrome helicase) is widely explored as a drug target based on several 
CRISPR functional genomics screens on cell line panels. 

 

Using Gordion technology, the WRN potential as a drug target was assessed. Several key 
observations informing the decision whether to continue the WRN program were made: 

1.​ Publicly available databases and tools massively underestimated the frequency of WRN 
mutations in patient samples, inflating the attractiveness of WRN as a drug target. 

2.​ Cell line models exaggerated the relevance of WRN as compared to real tumor data.  

3.​ Only two tumor types (colorectal and ovarian) show the importance of WRN, yet the 
signal is an order of magnitude weaker than that observed for successful targets like 
PARP. 

4.​ Consistent with basic research and CRISPR screens, several biomarkers were 
identified; however, the relationship between these biomarkers and WRN was relatively 
weak (p > 0.05). 

5.​ The Platform identified an opportunity that could lead to reasonable clinical responses. 
The validation experiments were designed to test whether isochromosome 8 formation 
could lead to a larger therapeutic window for WRNi. 

 

 

 

Conclusion & recommendation 
Patient data suggest that inhibition of WRN will not affect tumor growth.  

WRN inhibitors are unlikely to succeed in clinical trials. 

 

 

 

 



 
 

 
 

Introduction to the technology 

 
The concept of gene essentiality measurement in real-patient data 
The Gordion Platform was designed to identify genes essential for cancer survival. The 
products of such genes constitute the best drug targets, which inhibition results in high 
clinical response rates.  
 
Gene losses can lead to faster growth of a tumor cell, and such losses accumulate during 
tumor evolution (the best examples are tumor suppressor genes like p53 or PTEN). On the 
other hand, the loss of a gene essential for cancer survival leads to reduced fitness; 
therefore, such gene losses are eliminated during tumor evolution. Genes essential for tumor 
survival are frequently activated or amplified. Gordion’s technology detects patterns of loss, 
activation, and amplification of any given gene and translates them into the probability of 
success for any drug target. 
 
On the DNA level, the function of a gene can be lost in multiple ways, for example: 
 

●​ the presence of a protein-altering single-nucleotide variant (SNV) or a short indel, 
●​ by structural variants (SVs), affecting the gene sequence, promoters, or enhancers, 
●​ by eliminating the entire copy of the gene by deletion. 

 
Very few genes are lost completely (loss of all functional copies, bi-allelic loss) in sufficient 
numbers in tumors to facilitate robust statistical analysis. However, Gordion discovered that 
analysis of losses of a single gene copy (mono-allelic loss) directly in patient data, combined 
with the analysis of gene activations and amplifications, reveals the relevance of a gene for 
tumor survival. 
 
Two different databases will be used for the analysis.  
 

●​ 2,607 Whole-Genome Sequencing Datasets - a collection of sequences of whole 
cancer genomes and matched normal genomes from the same patient from breast, 
liver, lung, ovarian, and pancreatic cancers, with fully characterized genetic mutation 
profiles including single-nucleotide variants, in-dels, copy number alterations, and 
structural changes. The majority of the analyzed samples originated from refractory, 
metastatic tumors. 

●​ 9,966 Copy Number Alterations Datasets combined with Whole-Exome Sequencing 
(CNA+WES). Samples originated from primary tumors. 
 
 
 
Detailed information regarding databases is presented in the supplementary.  
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WRN as a drug target 
  
WRN RecQ Like Helicase 

​​HGNC: 12791 
​​NCBI Gene: 7486 
Ensembl: ENSG00000165392 
​​OMIM®: 604611 
​​UniProtKB/Swiss-Prot: Q14191 
 
WRN, located on chromosome 8, encodes a RecQ helicase critical for DNA repair and 
genome stability (1,2). It is a possible synthetic lethal target in cancers with defective DNA 
damage repair (DDR), such as colorectal, endometrial, and ovarian tumors with DDR 
deficiencies (3). Inhibition of WRN in DDR-defective cancer cells induces DNA damage, 
genome instability, and selective tumor cell death independent of p53 status (3,4). In cell 
models, WRN downregulation or inhibition suppresses cell proliferation and promotes cell 
death, supporting its potential as a therapeutic target (4). 
 
 
WRN is not accumulating point mutations 
 
The cancer genome is burdened with a high number of mutations. However, their distribution 
is not random (5). Genes under positive selection pressure (oncogenes and tumor 
suppressors) tend to accumulate more point mutations than others, while those under 
negative selective pressure (essential genes) accumulate fewer (5). To analyze the 
accumulation of protein-altering mutations at chromosome 8, we used the Gene Mutational 
Load (GML) analysis. 
 
The GML for a gene is calculated by counting protein-altering mutations (SNVs and indels) 
in each genome. The number of mutations is normalized by the mutational burden for the 
individual tumor (total mutations in that tumor's genome) to compensate for differences in 
mutation rates between the tumors, and by the length of the gene's coding sequence (6). 
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Fig. 1. Analysis of Gene Mutational Load (GML), showing the burden of point mutations in genes on 
the p arm of chromosome 8. Each dot represents a distinct protein-coding gene, and the horizontal 
line is the median for all genes. 

GML analysis (Fig. 1) showed that WRN accumulates protein-altering mutations at a median 
rate of 0.06, which matches the average mutation rate of genes located on the p arm of 
chromosome 8. Typically, genes essential for tumor survival tend to accumulate fewer 
mutations than the average gene due to selective pressure to maintain their function. In the 
case of WRN, this pattern is not observed, suggesting there is no strong pressure to 
preserve its full function in tumors. This result raises the question of whether WRN is an 
attractive drug target.​
 

The WRN gene is often lost  

Both copies (bi-allellic loss) of a gene can be inactivated by two point mutations, two 
deletions, or a combination of a deletion and a point mutation. According to public databases 
and published results, the WRN gene is rarely bi-allelically lost in tumor samples (7,8). 

