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ABSTRACT: The rapid rise of electric vehicles has driven significant advancements in
lithium-ion battery (LIB) technology. However, the pursuit of higher power, longer lifespan,
and greater capacity has often overshadowed critical factors such as recyclability, material
sustainability, and environmental impact. To ensure the long-term viability of LIBs, future
developments must strike a balance between performance and sustainability. This review
advocates for the design of next-generation battery components using abundant, environ-
mentally friendly, and sustainable materials that minimize reliance on intensive mining and
refining processes. Key innovations include metal-free electrodes, nonmetallic current
collectors, solid-state electrolytes, biodegradable components, anode-free configurations, and
water-soluble binders for electrode fabrication. We provide a comprehensive assessment of
recent progress in these areas, discuss challenges for practical implementation, and outline
future directions for advancing these technologies. By offering a forward-looking perspective on
innovative battery materials and designs, this review provides valuable insights into the
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sustainable evolution of LIBs.
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B INTRODUCTION

The widespread adoption of electric vehicles (EVs) has resulted
in significant demand growth of lithium-ion batteries (LIBs)."
As of 2022, nearly 30 million EVs are in operation globally, with
projections indicating this figure could reach 250 million by
2030.” In addition, 77% of the electricity power storage systems
employed for grid stabilization rely on LIBs technology.” This
growing reliance on LIBs technology raises concerns about the
sustainable supply of critical materials, such as lithium (Li),
cobalt (Co), nickel (Ni), and manganese (Mn). By 2022,
approximately 60% of Li, 30% of Co, and 10% of Ni mineral
resources have already been consumed. The current linear
development model of LIBs, from mining and manufacturing to
application, inevitably causes resource depletion and supply
chain risks (Figure 1a).” Thus, a shift from a linear to a circular
development model is strongly recommended (Figure 1b). In
this circular model, the LIBs lifecycle is closed through efficient
recycling of spent batteries, which not only alleviates resource
scarcity issue, but also mitigates the environmental impact of
LIB disposal, promoting the sustainable development of
LIBs.™*

Regrettably, to date, less than 6% of spent LIBs have been
recycled due to recycling technology limitations, regulatory
gaps, and poor traceability, particularly given the insufficient
emphasis on recyclability during the manufacturing of LIBs.”"’
Traditional LIBs, which comprise cathodes containing heavy
metals, organic separators, and toxic electrolytes, can cause
severe environmental damage if not properly disposed of when
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they reach the end of their lifecycle."" Currently, the common
methods for processing spent LIBs listed in Table 1 are faced
with significant challenges, including high energy consumption,
substantial greenhouse gas (GHG) emissions, and most
critically, low recycling efficiency.'”'? Disassembling batteries
into their individual components presents a more effective way
to enhance recycling efficiency; however, the complex structure
and materials of LIBs complicate the precise separation of
components.'* For example, the presence of metal collector
fragments, robust poly(vinylidene fluoride) (PVDF) binder and
highly stable graphite in black mass makes it extremely difficult
to obtain pure cathode powder for further efficient recycling or
regeneration.”” Black mass refers to the powdered mixture of
battery components resulting from mechanical crushing and
shredding. Therefore, it is essential to prioritize battery materials
and designs that facilitate easy, smart, and sustainable recycling
of LIBs.

In this review, we start with a rigorous analysis of the
environmental impacts of the components in traditional LIBs,
and reveal that the manufacturing of cathodes contributes the
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Figure 1. (a) Linear development model for LIBs; (b) circular development model for LIBs.

most to total energy consumption and GHG emissions.
Following cathodes, the environmental footprint of anodes,
current collectors, electrolytes, and separators is also significant,
primarily due to the extensive mineral mining and refining
processes required for their manufacturing. To lessen the
reliance on mineral resources in LIBs development, we advocate
for the exploration of abundant, safe, and sustainable alternatives
to conventional components. These include metal-free electro-
des, nonmetallic current collectors, solid-state electrolytes,
biodegradable materials, anode-free designs, and water-soluble
binders for electrode fabrication. This review encapsulates
recent progress in these pivotal areas, acknowledges existing
challenges, and outlines future research directions aiming for
practical applications of these innovations. A visual representa-
tion of our perspective is shown in Figure 2a, highlighting the
essential steps toward a sustainable battery future. Some key
metrics of these sustainable batteries are compared with
conventional LIBs, which is illustrated in Figure 2b. Although
some of these batteries are inferior to traditional batteries in
terms of capacity, cycling life or energy density, they show clear
advantages in terms of material sustainability. Future research
can focus on improving their performance.

The Environmental Impacts of Traditional LIBs. Taking
the manufacturing of LiNig;3Co033Mng330, (NCM111)
battery as an example, Dai et al. analyzed the energy
consumption, water use and GHGs emissions associated with
each component in the production of a 1 kWh battery (Figure
3).'® Their findings show that the production of the cathode is
the most energy-intensive component, consuming 410 MJ and
238 L of water, while emitting 28.5 kg of GHGs. This accounts
for 36.4% of the total energy consumption, 31.7% of water use,
and 39.1% of GHG emissions, respectively.'” In contrast, while
the production of synthetic graphite does not require excessive
energy, it releases significant amounts of nitrogen oxides (NO,),
sulfur oxides (SO,), and particulate matter (PM10) due to the
combustion of impurities found in coal tar pitch and petroleum
coke."® Additionally, the manufacturing of aluminum (Al) and
copper (Cu) current collectors substantially contributes to the
energy consumption and GHG emissions, particularly SO,
emissions, primarily due to the processing and refining of
copper sulfide ores."” Furthermore, the production of electro-
lyte, organic salt (LiPF), separator, and the whole cell also
consume considerable energy and generate large amount of
GHGs. Similarly, in the production of LiFePO, (LFP) and
LiMn,0, (LMO) batteries, cathode production remains notably
energy-intensive compared to other components, with Freire et
al. reporting energy consumption of 529 MJ/kWh for LFP and

304 MJ/kWh for LMO cathode materials.”’ Therefore, it has
become imperative to reimagine battery materials and structure
to ensure more sustainable practices, with proposed solutions to
be discussed in detail in the following sections.