In contrast with these results, Gordion observed that WRN is frequently bi-allelically lost in 
real tumors (Fig.2). For example, in breast cancer, according to the Cancer Genome Atlas 
(TCGA) genome collection (4), WRN is bi-allelically lost in 0.1% of samples. However, 
analysis performed by our proprietary ultra-sensitive algorithm for mutation detection 
revealed that in breast cancer samples, complete loss of WRN is dramatically more 
prevalent (10-fold higher) and exceeds 1%. Further investigation identified the mechanism 
behind this discrepancy: publicly available data and tools underestimate mutations that do 
not arise from point mutations, but instead are the result of two deletions removing both 
alleles.  
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Fig. 2. Comparative analysis of bi-allelic gene losses for WRN and TP53 in breast tumors, detected 
using publicly available algorithms used in genomic databases like TCGA and proprietary mutation 
detection AI technology developed by Gordion. Notably, the frequency of bi-allelic WRN loss is 
markedly elevated—over 10-fold higher than previously assessed—highlighting a dramatic 
enrichment compared to established reference datasets. 

As the majority of bi-allelic losses of WRN arise from two deletions spanning the entire WRN 
gene, these events are under-represented in standard analysis. As Gordion’s AI algorithm 
was trained to detect this particular type of deletion, it allowed us to observe the true scale of 
WRN inactivation across tumor types.  

Consistent with GML analysis from the previous section, this observation further questions 
the foundational assumption that WRN activity is critical for the survival of the real tumors. 

 

WRN is rarely amplified 
 
Genes essential for tumor survival are frequently amplified (5). A gene is considered 
amplified when it carries two or more additional copies above the mean tumor ploidy. WRN 
amplification was detected in 1.7% of tumors (47 out of 2,607 samples), higher than the 
median amplification rate across all genes (1.1%). However, WRN is located close to a 
strong driver of amplifications, and the data suggest that WRN is amplified as a passenger 
gene when the driver gene FGFR1 becomes amplified (9). These results suggest that 
tumors are unlikely to heavily rely on WRN, as it is a passenger of the amplification events. 
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Lack of Functional Compensation Among WRN Paralogs can lead to 
overestimation of a signal in the CRISPR screen 
WRN has four paralogs: RECQL4, RECQL, BLM, and RECQL5, all members of the RecQ 
helicase family (10). We applied our AI algorithm to assess whether WRN deficiency 
correlates with upregulation of any of these paralogs. The analysis revealed no statistically 
significant association. This finding is consistent with the literature, which indicates that none 
of these paralogs can effectively compensate for WRN function, especially in the context of 
DNA repair and microsatellite instability (MSI) cancer cell survival (4,10,11). Each paralog 
has distinct substrate specificities, cellular localizations, and functional roles, preventing 
them from serving as functional backups for WRN loss. 

The absence of functional compensation among WRN paralogs can lead to exaggeration of 
the WRN signal in CRISPR screens. The proprietary Gordion analysis comparing 
compensation mechanisms and relative signals in CRISPR versus patient data reveals that 
WRN is likely a false-positive signal in CRISPR screens. 

Complete gene knockout in CRISPR screens eliminates gene function instantaneously, 
bypassing the cellular adaptation mechanisms and compensatory responses that tumors 
naturally develop over time to compensate for gene loss, creating artificially lethal 
dependencies that do not reflect the biological reality of tumor progression (12, 13). This 
explains why WRN performs exceptionally well in CRISPR screens and DepMap analyses 
as a synthetic lethal target—when genes lack compensatory paralogs, their functional 
disruption produces strong survival effects, making them appear as ideal therapeutic 
candidates. Indeed, CRISPR and RNAi screens consistently identify WRN as the top 
preferential dependency in MSI compared to microsatellite stable (MSS) cell lines, with 73% 
of MSI lines showing WRN dependency while other RecQ helicases show no such selective 
essentiality, further demonstrating the artificial nature of this dependency signal (1, 10). This 
conclusion is consistent with recent clinical results showing low clinical response rates. 

 

Essentiality of WRN in different tumor types 
 
Despite discouraging results from previous sections, Gordion performed an unbiased 
analysis of WRN potential as a drug target. In the concept of Synthetic Lethality, under 
specific conditions, an alteration affecting the Synthetic Lethal gene is not tolerated and 
leads to cell death. Following the same principle, we asked whether there are any conditions 
with a lower occurrence of alterations downregulating WRN. Gordion is using all alterations 
leading to gene downregulation (alterations including SNV, Indels, SV, and deletions, both 
mono-allelic and bi-allelic) to identify tissues, where the reduction of WRN activity via loss of 
one gene copy will lead to cell death. The rationale: if WRN accumulates fewer mutations 
downregulating WRN than other genes, it might suggest the increased essentiality of WRN. 
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Figure 3. Gene downregulation of WRN in different tumors is illustrated by the difference (delta) 
between the median gene loss across the chromosome arm (the horizontal line on the bar plots 
indicates) and WRN gene loss represented by a red diamond 

In several tumor types, such as ovarian, colorectal, breast, head and neck, prostate, and 
pancreatic cancers, the WRN gene is lost less frequently than the average gene, suggesting 
a potential selective advantage for retaining WRN in these contexts. 
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Figure 4. The Synthetic Lethality Index integrates gene loss and amplification patterns to quantify 
WRN essentiality across different tumor types. Lower SL Index scores correspond to higher tissue 
dependency on WRN. This metric enables the identification of tumors most vulnerable to 
WRN-targeted inhibition. 

Essential genes are downregulated less frequently than average genes, but are amplified 
more often than the chromosome arm average. By integrating these two observables, 
Gordion developed a metric named the Synthetic Lethality Index (SL Index), which enables 
the identification of tissues where WRN essentiality is highest, with lower SL Index scores 
indicating greater essentiality. Notably, ovarian and colorectal tumors exhibit the highest 
WRN essentiality. In both ovarian and colorectal cancers, WRN loss occurs significantly less 
often than the average gene on the same chromosome arm, suggesting these tumor types 
are less tolerant of WRN loss. Both cancer types commonly harbor defects in DNA damage 
repair pathways, specifically deficiencies in homologous recombination (HR) or mismatch 
repair (MMR), which likely underlie their dependency on WRN function and the synthetic 
lethality relationship observed in CRISPR screens. This result suggests that there might be 
subcohorts of patients highly dependent on WRN where WRNi could deliver clinical efficacy. 
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Exploration of the genetic background for WRN inhibition in colorectal 
and ovarian cancers 

We focused on colorectal and ovarian cancers because they exhibit the strongest 
dependency on WRN function, making them prime candidates for WRN-targeted therapies.  

 

1.​ Increased essentiality of WRN in MSI-H colorectal patients 

In colorectal cancer cohorts stratified by microsatellite instability (MSI) status, MSI-High 
(MSI-H) tumors showed a modest but consistent increase in dependency on WRN. Our 
analysis (Fig. 5) found that MSI-H colorectal tumors exhibit a reduction in the median 
frequency of WRN gene downregulation (from 41% to 20%), with no increased level of WRN 
gene amplification. This aligns with the well established increased importance of WRN in 
MSI-H tumors. However, compared to the amplitude of changes observed for PARP in 
homologous recombination-deficient (HR-deficient) ovarian cancer, the significance of this 
WRN signal is rather small. 

In HR-deficient ovarian tumors, the frequency of PARP gene loss also decreases by half, but 
there is also a notable increase in PARP gene amplification (from 0% to 8%). The 
co-occurrence of reduced gene loss and gene amplification highlights the critical role of 
PARP in this cohort, supporting its attractiveness as a therapeutic target. 

This contrast suggests that although WRN dependency is elevated in MSI-H colorectal 
cancers, its relevance as a drug target may be less pronounced than that of PARP in 
HR-deficient ovarian cancer.​
 

Tumors were classified as MSI-High (MSI-H) based on bi-allelic loss of key mismatch repair 
genes such as MSH2, MSH6, MLH1, or PMS2. For HR-deficiency, classification was done 
using the HRD-score, calculated as the sum of genomic scar markers, including loss of 
heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions 
(LST) (14, 15, 16). 
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Figure 5. Analysis of WRN gene alterations in colorectal cancer stratified by microsatellite instability 
(MSI) status (MSI-H - MSI High; MSS - MS Stable), compared with PARP alterations in homologous 
recombination (HR) deficient and proficient ovarian cancer.  

 

Validation experiments 

The link between MSI-H tumors and WRN dependency has been extensively documented in 
the literature and validated experimentally in multiple cell lines. However, consistent with 
Gordion analysis, this dependency is too weak to lead to high clinical response rates, as 
confirmed by WRNi clinical trials (e.g., NCT06004245). 

 

2.​ Increased essentiality of WRN in MYC-amplified ovarian patients 

The Gordion algorithm evaluated the impact of various genomic alterations on WRN 
dependency in ovarian cancer. Common alterations, such as TP53 mutations and 
HR-deficiency events like BRCA1 or BRCA2 inactivation, only weakly increased WRN 
essentiality (17). An interesting signal emerged in MYC-amplified tumors (42% of ovarian 
tumors), which correlated with the removal of gene copies of WRN. That observation might 
lead to a therapeutic opportunity: 

MYC amplification frequently occurs alongside whole genome duplication (WGD), leading to 
the presence of four copies of every gene in the genome (Detailed information regarding 
WGD is presented in the supplementary materials). MYC amplification typically arises 
through isochromosome 8 formation, which duplicates the long arm (8q) while deleting the 
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short arm (8p) containing the WRN locus (18). Interestingly, in samples after whole genome 
duplication, MYC is so frequently amplified via isochromosome 8 formation that from the 
initial four WRN gene copies, only a single copy of WRN remains. This will invariably lead to 
reduced WRN expression, which could lead to higher sensitivity of these ovarian cancer 
patients to WRNi. This could provide a therapeutic window that could deliver a high clinical 
response rate despite WRN not showing extremely strong essentiality in tumor data.  

 

Market size for MYC-amplified ovarian cancer 

The estimated annual new cases of ovarian cancer in the US are about 20,890. 
Approximately 42% of these new cases exhibit MYC amplification, which corresponds to 
around 8,774 new patients with MYC-amplified ovarian cancer each year.  

 

Validation experiments 

To confirm that WRN inhibition is more effective in MYC-amplified ovarian tumors, we 
propose a confirmatory experiment using engineered cell line models. This experiment could 
be conducted by our partner, VUS Genetics, a CRO with extensive expertise in gene editing 
and functional assays.  

An isogenic MYC-amplified ovarian cancer cell line should be created: one retaining a single 
copy of the WRN gene, and a control line with all four copies intact. Should the WRN 
inhibitor demonstrate markedly increased cytotoxicity in the single-copy WRN model, this 
would provide a strong mechanism-of-action rationale for WRNi. Conversely, if differential 
sensitivity is not observed, we would recommend discontinuing the WRN inhibitor program, 
given prior failures in MSI-high colorectal cancer. 

 

Ovarian cancer patient sub-population likely to respond to WRN inhibition.  
 
We investigated the effect of the genetic mutations affecting WRN essentiality in ovarian 
tumors. Two strategies were deployed to identify genes increasing/decreasing the 
essentiality of WRN: 
 
i) We search for the genetic context where WRN amplifications are overrepresented, 
suggesting tumor dependence on high levels of WRN protein. 
 
ii) We search for the genetic context where the loss of WRN is underrepresented, 
suggesting susceptibility to WRN inhibition. 
 
We explored a scenario where a mutation in a different gene leads to increased WRN 
essentiality, resulting in elevated rates of WRN amplifications or lack of the WRN losses. 
Alternatively, in cells susceptible to WRN inhibition, the loss of even a single copy should be 
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poorly tolerated. We analyzed which alterations are good predictors of the absence of WRN 
mono-allelic losses. We hypothesize that these mutated genes could serve as biomarkers 
for a cohort in which WRN inhibition might be more effective. To identify such genes and 
mutations, we performed a comprehensive analysis of the ovarian cancer cohort, quantifying 
WRN amplification or loss depletion frequencies in tumors harboring specific gene mutations 
 
We considered three types of gene alterations for co-mutated genes (biomarker candidates): 
● First, a bi-allelic loss of a gene, where all copies of a gene are lost. Genes that lose both 
copies in at least 1% of tumors were considered. 
● Second, some genes are known to be haploinsufficient and a mutation in one copy already 
confers a beneficial effect on tumor growth (9,10). For a predefined list of such genes, we 
considered tumors with mono-allelic loss of such genes. The list was enriched in genes 
involved in DNA repair processes. Gordion is using a proprietary list of haplosupressors 
(details in the Supplementary Materials). 
● Third, we used gene activations, defined as genes with gain-of-function mutations or 
amplifications. 
 