Metal-Free Electrode Materials. Given the substantial
environmental impact of traditional LIB cathodes, it is essential
to explore alternatives that do not rely on critical metals. One
promising approach is the use of metal-free materials, such as
organic electrode materials. These materials are primarily
composed of abundant elements such as carbon (C), hydrogen
(H), oxygen (O), nitrogen (N), and sulfur (S), which can be
sourced from biomass through various reaction pathways.
Furthermore, the characteristics of these electrode materials,
such as chemical potential, stability, and electrochemical
performance, can be tailored by incorporating functional
elements during chemical transformation to meet the specific
needs of various battery applications. Crucially, at the end of the
battery’s lifecycle, these organic electrode materials can naturally
degrade into environmentally benign substances, leaving no
harmful residuals.

Extensive research on organic electrode alternatives has
primarily focused on materials such as conductive polymers,”
organosulfur compounds,”” organic radicals,”’ conjugated
carbonyl compounds,”* and imine/azo compounds.”® Figure
4a compares the characteristics of these organic electrode
materials. Conductive polymers demonstrate reasonably high
electronic conductivity but suffer from low Coulombic efficiency
and a narrow voltage window.”® Organosulfur compounds
typically offer high capacity; however, they exhibit significant
electrochemical polarization and slow electrochemical ki-
netics.”’ Organic radical species, such as 2,2,6,6-tetramethylpi-
peridin-1-oxyl (TEMPO), 2,2,5,5-tetramethylpyrroline-N-oxyl,
and nitronyl nitroxide units,”®*® provide relatively high
discharge voltages. However, their limited electron transfer
stoichiometry restricts discharge capacity to around 100 mAh
g~ or lower. Carbonyl compounds (quinones, carboxylic acids,
anhydrides, imides, and ketones) have garnered extensive
research interest owing to their augmented capacity and fast
electrochemical kinetics.”” However, small carbonyl compounds
often face solubility challenges in nonprotonic electrolytes.
While using aqueous electrolytes can mitigate the dissolution of
these materials, the discharge products still tend to dissolve in
water, leading to rapid capacity degradation.30 In contrast, large
conjugated systems with multiple carbonyl functional groups
show promising features, including high stability, enhanced
specific capacity, fast reaction kinetics, and structural
diversity.** These properties make them strong candidates
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Table 1. Comparison of Different Recycling Methods
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process steps
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dioxins), requires gas treatment systems
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precipitation/solvent extraction/electrowinning

hydrometallurgy

processing, high reagent costs

scalable for industrial use

low cost (30—50%

only viable for lightly degraded batteries, requires precise
sorting, immature industrial technology

cheaper than hydrometallurgy), high material

, low carbon footprint

recovery (>95%

Li replenishment, thermal treatment, and electrochemical reactivation to

restore cathode materials (e.g,, LiCoO,, LiFePO,)

regeneration

direct

for next-generation high-performance, eco-friendly, and sustain-
able LIB cathodes.

It is worth noting that the low density of organic electrode
materials (1 g cm™ or less) compared to traditional cathodes
(3.6-5.1¢ cm™3, Figure 4b), results in a lower volumetric energy
density. In addition, their low electronic conductivity remains a
major limitation. Figure 4c compares the conductivities of
typical inorganic electrode materials and selected organic
electrode materials. Materials like LCO, LMO, and LFP, show
conductivities of 107, 1075, and 107 S cm™, respectively, and
graphite has a much higher conductivity of around 10* S cm™.
However, most organic electrode materials, except for
conductive polymers, are not sufficiently conductive. For
instance, organosulfur compound has a conductivity of 5.9 X
1072'S cm™,*® and organic radicals exhibit approximately $ X
107" S em™.** Sulfur shows an extremely low electronic
conductivity of around 107° S cm™. Therefore, significant
efforts are needed to improve the electronic conductivity of
organic electrode materials to make them viable alternatives to
existing electrodes.

The working principle of organic electrode materials can be
classified into three distinct types, as illustrated in Figure 4d.*°
N-Type organic molecules (such as quinones) undergo
reduction during the discharge process, forming anions that
then complex with Li*. Since most N-type organic materials lack
Li*, they need to be paired with either Li-containing cathodes
(configuration I) or Li-containing anodes (configuration II). P-
type organic materials (such as sulfur ethers) can interact with
anions in electrolytes (e.g., PF,~, ClO,”) upon oxidation and
can be coupled with conventional low-voltage anodes like
graphite (configuration III). Chen et al. conducted a
comparative analysis of four representative organic electrode
materials in full cells paired with either a LiNi,Coy,Mn,,0,
(NCM622) cathode or Li metal to assess their practical
application potential.>> The molecular structures of the four
organic electrode materials are illustrated in Figure 4e. They set
the total energy and power of each battery system at 100 kWh
and 150 kW, respectively. The results revealed that substituting
graphite (G) with compounds (A) or (B) anode significantly
reduced the gravimetric and volumetric densities, while also
increasing material costs compared to the NMC622-G battery
(Figure 4e). In contrast, the (C)-Li battery achieved an energy
density of 268 Wh kg™, approaching that of the NMC622-Li
battery, while its cost was $100 per kWh, much lower than other
organic battery options. Consequently, batteries based on p-type
organic electrode materials with high redox potential (partic-
ularly carbonyl compounds) demonstrate substantial potential
for practical application.