To test the relationship of a potential biomarker with the rate of WRN amplification or loss 
depletion, for each biomarker, we divided the tumors into two groups: biomarker-mutated 
(e.g., bi- or mono-allelic loss (combined SNV, SV, indels, deletions), or amplified) and 
non-mutated. A logistic regression model was built to predict WRN amplification or loss 
depletion based on the biomarker status and a confounding variable - the overall rate of 
WRN amplification or loss depletion in the tumor. P-values and odds ratios (OR) were used 
to prioritize the candidate biomarkers. For an optimal biomarker, a high OR, a low p-value, 
and a large cohort size are expected.  
 

RESPONSE 
BIOMARKERS 

Gene 
symbol 

Gene alteration Chr. 
arm 

OR [CI] p-value Cohort 
size 

MDM2 amplified 12q 17.62 
[0.86-359.2] 0.06 4% 

SMARCA4 mono-allelic loss 19p 2.55 
[0.95-6.84] 0.06 9% 

BRCA2 mono-allelic loss 13q 13.33 
[0.56-317.5] 0.1 20% 

CCND1 amplified 11q 8.43 
[0.48-149.0] 0.2 6% 

PTEN mono-allelic loss 10q 1.77 
[0.78-4.0] 0.2 12% 

ARID1A mono-allelic loss 1p 1.56 
[0.81-3.0] 0.2 20% 

RSF1 amplified 11q 6.7 
[0.38-118.06] 0.2 9% 
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Table 1. A list of genes positively associated with WRN (only genes with OR > 1.5; p-value < 0.2 are 
shown). OR - odds ratio; CI - confidence interval; Cohort size is the percentage of tumors with a given 
gene alteration present in ovarian patient samples. 
 

The most promising biomarker candidate identified is MDM2 amplification (OR = 17.6, p = 
0.06). This observation is consistent with published reports (11) indicating that MDM2 acts 
as an E3 ubiquitin ligase for the WRN protein, promoting its ubiquitination and leading to 
downregulation of WRN levels. Consequently, tumors harboring MDM2 amplification may be 
particularly susceptible to WRN inhibition, potentially enhancing therapeutic efficacy in this 
subset of patients. MDM2 is also a well-established negative regulator of P53, but the 
present analysis did not reveal a significant association between WRN and TP53 status. 

Additional biomarker candidates include genes encoding components of the SWI/SNF 
chromatin remodeling complex, specifically within the cBAF submodule. Among these, 
SMARCA4 (OR = 2.55, p = 0.06), ARID1A (OR = 1.56, p = 0.2), and RSF1 (OR = 6.7, p = 
0.2) emerged as potential biomarkers; however, none of these associations reached 
statistical significance. 

BRCA2 loss was also identified as a putative biomarker (OR = 13.33, p = 0.1), 
though—similarly—without achieving statistical significance. Furthermore, associations were 
observed for CCND1 amplification and PTEN loss, both recognized as key cell cycle 
regulators. Importantly, none of the candidate biomarkers demonstrated a statistically 
significant relationship with WRN status at the p < 0.05 threshold. 

 
Biomarkers demonstrating a strong inverse association with WRN (OR < 0.15) were 
designated as candidate resistance markers. In the presence of these alterations, WRN is 
more often lost than expected, leading us to hypothesize that WRN might not be particularly 
important for the survival of these tumors.  
 

RESISTANCE 
BIOMARKERS 

Gene 
symbol 

Gene 
alteration 

Chr. 
arm 

OR [CI] p-value Cohort size 

KMT2C mono-allelic 
loss 7q 0.1 [0.02-0.48] 0.004 6% 

 
Table 2. A list of genes negatively associated with WRN (OR <  0.15; p-value < 0.2) - potential 
resistance biomarkers. OR - odds ratio; CI - confidence interval; Cohort size is the percentage of 
tumors with a given gene alteration present in ovarian patient samples. 
 
Only KMT2C met the criteria as a relevant biomarker (OR = 0.1, p = 0.004). Full results are 
available upon request. 
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Conclusions 

Gordion analysis revealed that WRN is likely a “false positive” drug target that is unlikely to 
deliver clinical benefits when inhibited. This was revealed by the analysis of mutations 
affecting the WRN gene, as well as the analysis of all other 20,000 genes, including potential 
compensatory pathways. Importantly, the analysis of compensatory pathways explains why 
CRISPR data provided such a strong signal, while in the clinic, very little benefit was 
delivered by WRNi. Furthermore, the limitation of publicly available tools and the superiority 
of Gordion’s algorithms revealed a high level of biallelic losses of WRN. This later 
observation itself should put an assumption that WRN is a good drug target into question. 

In order to identify a slightest opportunity for commercial success, a comprehensive 
pan-cancer dependency profiling was performed, revealing that ovarian and colorectal 
cancers are the tumor types likely dependent on WRN function. Further analysis of these 
cohorts identified subgroups with modestly increased WRN dependency: colorectal tumors 
with mismatch repair defects, MSI-H, and MYC-amplified ovarian cancers. Despite these 
findings, the observed dependency increase is considerably weaker (an order of magnitude) 
than that for established targets such as PARP inhibitors. Moreover, we identified several 
biomarkers that may enhance response rates to WRN inhibition, including MDM2 
amplification, defects in chromatin remodeling processes (cBAF complex), and dysregulation 
of cell cycle control (PTEN loss or CCND1 amplification). BRCA2 loss was also identified as 
a potential response biomarker. However, associations with these biomarkers were relatively 
weak, below the threshold of statistical significance. 

Given the comparatively weak signal from tumor genetic dependency analyses, the Gordion 
team concluded that inhibition of WRN is unlikely to substantially impact tumor growth. 
Consequently, the recommendation is to discontinue further investments into WRN inhibitor 
development. Potential drug combinations and resistance mechanisms were not assessed 
due to the low signal for WRN as a standalone target. 
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SUPPLEMENTARY INFORMATION 
 
The Gordion Platform - overview 
 
The Gordion Platform introduces an innovative method for evaluating oncology drug 
programs. By using the patient's whole genome data and harnessing the power of Machine 
Learning on the Dark Genome, it identifies essential genes specific to tumor types. 

Supplementary Figure 1. Gordion Platform overview. 
 
The Data 
Gordion’s platform is built on top of thousands of carefully selected and uniformly processed 
patient tumor whole genomes. These span 7 cancer types: breast, lung, ovarian, liver, 
pancreatic, colorectal, and melanoma, supported by 9,996 whole-genome CNV profiles from 
26 tumor types.  