Despite the great promise of organic electrode materials for
sustainable LIBs, their large-scale adoption faces a few
challenges. First, the inherent poor electronic conductivity of
organic electrode materials necessitates the use of a substantial
amount of conductive carbon additives, which not only raises
costs but also lowers battery’s specific energy density. Improving
the conductivity of organic materials must therefore be a central
focus of future research,A recent study demonstrated that the
conductivity of Carbon Nanotubes (CNTs) could be enhanced
by incorporating polyaniline (PANI) via a solution-based
method. This approach suggests that a similar strategy might
be feasible for improving the conductivity of organic electrode
materials.**** Additionally, the performance evaluations of
organic electrode materials are often conducted under
laboratory conditions that do not reflect real-world applications.
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Parameters such as mass loading, electrolyte volume, and
cathode-to-anode ratios often differ from industry standards,
making it crucial to test these materials under conditions that
closely mirror practical usage. Finally, most organic materials are
not yet produced at the scale of commercial inorganic materials,
limiting their immediate availability and competitiveness. To
transition from academic research to practical use, these
challenges must be addressed by improving conductivity,
aligning testing protocols with real-world conditions, and

developing scalable, cost-effective production methods for
organic electrode materials.

Nonmetallic Current Collectors. Commercial LIBs
typically use Al and Cu as current collectors for cathode and
anode electrode, respectivly.’” However, these metallic
collectors contribute significantly to the overall weight of
LIBs, reducing their gravimetric energy density. Additionally,
the complete separation of Al and Cu from spent battery black
mass poses significant challenges, reducing both recycling
efficiency and the purity of recovered products.*” In contrast,
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carbonaceous materials with high electrochemical stability offer
a promising alternative for current collectors in LIBs. These
materials are lightweight (density around 0.44 g cm™)
compared to Al (2.7 g cm™) and Cu (8.96 g cm™>). Replacing
only Cu foil could reduce the total weight of an LIB by 12%,
resulting in a 14% increase in energy density.41 Furthermore, the
mechanical flexibility of carbon-based current collectors could
broaden the application of LIBs in portable electronic devices."”

However, traditional wet-coating processes may not be
applicable for carbon-based current collectors due to their
porous and soft nature.*’ Especially during the drying phase,
solvent evaporation can lead to uneven stress, causing the edges
of the current collector to fold inward."® To address this
challenge, Kim and his team developed a method for preparing
electrodes using a carbon fabric current collector (Figure 5a). In
their approach, a slurry of LFP was first applied to a glass
substrate at a specified thickness, followed by the placement of
carbon fabric on top. The entire assembly was then placed into a
vacuum bag autoclave with porous silicon rubber. During the
autoclaving process, the evaporated solvent permeated through
the fabric’s pores, allowing the carbon fabric to maintain its
original shape and structural integrity."*

In addition to advancements in coating techniques, many
researchers have developed self-supporting electrode structures
through vacuum filtration methods.*’ Guo et al. developed a
process where they first dispersed ultralong, monodispersed

CNTs in NMP solvent with the help of poly(vinylpyrrolidone)
(PVP) and sodium cholate (SC) (Figure Sb). Following this,
LFP cathode particles were distributed in the CNT dispersion.
After vacuum filtration, a self-supporting LFP electrode was
obtained (Figure Sc). This CNT-based robust network
imparted excellent mechanical strength and conductivity. The
free-standing LFP electrode achieved a high mass loading of 39.1
mg cm 2, and could withstand a stress of up to 7.2 MPa and 5%
strain.*® Additionally, the electrode delivered a capacity of 139.1
mAh g™' at a rate of 2C rate, outperformmg traditional thick
electrode with Al current collectors.*® This work marks a
significant advancement in the fabrication of binder-free and
current collector-free electrodes.

In addition to the progress in cathodes, advances in self-
supporting anode electrodes without Cu current collectors have
also been made. Lu et al. developed a Li,TisO,,,Tis, free-
standing anode on carbon fiber current collector (LTO/CF)
using a sequential vacuum filtration method (Figure Sd). This
anode maintained its morphology, mechanical and electro-
chemical properties even after 4000 repeated bending cycles.*’
Due to the eliminating of metal current collector, the mass
fraction of LTO in the electrode was increased from 17% to 91%,
significantly enhancing the battery’s gravimetric energy density.
Furthermore, they used the same approach to fabricate LFP/CF
electrode and assembled a full cell with the LTO/CF anode. Due
to the use of a lightweight CF current collector, the final full cell
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Figure 5. (a) Schematic illustration of the vacuum bagging electrode preparation method on carbon fabric current collectors;** Adapted with
permission from ref 44. Co;pyright 2021 Elsevier. (b, c) The dispersion mechanism of monodispersed CNTs and the preparation flowchart for the self-
supporting LEP cathode;* Reproduced from ref 45. Available under a CC BY license. Copyright YanQiang Wang. (d) Schematic illustration of the
fabrication procedure for the LTO/CF electrode;*” Adapted with permission from ref 47. Copyright 2021 Elsevier. (e) Schematic illustration of the dry
pressing process for preparing binder-free and solvent-free self-supporting electrodes; (f) schematic illustration of pressing the self-supporting onto

metallic current collector.*® Adapted with permission from ref48. Copyright 2019 American Chemical Society;
carbon paper current collector and its underlying mechanism for improving anode-free battery performance.

under a CC BY license. Copyright Hee-Tak Kim.