 
Supplementary Figure 2. Tumor types and quantity of samples in the WGS Database. 
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●​ WGS Database  - The 2,607 tumor-normal matched whole genome datasets are split 
between 7 cancer types (breast, ovarian, pancreatic, lung, colorectal, melanoma, and 
liver). All have been sequenced on the Illumina platform using paired-end reads with 
an average depth of 30-60x (tumors) and 25-60x (normal tissue). Samples have fully 
characterized genetic mutation profiles, including single-nucleotide variants, in-dels, 
copy number alterations, and structural changes.  

 
 

●​ CNA+WES Database - whole-genome CNV combined with whole-exome sequencing 
data profiles for 9,966 tumor genomes across 26 cancer types. The raw data were 
originally produced by The Cancer Genome Atlas (TCGA) and were processed with 
the ASCAT3 tool. 

 

Supplementary Figure 3. Tumor types and quantity of samples in the 10K CNA Database. 
 
 
Data pre-processing and quality control 
To build a large collection of tumor genomes across different cancer types, we aggregated 
datasets from multiple sources. These data sources have different application processes, as 
well as data storage/retrieval mechanisms. All three major repositories of genomic data have 
proprietary tools for accessing it: gdc tool is used to download data from TCGA; score from 
ICGC; and pyEGA3 for downloading data deposited in EGA.  
 
Due to specific research problems addressed by academic projects, data generated by 
diverse research groups, also as part of one consortium, can substantially differ in the study 
design, data processing methods, and format of the released data. Aggregation of such 
datasets requires extensive quality checks and uniform re-processing and typically results in 
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excluding >10% of patient records. Adding a new dataset from a public repository to 
Gordion’s database has often required solving project- or sample-specific problems with the 
downloaded raw data. 
 
The typical input data for the WGS processing pipeline is the raw output of the DNA 
sequencer - short sequences (reads) in the FASTQ format. The WGS data deposited into 
repositories is often aligned reads (BAM or CRAM format). The alignments can be prepared 
in different ways, using different reference genomes, and this has a critical effect on the 
downstream processing. 
 
To maintain uniformity of the results on Gordion’s Platform, we re-align all data that is 
released in BAM or CRAM formats. Processing such datasets starts with the extraction of 
raw reads and base quality values (in the form of two FASTQ files) from the original BAM or 
CRAM files, and is described in the section below 
 
Extraction of reads from alignment files 
First, the BAM or CRAM file is checked against invalid reads that may break the downstream 
processing. In the case of CRAM input, the exact reference genome file that was used for 
the alignment must be identified to facilitate processing. The filtered alignment files are 
reindexed and subjected to read extraction using Bazam. Using this tool allowed us to avoid 
costly read-sorting (input alignments are sorted by genomic coordinates, and FASTQ files 
require name-sorted reads) and a very large intermediate file, saving both compute and 
storage costs. 
 
As a result of Bazam processing, the reads from the BAM/CRAM file are split into a pair of 
gzipped FASTQ files containing read “mates”. Next, the reads in the FASTQ files are 
trimmed to remove low-quality and adapter sequences. Samples with coverage depth 
greater than 62x undergo random downsampling to ~60x. A fixed random seed is used to 
facilitate the reproducibility of this process. Finally, data quality is analyzed and saved in QC 
reports. 
 
 

Purpose(s) Software Reference 
Alignment manipulation 

Samtools 1.12 Danecek et al., 2021 Alignment validation 
Read indexing 

Read extraction from 
coordinate-sorted BAM Bazam 1.0.1 Sadedin and Oshlack, 2019 
Read quality trimming Fastp 0.20.1 Chen et al., 2018 

Read subsampling 
Seqtk 

1.3-r106 Github link 
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FASTQ quality control 
FastQC 
v0.11.9 Andrews, 2010 

QC report aggregation 
MulitQC 
v1.10.1 Ewels et al., 2016 

 
Supplementary Table 1. Tools used for WGS data pre-processing and quality control. 
Sample eligibility criteria​
To maintain a high-quality level of the data on the platform, we require that the added 
samples meet certain criteria. Depending on the data source and available information, 
some of them can help in the identification of non-eligible samples up-front, while others lead 
to sample exclusion after pre-processing (e.g., low read count) or only after processing with 
our WGS analysis pipeline (e.g, uniformity of coverage). Examples of the criteria required 
include: 

●​ Fresh-frozen material 
●​ Paired-end Illumina sequencing with at least 75bp long reads 
●​ Mean tumor genome depth after deduplication >= 30x 
●​ Mean normal genome depth after deduplication >= 25x 
●​ Percent of the normal genome covered by at least 20x >= 80% 
●​ Percentage of mapped reads >90% 
●​ Tumor purity >= 20% 
●​ germline variants between 4M and 5.5M 
●​ somatic variants within expected ranges for the tumor type​

 
The WGS analysis pipeline​
The whole genome sequencing (WGS) pipeline maps the short reads to the reference 
genome and detects and genotypes all kinds of genetic variants - substitutions, short indels, 
copy number alterations, and other structural variants, both somatic and germline. All 
variants are quality-filtered and annotated. Quality control (QC) metrics are generated at all 
stages of the processing. 
The WGS pipeline allows for processing sequencing data from pairs of matched tumor and 
normal samples. It also implements an experimental tumor-only mode. It is optimized for 
data from Illumina platforms and has been validated in the analysis of >6000 genomes with a 
mean genome coverage of 30-60x.  
Description of the pipeline is divided into two stages: 

●​ alignment stage that takes as input reads in FASTQ format, maps them to the 
reference genome (GRCh37), and post-processes the alignment file, producing a 
CRAM file ready for subsequent analysis 

●​ variant calling and annotation stage, which uses a matched pair of produced CRAM 
files and generates a set of annotated variant files (VCF) 
 

Alignment​
Reads, provided in FASTQ files, are optionally trimmed and mapped to the GRCh37.d5 
reference genome by the de facto standard in such applications BWA-MEM algorithm. The 
resulting alignment is sorted by genomic coordinates. Duplicate reads are marked using 
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Picard, and the output is saved to a CRAM file and indexed. After the CRAM has been 
created, coverage statistics are calculated, and a QC analysis is performed using Picard’s 
CollectMultipleMetrics function. The QC statistics are saved to a report file in a PDF format, 
and in tab-delimited files for machine processing, e.g,. flagging low-quality alignments. 

 

 

Supplementary Figure 4. Alignment workflow. 
 
 

Purpose(s) Software Reference 
Read quality 

trimming 

Fastp 0.20.1 

Chen et al., 2018 

Read 
mapping Li, 2013 

Alignment 
indexing 

Danecek et al., 
2021 

Read sorting 
Duplicate 
marking 

Alignment QC 

Picard 2.22.4  

Depth of 
coverage 

mosdepth 
0.3.2 

Pedersen and 
Quinlan, 2018 

 
Supplementary Table 2. Tools used for the alignment.  
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Variant calling​
Our variant calling pipeline can work in either of two modes: matched tumor-normal analysis 
or tumor-only analysis. The latter has been used experimentally only and all data in our 
platform are based on a tumor-normal matched workflow. 
 
Matched tumor-normal analysis​
The matched analysis uses as input a pair of tumor and normal alignment files (BAM or 
CRAM) generated by the alignment workflow. By contrasting the tumor alignment with its 
matched normal alignment as a reference, individual algorithms detect changes in the tumor 
DNA (somatic variation). Five categories of variation - microsatellite instability (MSI), 
substitutions (SNVs), short indels, structural variants (SVs), and copy-number alterations 
(CNA) - are detected independently of each other by dedicated tools. Where applicable a 
quality control and filtering step (low-quality variants are removed) is performed. All variants 
passing quality criteria are subject to annotation, with (among others) Clinvar, population 
allele frequencies (1000 Genomes, ExAC, gnomAD, and two in-house databases of cancer 
patients), and various pathogenicity scores (e.g., SIFT,  PolyPhen, DANN). 
 
The pipeline detects and annotates germline variation as well. In the process, only the 
germline alignment file is used. Since germline substitutions & indels frequently contain 
multiallelic variants, for the purpose of annotation, these are decomposed and normalized. 
Next, similarly, as for somatic variant detection, the variants are filtered and annotated. 

Supplementary Figure 5. Matched tumor-normal analysis workflow. 

Individual algorithms used in the pipeline are implemented in open-source, commercially 
available software. They represent state-of-the-art methods used in projects published in 
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top-tier journals (e.g., PCAWG). Two of the tools (i.e., Strelka and Manta) were co-developed 
by Illumina Inc. and have laid the foundation for the Illumina Dragen Platform. The detailed 
list of tools is presented in the table below. 

 

Supplementary Table 3. Tools used for the matched tumor-normal analysis workflow. 
 
Partial loss 
Essential genes are protected by the cell during tumor evolution. Looking at the rates of 
gene losses and amplifications, we can distinguish genes that are under positive selective 
pressure (essential genes; rarely lost/mutated) from the rest.  Partial loss (pLOSS) of a gene 
is a concept adopted at Gordion to capture pressure on tumor cells to retain functional 
copies of essential genes. It allows us to measure selective pressure in all genes, including 
those that very rarely lose all copies. 
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Purpose(s) Software Reference 

Detection of: 
• Somatic SNV/indels 
• Germline SNV/indels 

 
Strelka 2.9.10 

 
Kim et al., 2018 

Detection of: 
• CNA segments 
• Purity 
• Ploidy 

 
ASCAT v3.0.0 

 
Van Loo et al., 2010 

Detection of: 
• Somatic SV 
• Germline SV 

 
Manta 1.6.0 

 
Chen et al., 2016647377/ 

Microsatelite-instability 
MSI sensor 

0.6 Niu et al., 2014 

Variant manipulation   
Variant QC & filtering BCFtools 1.12 Danecek et al., 2021 
Variant annotation VEP XXX.X McLaren et al., 2016 
QC report aggregation MulitQC  

https://pubmed.ncbi.nlm.nih.gov/30013048/
https://pubmed.ncbi.nlm.nih.gov/20837533/
https://pubmed.ncbi.nlm.nih.gov/26647377/
https://pubmed.ncbi.nlm.nih.gov/26647377/https://pubmed.ncbi.nlm.nih.gov/26647377/https://pubmed.ncbi.nlm.nih.gov/26647377/
https://pubmed.ncbi.nlm.nih.gov/24371154/
https://pubmed.ncbi.nlm.nih.gov/33590861/
https://pubmed.ncbi.nlm.nih.gov/27268795/


 
 

 
 

 

Supplementary Figure 6. Selective pressure on essential and neutral genes. 
 
Very few genes are lost completely (bi-allelic loss, also known as complete loss (cLOSS)) in 
a sufficient number of tumors to facilitate robust statistical analysis. This means that for the 
majority of genes, one would have to collect an infeasible number of tumor genomes to 
perform an analysis. However, partial losses (one or more copies) are much more frequent, 
with 80% of genes having lost at least a single copy of the gene in 10% of all the tumors in 
our database. 

 

Supplementary Figure 7. Relationship between gene alterations and the number of affected tumors. 
For 80% of the protein-coding genes, at least 10% of Gordion’s cohort (N=2607) has a partial loss. 
40% of the genes are in the sub-biallelic state in at least 10% of the tumors. 20% of the genes have 
an amplification in at least 6% of the tumors, and only 19 genes (~0.5%) are completely lost in more 
than 10% of the tumors. 
 
At Gordion, we have defined the concept of partial loss, also called single copy loss, as a 
state of the gene where the number of functional copies of the gene is below the average 
ploidy of the tumor. Gene loss leads to lower expression and reduced availability of the 
protein, which, in the case of essential genes, induces stress and lower cell fitness. In highly 
mutating tumor cells, it also exposes the cells to lethal complete gene loss, so it is eliminated 
by the tumor evolution. Depletion of partial gene losses (and enrichment of amplifications) is 
thus a marker of essentiality; one that can be measured for the majority of genes in cohorts 
of >100 patients. 
 
On the DNA level, the function of a gene can be lost in multiple ways, for example: 

●​ the presence of a protein-altering single-nucleotide variant (SNV) or a short indel, 
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●​ by large structural variants (SVs), affecting the gene sequence, promoters, or 
enhancers, 

●​ by copy number alterations (CNA), including, e.g., copy-neutral 
loss-of-heterozygosity. 
 