( §) schematic of the electron-deficient
> Reproduced from ref 53. Available

showed a high energy density of 90 Wh/kg (Compared to the
conventional LFP battery with an energy density of 109 Wh/
kg).

gAdditionally, Hu et al. developed a dry processing method to
prepare substrate-free electrodes.”® By integrating holey
graphene (hG) with active materials using hydraulic technology,
they eliminated the need for binders and solvents during the
electrode preparation (Figure Se).”® After cold pressing, the
active material particles were securely embedded within the 3D
conductive network of hG. The resulting LFP electrode
exhibited an impressive initial capacity of 160 mAh g~ '.
However, the weak mechanical properties of these self-
supporting electrodes posed challenges for compatibility with
existing battery production processes. As a result, the authors
suggested that large-scale production might require pressing the
free-standing electrodes onto current collector using a roll-to-
roll method to ensure acceptable performance. (Figure 5f).** At
the Tesla Battery Day event in 2020, the company announced

the development of 4680 cylindrical cells fabricated using
freestanding dry-processed anodes, marking a significant
advancement in electrode manufacturing technology.””

Notably, carbon-based current collectors also demonstrate
outstanding performance in anode-free LIBs (AFLIBs), as their
3D structure can effectively suppress the growth of Li dendrites
and enhances battery performance.’”®" Qu et al. prepared a
graphene array on a graphene film, which was directly used as the
current collector of AFLIBs. The high conductivity and pore-
rich structure of the electrode enabled rapid Li* diffusion and
efficient charge transport, resulting in a high capacity of 770
mAh g™, which outperforms commercial graphite anodes (with
a capacity of approximately 372 mAh g~').”> Wan et al.
developed a lightweight, flexible, and free-standing 3D hollow
carbon fiber (3D-HCF) current collector, which showed an
average Coulombic efficiency of up to ~99.5% over 350 cycles
and a cycle life of more than 1200 h due to the reduced local
current density and suppressed Li dendrite growth.>
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Figure 6. (a, b) Structure of conventional LIBs and ASSLIBs; (c) the state-of-the-art SSEs; (d) schematic of the spent ASSLIBs recycling procedure;””
(e, f) energy consumption and GHGs emission of recycling batteries based on LEs and SSEs.”* Reproduced from ref 72. Available under a CC BY

license. Copyright Zheng Chen.

Kim et al. directly employed carbon paper as the current
collector in AFLIBs but encountered difficulties in forming a
uniform solid electrolyte interface (SEI). To address this, they
introduced multivacancy defects, creating electron-deficiencies
on carbon paper substrate (Figure Sg). These defects strongly

could bond with Li* via orbital hybridization, promoting
uniform Li deposition. Additionally, the reduced Fermi level
of the modified carbon paper minimized electrolyte reduction,
resulting in a thin, uniform SEI layer. Remarkably, the
NCMS811/carbon paper AFLIB assembled by Kim et al. retained
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90% of its initial capacity after SO cycles, demonstrating good
cycling stability.>

However, the practical application of carbon-based current
collectors in LIBs remains challenging. Traditional electrode
processing methods are not well-suited for these collectors.
While researchers have developed advanced methods such as
vacuum bagging, filtration, and hydraulic pressing, these
methods are primarily limited to laboratory settings and are
difficult to scale for commercial production. Scaling these
processes without compromising performance or increasing
costs is a significant hurdle. Furthermore, carbon-based current
collectors generally have lower mechanical strength than their
metallic counterparts, making them less durable under
mechanical stresses during battery manufacturing and operation.
This issue is particularly problematic during long-term cycling,
where poor mechanical properties can lead to rapid capacity
degradation of LIBs. Further research could focus on enhancing
the mechanical properties of carbon-based current collectors
through composite design (e.g., incorporating transition metal
oxides/sulfides/nitrides, MXenes, or metal—organic frame-
works (MOFs)**™>%), improved processing techniques, and
hybrid systems that combine the advantages of both carbon and
metal-based current collectors.

Solid-State Electrolytes. Traditional liquid electrolytes
(LEs) used in LIBs typically consist of organic solvents such as
ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl
carbonate (DEC), combined with organic Li salts such as LiPF.
These components are flammable, explosive, and toxic, posing
significant challenges for both the manufacturing and recycling
of LIBs.*”®° For example, the hazardous nature of LEs requires
that spent LIBs be mechanical crushed in an inert atmosphere
and fitted with waste gas purification facilities to comply with
emission standards, which drives up recycling costs.”" Although
techniques like supercritical CO, extraction for electrolyte
recycling have been proposed, high costs, limited profitability,
and low purity of the recycled electrolytes hinder widespread
adoption. In contrast, shifting from LEs to solid-state electro-
Iytes (SSEs) can significantly enhance battery safety and
performance while facilitating safer recycling of spent LIBs
(Figure 6a,b).

The state-of-the-art SSEs include sulfides, oxides, halides, and
polymers (Figure 6c¢).°> Sulfide SSEs, such as
Li;oGeP,S;,(LGPS) and Lig(P,Sb)S;X (where X represents
halogens), exhibit superionic conductivities exceeding 1 mS
ecm™" and good mechanical ductility. However, they face
challenges with cathode-electrolyte interfacial stability and
moisture instability.”> Oxide SSEs generally exhibit high stability
and environmental compatibility, but their low conductivity and
insufficient solid—solid contact limit their applications.”* Halide
SSEs are recently considered as appealing candidates due to
their favorable balance of electrochemical stability (>4 V versus
Li%), ionic conductivity (0.5—12 mS cm™) and mechanical
deformability, which allows for stable operation with conven-
tional oxide-type cathodes.””®® However, halide SSEs are prone
to hydrolysis in humid conditions, which reduces their ionic
conductivity and limits their applications.’” Polymer SSEs offer a
promising solution to the challenge of achieving good solid/
solid contact between electrodes and solid electrolytes.”® They
typically exhibit high mechanical flexibility and favorable
interfacial wettability, creating a compact solid/solid interface
that can accommodate volume changes during charging and
discharging cycles. However, the main limitation with solid
polymer electrolytes lies in their narrow electrochemical

window. Poly(ethylene oxide) (PEO) can be rapidly oxidized
at voltages above 4.2 V (vs Li*/Li).*

Notably, when developing SSEs, it is crucial to prioritize not
only their performance but also their recyclability. This not only
reduces dependence on rare minerals like Ge and Ta during
manufacturing,”” but also lowers the overall production costs of
all-solid-state LIBs (ASSLIBs). Zhou et al. assessed the
feasibility of various recycling methods for spent ASSLB.”" In
pyro-and hydrometallurgical recycling processes, SSEs cannot
be recycled, often being converted into alloys or metal salts,
which can negatively impact the efficiency of extracting valuable
metals. In contrast, direct recycling holds great promise for the
recovery of SSEs while reducing the environmental impact of the
recycling process.

Recently, Chen et al. successfully demonstrated direct
regeneration of spent ASSLIBs.”> They utilized the differing
solubility properties of the sulfide-based electrolyte (Li;PS;Cl)
and LiCoO, (LCO) in ethanol to facilitate the preseparation of
the SSEs and cathodes. Following solvent evaporation and
thermal annealing, the SSE was reusable. After hydrothermal
treatment and short sintering, the spent LCO was regenerated.
Notably, batteries assembled with the recycled electrolyte and
cathode performed comparably to those made with pristine
materials. Furthermore, the life cycle assessment (LCA)
analyses indicated that recycling solid electrolyte cells produced
lower GHGs and energy consumption compared to recycling
liquid electrolyte cells (Figure Ge,f).

In addition to sulfide-based SSEs, several regeneration
approaches have been explored for halide SSEs. One method
involves dissolving the SSEs in a suitable solvent, followed by the
addition of a Li salt to facilitate relithiation. The solvent is then
evaporated to precipitate the regenerated SSEs.”’ Another
method incudes high-energy ball milling or thermal treatment of
cycled SSEs with additional Li salts to resynthesize SSEs.”*”*
Regeneration of polymer-based SSEs, such as poly(ethylene
oxide) (PEO), has also been reported. In these cases, a simple
water treatment can dissolve PEO into monomers within 30
min.”® After water evaporation, Li salts and monomers can be
recovered.

However, regeneration of oxide-based SSEs presents a
challenge due to their similarities with oxide cathodes, making
their separation difficult. Huang et al. developed an environ-
mentally friendly deformation-driven resintering (DDR) route
to recycle LigLa;Zr, sTay O, electrolyte. The DDR technique
uses mechanical forces to fracture the spent SSEs into smaller
particles, enhancing Li* absorption during regeneration. They
demonstrated that the ASSLIBs assembled with recycled SSEs
and LFP cathode, exhibited a discharge capacity of 126.7 mAh
¢! and maintained 89.7% after 400 cycles at 0.5C. However, the
study did not mention how the SSE and cathode were
separated.””

In summary, among the various types of SSEs, polymer-based
SSEs hold great promise for the sustainability of ASSLIBS. Their
inherent differences from oxide cathodes allow for easier
separation from cathode materials, facilitating following
regeneration of electrolytes and cathodes. Additionally,
polymer-based SSEs offer benefits such as low cost, ease of
processing, and scalability, which further enhances their
potential for widespread adoption in future battery technologies.
However, several key challenges must be addressed for practical
applications. The ionic conductivity of polymer-based SSEs is
still lower compared to other SSEs like sulfides and oxides,
limiting their performance in high-power applications. Fur-
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Figure 7. (a) Schematics illustration of the polypeptide-based organic radical battery and the involved electrochemical reactions that occur during
charging and discharging process;81 Adapted with permission from ref81. Copyright 2021 Springer Nature. (b) Components of the fully biodegradable
SIBs and their degradation products; (c) biode%radation mechanism and timeline for different battery components;** (d) images of the plant before
and after burying the used NIBs for 120 days.> Adapted with permission from ref83. Copyright 2021 John Wiley and Sons.

thermore, their temperature stability needs significant improve-
ment to ensure safe operation under a wide range of conditions,
particularly for EVs and grid-scale storage. Compatibility with
electrodes, especially Li metal anodes, also requires further
research to address issues such as dendrite formation and poor
interfacial contact. Facing the above challenges, some companies
appear to have found potential solutions. For instance, BYD has
announced plans to adopt ASSLIBs in electric vehicles by
2027.”% Tesla has also shown relevant developments in this area,
suggesting that the widespread adoption of solid-state batteries
may be realized in the near future.

Biodegradable Battery Components. Conventional LIBs
components contain hazardous elements that can take a century
to decompose if landfilled, causing serious pollution to soil and
water bodies. To address this issue, recent studies have explored
the use of biodegradable alternatives for electrode materials,
binders, and separators, etc., which could potentially reduce the
environmental impact of LIBs.