Gordion is also analyzing single-nucleotide variants and their effect on gene function. 
However, besides deciding whether a variant itself affects a protein’s function, in tumors, one 
needs to take into consideration additional biological and technical factors: 

●​ one or more alleles can be affected - more than half of tumors undergo a genome 
duplication event 

●​ two mutations in one gene can be in cis (alter the same copy; one copy is lost) or in 
trans (each modifies a different copy; at least 2 copies are lost) 

●​ germline and somatic alterations need to be evaluated jointly because variant 
detection tools subtract the germline variation as background from their results 

●​ somatic mutations may affect the main clone (the majority of tumor cells) or be 
subclonal (only a fraction of the tumor cells carry the variant) 

●​ sample purity - the fraction of tumor cells in the sequenced sample can vary between 
20 and 100% 

Supplementary Figure 8. Examples of loss events and selection of mutational trajectories leading to 
them. 
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Overall, the Loss of Function outcome is a product of the events mentioned above. 
Therefore, characterizing the number of functional gene copies in a tumor genome has been 
a tremendously complex, laborious, and error-prone process involving field experts, from 
geneticists to bioinformaticians. The analysis requires manual integration of the results from 
several variant callers, careful and time-consuming evaluation of each,  and often dealing 
with contradictory evidence when comparing the event's overall impact. 
 
We have solved this by creating a proprietary ‘FunctionalCopyProfiler’. Utilizing in-house 
expertise gained from profiling hundreds of tumor genomes, we have developed a tool that 
combines results across the different variant callers we use. For both somatic and germline 
genomes, FunctionalCopyProfiler processes small variants (SNVs and indels detected by 
Strelka2), large structural variations (deletions, tandem-duplication, inversions, 
translocations, insertions; detected by Manta), and copy-number changes (ASCAT tool), all 
supplemented with rich functional annotations, and the tumor’s ploidy and purity. 
FunctionalCopyProfiler can infer the number of functional and lost copies of all 
protein-coding genes in the cancer genome using a broad set of customizable expert rules. 
 
Not all pathogenic mutations lead to loss of function​
A typical understanding of pathogenic mutation is that it ablates protein function. For the 
majority of the genes and phenotypes, this is correct; however, in many cases, the 
phenotype is caused by a gene’s activation (KRAS, BRAF) or taking on a novel function 
(NPM1), Sometimes, the structural variants can lead to fusion genes, which encode hybrid 
proteins, affecting the cell’s metabolism and fuelling the oncogenesis. There are also 
proteins where mutations, all classified in mutation databases as pathogenic, lead to either 
loss of function or gain of function, therefore eluding the commonly accepted division into 
oncogenes and tumor suppressor genes (TP53, DNMT3A). Such situations must be taken 
into account when classifying a gene as lost. 
 
Mutations classified as pathogenic and acting via a mechanism different from protein 
function loss are not considered to lead to (partial) gene loss. For critical oncogenes (e.g., 
KRAS) and tumor suppressor genes (eg, TP53), the Gordion team created and maintains a 
manually curated list of mutations that are classified as loss-of-function (LOF), 
gain-of-function (GOF), and unknown. These classes of mutations are treated differently by 
the platform. 
 
Whole Genome Duplication 
 
Whole Genome Duplication (WGD), also known as polyploidy, is a biological phenomenon 
wherein an organism's entire set of chromosomes is duplicated. This process results in 
multiple copies of the genome within a cell or organism. While WGD is relatively rare in 
normal human cells, it has been observed to play a crucial role in the context of cancer, with 
over 50% of solid tumors undergoing WGD events. WGD results in multiple copies of the 
genome within a cell (in our data, 41% of tumors are diploid, 57% have undergone WGD, 
and 2% are classified as above 4n). To address this challenge and properly quantify 
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deletions, we consider deletions that remove one copy from a diploid tumor sample and 
deletions that remove 1, 2, or 3 copies from samples with ploidy ≥4.  

 
 
Supplementary Figure 8. Gordion utilizes different types of gene loss depending on tumor ploidy. 
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Supplementary Figure 9. Whole Genome Duplication in our data. The upper left panel shows a 
distribution of ploidy in the 10K CNA Database. Upper right in the WGS Database. The lower panel 
presents the percentage of tumors with WGD in different tumor types.  
 
Understanding the implications of WGD becomes paramount when analyzing gene 
mutations in cancer for several reasons: 
 

-​ Tumor Evolution and Heterogeneity. WGD can contribute to tumor evolution and 
heterogeneity. The presence of multiple copies of the genome allows for a higher 
degree of genetic variation. This heterogeneity poses challenges in predicting the 
behavior of the cancer and devising effective treatment strategies. 

 
-​ Impact on Mutational Landscape. WGD influences the mutational landscape of a 

cancer cell. The increased genomic material provides more opportunities for 
mutations to arise, and certain mutations may be selectively advantageous, 
contributing to tumor progression and adaptability. 

 
-​ Therapeutic Implications. The presence of WGD can affect the response to 

therapy. Tumor cells with duplicated genomes may exhibit altered sensitivity or 
resistance to certain treatments, making it crucial to consider WGD in the 
development of targeted therapies and personalized medicine approaches. 

 
Accounting for WGD is essential for the accurate interpretation of genomic data. Failure to 
consider WGD may lead to misinterpretation of mutational profiles and hinder the 
identification of truly essential genes in the process of drug target ID. Gordion’s partial loss, 
as well as gene amplifications, are calculated concerning the number of genome copies, 
taking into account genome doubling events. 
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Loss-of-function - our proprietary approach 
Loss-of-function (LOF) of key genes is commonly used to stratify patients, for instance, to 
search for cohort-specific genomic biomarkers. Combining all types of variants is a very 
complex task, so the process typically involves only small variants (SNVs and indels). Even 
then, automation is far from trivial. The information in mutation databases used for 
classifying loss-of-function mutations is frequently incomplete or conflicting. Sequencing 
artifacts lead to false positive variant calls, which are difficult to assess without inspecting the 
raw data. Accurate classification of loss-of-function cannot be done without expert curation.  
Our experts have performed manual curation of hundreds of tumors’ whole genomes, going 
through mutation tables with extensive annotation, genome by genome. By cross-checking 
the variants' annotation with databases and publications, and inspecting the variants visually 
in the raw data, they interrogated several key cancer drivers and suppressor genes (e.g., 
TP53, KRAS, BRCA1, BRCA2), scrupulously annotating their mutational status in all 
samples. The extensive experience gained in this process allowed us to formulate a set of 
complex rules for the classification of variant combinations as loss-of-function events. 
Importantly, we have also specified rules that determine the lack of loss in cases that 
otherwise would result in false positive classifications. All these have been written down as 
an easily customizable set of “configurations” for FunctionalCopyProfiler. 
 