For instance, Guo et al. developed a biodegradable LIBs using
emodin (6-methyl-1,3,8-trihydroxyanthraquinone) as the cath-
ode and lithiated humic acid as the anode.”” This battery
exhibited a capacity of 157 mAh g ~' at a current density of SO
mA g~ in the first cycle with a Coulombic efficiency of ~#99%.
Zhang et al. utilized naturally derived dopamine (DA) to prepare
a polydopamine (PDA) anode through oxidation, and achieved
impressive capacities for Li* and Na* storage.” In another study,
Wooley et al. introduced viologens and nitroxide radicals onto
polypeptide backbones as the anode and cathode materials,
respectively (Figure 7a).*' Although the cytotoxicity tests
demonstrated that the degradation products of these peptide-
based electrode materials had low toxicity, the capacity of the
assembled battery was only 37.8 mAh g~!, indicating that further
enhancement is needed. Although there is still a significant gap

in capacity compared to traditional LIBs, when considering that
biodegradable batteries primarily serve as power sources for
wearable devices and medical sensors which do not require high
capacity, they still hold broad prospects.*”

Recently, Kang et al. developed fully degradable sodium-ion
batteries (SIBs).™ They used Na,Fe;(PO,),(P,0,) (NFP) as
the cathode, a porous cellulose acetate (CA) mesh as the
separator, thermoplastic protein-based carbon as the anode, CA
and CMC as the binder, and a sodium perchlorate (NaClO,) in
a propylene carbonate (PC) solution as the electrolyte (Figure
7b). Each component of this battery could be decomposed into
nontoxic compounds in nature (Figure 7c). Even when the used
battery was buried in the soil for 120 days, plant growth was not
affected (Figure 7d), well demonstrating its environmental
safety. Moreover, their novel SIBs delivered a specific capacity of
approximately 110 mAh g~', achieved a cycle retention of
approximately 93% after 100 cycles at a current density of 20 mA
g~!, which is higher than that of the electrode using PVDF
binders (~89%).%

Despite notable advancements, biodegradable batteries often
fall short of matching the capacity, energy density, and efficiency
of traditional LIBs.** They are more suitable for specific
applications with lower performance requirements, such as low-
power portable electronics. However, producing biodegradable
batteries presents difficulties, as current battery manufacturing
processes are not compatible and require specialized equipment
and new production methods. Additionally, while these batteries
are designed to degrade after use, the environmental impact of
their degradation products must be carefully evaluated to ensure
they do not release toxic or harmful substances. Finally,
establishing a robust infrastructure is also essential for the
environmentally responsible disposal of biodegradable batteries.
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Figure 8. (a) Performance comparison for LIBs, LMBs and AFLIBs; (b) cost breakdown of different components for conventional LIBs and AFLIBs;
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Nature. (e) Required cell numbers of traditional LIBs and AFLIBs for the same driving distance;” (f) driving distances of the traditional LIBs and
AFLIBs with same cell number;”> (g) Potential solutions for addressing the Li dendrites issues of AFLIBs.

Anode-Free Batteries. Graphite is commonly used as the
anode material in LIBs due to their high capacity and long cycle
life. However, the mining and processing of graphite have
significant environmental impacts, including habitat disruption,
water pollution, and energy consumption.”> Importantly,
recycling used graphite anodes remains economically unfeasible,
leading to their incineration during the recycling process, which
generates environmental issues and hampers long-term
sustainability."*® To replace graphite, Li metal has been
proposed as a next-generation anode material, which can offer
a high specific energy density of approximately 350 Wh kg™
(Figure 8a)."” However, LIBs with Li metal anodes (LMBs)
generally have a Coulombic efficiency of less than 99%, much
lower than the 99.9% typically achieved with graphite anodes
after initial cycles, leading to short cycle life. In addition, the high
reactivity of Li metal requires stringent control over O,, H,O,

and CO, during storage, transportation, and production, which
substantially increases manufacturing costs.”"***’

Recently, Dahn and co-workers introduced a new design for
anode-free LIBs (AFLIBs), in which the anode material is
entirely removed, leaving only the current collector.”” During
charging, Li* ions from the cathode are plated onto the current
collector, while during discharge, the Li metal dissolves and the
Li* ions are reinserted into the cathode.’"”"”* Chen et al.
compared the cost breakdown of AFLIBs with that of traditional
LIBs (Figure 8b). The elimination of the graphite anode
reduced the manufacturing cost of AFLIBs by 13%. The
simplified battery structure and reduced weight improved the
specific energy density to 380 Wh kg™' and increased the
volumetric energy density by around 71%. As a result, the driving
range of electric vehicle could extend by an additional 280 km
(Figure 8¢,d).”” Thus, fewer AFLIB battery packs are needed for
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Copyright Stefano Passerini.

the same range, providing considerable cost savings compared to
conventional LIBs (Figure 8e¢).”

The removal of the graphite anode can streamline the
recycling process for spent batteries. Although recycling for
AFLIBs has not yet been proposed, their simplified structure
eliminates the need for separating graphite from other
components. It is important to note that a full discharge at a
slower rate or with a lower voltage cutoff through electro-
chemical methods before recycling is crucial. This step helps
dissolve the Li metal on the current collector and reintegrate it
into the cathode, ensuring safe battery disassembly and
components separation. Afterward, traditional recycling or
regeneration methods can be applied to recover specific battery
components effectively.

However, AFLIBs face comparable challenges similar to
LMBs, including low Coulombic efficiency and dendrite
formation.”* Several strategies have been proposed to enhance
Li* reversibility in AFLIBs, such as electrolytes functionalization,
solid/electrolyte interfacial design, and current collector surface
or structure modifications (Figure 8g). Dahn et al. recently
reported a dual salt electrolyte composed of LiDFOB and
LiBF,,” enabling cells to retain 80% of their initial capacity after
90 cycles, a performance comparable to traditional LIBs. Abrha
et al. introduced a Garnet-type Li,La,-sCa,sZr; 7sNby,50,
(LLCZN) layer on the Cu current collector surface to prevent Li
dendrite growth, and achieved an average Coulombic efliciency
0f 97.6% and a capacity retention of $8.66% after 30 cycles.”” In
addition, researchers have explored protective coatings or
structural modifications of Cu current collectors to control the
Li* flux and ensure smooth Li deposition. For instance, Chen et

al. developed an AFLIB with a SiO,-coated Cu current collector,
which lasted for 60 cycles with 70% c%pacity retention, three
times longer than the uncoated version.”® Guo’s team designed a
3D current collector with a submicron skeleton, enabling Li
deposition within the 3D structure and preventing dendrite
growth. Their AFLIB operated continuously for 600 h without
short-circuiting, showing significantly improved safety and
stability.”’

However, significant challenges remain before the commerci-
alization of AFLIBs, including technical limitations, safety
concerns, and cost issues.”® While AFLIBs outperform tradi-
tional LIBs regarding energy density, their limited cycling life
poses a barrier to practical use.”” Additionally, safety concerns
resulted from Li dendrite growth and thermal runaway hinder
widespread acceptance.'%” Strategies like functionalized electro-
lytes and SSEs have shown promise in extending AFLIB lifespan
and improving safety, but these approaches tend to increase
manufacturing costs. Therefore, further research is essential to
develop advanced technologies and materials that enhance
AFLIB performance while maintaining cost efficiency.

Water-Soluble Binders. Binders play a crucial role in
maintaining the structural and mechanical integrity of electrodes
in LIBs. They ensure cohesion among the active material
particles and between the active materials and current collectors
during electrochemical cycling. PVDF is a commonly used
binder for cathode preparation, where it is typically dispersed in
an organic solvent like N-methyl-2-pyrrolidone (NMP) along
with conductive agents and active materials to create a
homogeneous slurry. However, this approach raises safety and
environmental concerns, and increases manufacturing costs. !
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Table 2. Electrochemical Performances of Various Aqueous Binder-Based Cathodes

initial discharge capacity”
1

cathode material binder (mAh g™")
LiFePO, CcMC 1562 (C/3)
LiFePO, hybrid humics/ 153.6 (C/5)

CMC

LiFePO, PTFE 150.3 (C/S)
LiNi; ;Mn, ;C0,,0, Na-CMC 157.5 (C/2)
LiNi, 3Mn,; ;Co, /30, alginate 141.1 (C/2)
LiNiy4Coy,Mny,0,  CMC 161.1 (C/10)
LiNig ;Mn, O, SA 118 (1C)
LiNiy sMn, O, CCTS 135 (C/2)
LiNig sMn, 50, P(MVE-LMA) 126 (1C)

“C-rate is given in parentheses. “Number of cycles is given in parentheses.

rate capability, capacity” cycle life, capacity”
(mAhg™") (mAh g™) refs

90 (5C) 152.2 (100) He etal.''®
105 (8C) 152.3 (100) Yang et al.'"®
88.6 (5C) 146.5 (100) Gao et al.'*°
107.9 (5C) 90.1 (200) Xu et al.'*!
76.8 (5C) 89.2 (200) Xu et al.'*
784 (10C) 91.6 (200) Chen et al.'*
100 (5C) 86 (200) Bigoni etal.'*
95.8 (10C) 95.8 (100) Zhong et al.'**
111.8 (10C) 92 (400) Dong et al.'**

Furthermore, PVDF poses great challenges in spent LIBs
recycling, as it is difficult to completely remove from the battery
black mass, leading to low metal ion leaching efficiency. To
enhance recycling efficiency, a pretreatment process involving
low-temperature calcination is used to pyrolyze PVDF, though
this process can release hazardous gases such as hydrogen
fluoride (HF).

Recent research has focused on water-soluble alternatives to
PVDF, which are less costly, more environmentally benign, and
easier to remove during recycling (Figure 9a). These binders
offer a significantly lower price range compared to PVDF ($2—
$5/kg versus $12—$20/kg). In addition, water-soluble binders
eliminate the dependence on toxic organic solvents, reducing
environmental harm during electrode production. A LCA
assessment demonstrated that replacing NMP with water
could reduce CO, equivalent emissions by approximately
16%.'°>'% Furthermore, water-soluble binders can be easily
washed away with water, simplifying the recycling process for
LIBs.