The rules were then implemented directly in the tool to allow easier future changes both in 
variant detection algorithms, in variant annotations, and in the rules themselves. The initial 
version of the rules has been improved in several cycles of testing and benchmarking 
against a set of BRCA1 and BRCA2 losses in a group of over 800 breast cancer patients 
(created in the abovementioned manual profiling process). The current version yields 98.9% 
accuracy (96.2% sensitivity and 99.6% specificity) in classifying variants into three 
categories: complete-, partial-, and no-loss. 
 
For each analyzed patient and gene, FunctionalCopyProfiler outputs the total number of 
copies and the number of functional copies, as well as auxiliary information on the mutations 
responsible for gene losses, and a degree of confidence in their classification. The statistics 
on the numbers of lost/functional copies aggregated over cohorts of patients are then used 
to measure the essentiality of genes. 
 

GORDION AI MODEL 
The Gordion AI stack integrates diverse analytical tools to evaluate multiple modalities of 
patient data. The model employs a suite of proprietary algorithms designed to detect novel 
molecular descriptors—unique patterns of mutations that may be associated with disease 
trajectory, tumor resistance, or specific molecular pathways. 
 
Traditional analytical approaches face significant limitations when processing complex 
genomic patterns. The transformation of intricate descriptors into simplified features for 
conventional feature-based classifiers, or the reliance on domain-specific distance measures 

26 
 

 



 
 

 
 

for distance-based classifiers such as Similarity Forests, results in substantial information 
loss. To address this challenge, we developed innovative techniques, including Random 
Similarity Forests: Publication: Random Similarity Forests. 

Prediction of expected gene copy number 
The Gordion AI incorporates sophisticated tools to estimate expected gene copy number, a 
critical parameter for determining gene essentiality. While point mutations account for gene 
loss in fewer than 20% of cases, large-scale copy number variations (CNVs) are responsible 
for approximately 80% of gene losses. Depending on tumor type, specific chromosomal 
regions can be lost in 70-80% of tumors or amplified in up to 50%, providing compelling 
evidence of mutational pressure. 
 
Large-scale CNVs play a fundamental role in determining gene essentiality. The extent of 
these alterations and their impact on gene dosage, focalization, and genomic context are 
key factors in distinguishing genes under strong selective pressure from those frequently lost 
or amplified as passenger events. 

Comprehensive structural analysis beyond coding sequences 
Our CNV analysis extends beyond standard approaches that focus primarily on coding 
sequences. We examine structural alterations across the entire genome, including large 
intergenic regions and intronic sequences, which can have significant regulatory 
consequences. Importantly, CNVs can influence enhancer activity, leading to dysregulated 
gene expression. A representative example is the identification of a specific amplification on 
chromosome 14q, which affects a super-enhancer associated with NKX2-1, a critical 
transcription factor involved in lung development and oncogenesis. 

Driver gene identification from copy number alterations 
Copy number alterations (CNAs) frequently affect large chromosomal fragments, often 
encompassing entire chromosomal arms or even complete chromosomes, making it 
challenging to pinpoint causal genes. By integrating mutational pressure across two 
modalities—CNAs and point mutations—we identify drivers of CNA events. Using this 
information and the observed copy numbers of all genes along the chromosome, we 
construct AI models that predict the expected gene copy number for every gene. Models are 
built separately for each chromosomal arm and tumor type. When applied to an analyzed 
cohort, the frequency of driver mutations is used to predict the expected copy number profile 
along chromosomes. Observed copy numbers are compared with expected rates to highlight 
genes and entire loci under positive selective pressure. 

Detection of cohort-specific drivers  
For point mutations and indels, the background mutation rate is known to correlate with 
sequence context and chromatin accessibility Supek F, et al. DNA Repair 2019; Polak P et 
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al. Nature 2015. We utilize tumor-type-specific and pan-cancer maps of expected mutation 
rates generated by AI models trained on hundreds of epigenetic profiles and nucleotide 
composition patterns.  
 
These maps enable precise calculation of mutation excess and depletion in any given 
cohort, facilitating the identification of tumorigenesis drivers Sherman MA, et al. Nat 
Biotechnol. 2022. Genes that accumulate an excess of truncating mutations (e.g., stop-gain, 
frameshift, splice-site) are likely tumor suppressors negatively selected during tumor 
evolution (e.g., TP53, SMAD4)—tumor cells disable the activity of these genes. Activating 
(gain-of-function) mutations accumulate at specific positions in oncogenes (e.g., G12C 
substitution in KRAS). In contrast to truncating mutations in suppressor genes, activating 
mutations are typically missense, but can also be non-coding (e.g., TERT promoter) or result 
from gene fusion events. 
 
Maps of expected rates of small variants enable precise attribution of mutational pressure to 
genes and other functional DNA elements (promoters, enhancers), proving highly effective in 
identifying drivers. However, for the majority of genes, background mutation rates are too 
low to robustly demonstrate depletion of mutations. In these cases, copy number changes, 
including partial losses and shallow amplifications, provide valuable complementary 
information. 

AI model for biomarker identification 
Susceptibility to inhibition of the gene of interest (GoI) is assessed by measuring enrichment 
in GoI amplifications (indicating likely dependence on elevated GoI protein levels) and GoI 
retention (depletion in GoI losses). To evaluate the relationship between biomarkers and GoI 
amplifications and deletions, tumors are stratified into thousands of categories based on 
biomarker mutation status (e.g., bi-allelic gene loss, mono-allelic gene loss, amplification, or 
activation) and compared to non-mutated controls.​
 
For each biomarker-GoI alteration pair, a logistic regression model is constructed to predict 
GoI amplification (and GoI retention) based on two predictors: biomarker status and a 
confounding variable—the overall rate of amplifications (or partial losses) in the tumor. This 
analysis is performed both pan-cancer and within individual tissue types. P-values and odds 
ratios (ORs) are used to prioritize candidate biomarkers.​
 
The technological details of the presented technology are part of Gordion IP and are not 
publicly available.  
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