Current choices for water-based binders include carbox-
ymethyl cellulose (CMC), poly(acrylic acid) (PAA), and
sodium alginate (SA).'’*As shown in Figure 9b, these binders
demonstrate superior conductivity compared to traditional
PVDEF. Among them, CMC stands out as one of the primary
binders used in water-based electrode manufacturing due to its
high stability and is often used in combination with styrene—
butadiene rubber (SBR) to enhance the binding strength and
flexibility of electrodes.'”> PAA offers excellent dispersibility in
water, tending to form a network structure that facilitates rapid
transport of Li*, which can improve the rate performance of
batteries.'”™'%® SA, derived from brown algae, possesses
remarkable mechanical properties and minimal reactivity with
the electrolytes. Additionally, each monomer unit in its polymer
chain contains carboxyl functional groups, which contributes to
its excellent water solubility."*”" '

While the use of water-soluble binders for anode preparation
has been commercialized, their application for cathode
preparation is still under exploration. Zhang et al. conducted a
comprehensive study on various water-soluble binders and their
mixture for preparing LFP cathodes."'' They found that
electrodes made with SA and a combination of CMC and
poly(tetrafluoroethylene) (PTFE) binders exhibited commend-
able performance. The rate capabilities (defined as the ratio of
specific capacity at a 2C rate to that at a 0.1C rate) were
measured to be 86.3% and 85.7% respectively, representing
increases of 4.4% and 3.8% compared to electrodes using PVDF
as a binder. After 50 cycles, the discharge specific capacities

stabilized at 165 and 166 mAh g~', respectively. These
impressive electrochemical performances are primarily attrib-
uted to the reduced polarization and improved electrochemical
kinetic properties in the electrodes.''” Notably, their results
indicated that slurry viscosity plays a critical role in electrode
performance, highlighting the necessity of including an
appropriate amount of thickener, such as PTFE, SBR.

In contrast, the application of water-soluble binders for NCM
electrode processing remains quite challenging. The highly
reactive Li* in NCM lattice can be easily leached out by H* in
aqueous slurry (Figure 9¢), which not only leads to capacity loss
of the NCM cathode but also damages the Al current collector
due to increased slurry alkalinity (Figure 9d). Moreover,
fabricating thick NCM electrodes with water-soluble binders is
problematic, as cracks often develop due to capillary stress
during water evaporation (Figure 9e)." "’ Mukherjee et al. found
that cracks appeared and propagated when the mass loading of
NCM exceeded ~15 mg cm™?, resulting in delamination of the
active materials during cycling.'"?

Several strategies have been proposed to mitigate Li* leaching
during aqueous electrode processing (Figure 9f). For example,
Matsumoto et al. created a water-resistant layer of TiO, on the
surface of LiNi,Co,Al,_,_,0, (a > 0.85, NCA) particles, which
effectively prevented Li* leaching during electrode prepara-
tion."'* The resulting electrodes delivered a comparable rate
performance to those made with PVDF binders. Furthermore,
Al current collectors require protection, and applying a carbon
coating can physically shield the Al foil from the aqueous slurry,
enhancin§ both charge transfer kinetics and cycling perform-
ance. !¢ Alternatively, combining these two strategies may
provide a more effective approach to improve the stability of
electrode stability. It is important to note that, although cathode
electrodes prepared with water-soluble binders have achieved
high electrochemical performances to date (Table 2), most
studies have been limited to laboratory-scale button cells with
low loading materials. Further investigation is needed to
evaluate the electrochemical performance of full cells with
higher-quality loaded electrodes and extended cycling tests.

Bl CONCLUSIONS AND OUTLOOK

In conclusion, our thorough assessment of the environmental
impact of conventional LIBs highlights the urgent need for
sustainable advancements in battery technology. The develop-
ment of metal-free electrodes, nonmetallic current collectors,
the transition from LEs to SSEs, and anode-free batteries, along
with the substitution of fluorine-based binders with water-
soluble alternatives, are of great significance for reducing mineral
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dependencies and mitigating the environmental footprint of
battery production in alignment with sustainable principles.
Particularly noteworthy is the ambitious yet imperative vision of
biodegradable batteries. These batteries, when fully realized,
have the potential to revolutionize the energy storage landscape,
effectively addressing concerns related to waste batteries
accumulation and environmental pollution. Despite the
substantial progress achieved in research and development,
the widespread adoption of these advanced technologies still
faces formidable challenges.

Performance. While the strategies outlined here can
significantly enhance the sustainable development of LIBs,
desirable performance remains a critical concern. For instance,
metal-free electrodes often struggle with insufficient electrical
conductivity, limiting their capacity and overall performance.
Moreover, these electrodes may undergo structural trans-
formations or degrade over multiple charge—discharge cycles,
thereby diminishing battery longevity. Anode-free batteries,
despite offering high gravimetric energy density, encounter
critical issues related to their limited cycling life.

Scalability. Most of the leading advancements are
demonstrated in laboratory-scale experiments. Transitioning
these technologies to large-scale applications presents sub-
stantial challenges related to technological limitations and cost
considerations. For instance, while SSEs can enhance battery
safety and performance, their high production costs may pose
significant barriers to widespread adoption. Although substitut-
ing metallic current collectors with carbon-based materials can
effectively reduce the need for mineral mining, achieving large-
scale production of electrodes using carbon-based current
collectors while maintaining the same overall properties as
traditional LIBs remains a technical hurdle. While water-soluble
binders offer an environmentally friendly and cost-effective
solution, the successful preparation of thick electrodes necessary
for ensuring high energy density in batteries has yet to be
realized. Addressing these challenges requires collaboration of
between academic and industry efforts, focusing on the
optimization of manufacturing processes, and developing new
production techniques.

Compatibility. Compatibility, particularly concerning SSEs,
poses a critical challenge. Insufficient alignment between SSEs
and electrodes regarding ionic conductivity at the interface,
thermal expansion coeflicients, and mechanical stability has
prevented all-solid-state batteries from reaching their projected
potential. Overcoming these challenges necessitates a multi-
faceted approach involving precise material selection, interface
engineering, and optimization of manufacturing processes.
Researchers can focus on exploring diverse material combina-
tions, interface modifications, and deposition techniques to
enhance interfacial compatibility, thereby enabling the develop-
ment of high-performance and robust solid-state batteries.
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